Pure Mathematics Topology and Real Analysis Qualifying Examination University of Waterloo September 12, 2023

Instructions

- 1. Print your name and UWaterloo ID number at the top of this page, and on no other page.
- 2. Check for questions on both sides of each page.
- 3. Answer the questions in the spaces provided. If you require additional space to answer a question, please use one of the overflow pages, and refer the grader to the overflow page from the original page by giving its page number.
- 4. Do not write on the Crowdmark QR code at the top of each page.
- 5. Use a dark pencil or pen for your work.
- 6. All questions are equally weighted.

- 1. Let (X, d) be a metric space.
 - (a) Define what it means for (X, d) to be totally bounded.
 - (b) Prove that every totally bounded metric space is separable.
 - (c) Let (X, d) be a metric space and $\epsilon > 0$. Suppose that there exists an uncountable family $(x_i)_{i \in I}$ such that $d(x_i, x_j) \ge \epsilon$ for all $i \ne j \in I$. Prove that (X, d) is not separable.
 - (d) Let (X, d) be the metric space of bounded sequences of real numbers $(\alpha_i)_{i \in \mathbb{N}}$ equipped with the metric

$$d((\alpha_i)_{i\in\mathbb{N}}, (\beta_i)_{i\in\mathbb{N}}) = \sup_{i\in\mathbb{N}} |\alpha_i - \beta_i|$$

for $(\alpha_i)_{i\in\mathbb{N}}, (\beta_i)_{i\in\mathbb{N}} \in X$. Is X separable? Justify your answer.

- 2. (a) State the Baire category theorem.
 - (b) Let $(X, || \cdot ||)$ be a Banach space. Suppose that C is a closed subset of X which has the following property:

For every $x \in X$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}x \in C$.

Prove that C has non-empty interior.

- 3. Let (X, \mathcal{T}) be a topological space.
 - (a) State the definition of a basis of open sets for (X, \mathcal{T}) .
 - (b) State the definition of what it means for (X, \mathcal{T}) to be second countable.

For parts (c) and (d), we consider the notion of *condensation point*. Let (X, \mathcal{T}) be a topological space, let A be a subset of X, and let x be a point of X. We say that x is a *condensation point* for A to mean that

- $[G \in \mathcal{T}, G \ni x] \Rightarrow [G \cap A \text{ is an infinite uncountable set}].$
- (c) Let (X, \mathcal{T}) be a topological space, let $A \subseteq X$, and let C denote the set of all condensation points of A. Prove that C is a closed (possibly empty) subset of X.
- (d) Let (X, \mathcal{T}) be a topological space, let $A \subseteq X$, and let C denote the set of all condensation points of A. Suppose you know that (X, \mathcal{T}) is second countable, and that A is an infinite uncountable set. Prove that $C \neq \emptyset$.