
VIII—Floyd-Hoare Logic

We discuss here a rather syntactic approach to program correctness (or
program verification), beginning with the austere ‘language’ ATEN, and
then discussing more realistic programming languages. Later this will all be
compared and contrasted with the approach of denotational semantics. In
fact, a careful verification of the soundness of the proof system in the syntac-
tic approach would often use a denotational specification of the semantics,
although we shall use a more operational semantics in each case; for ATEN,
just the one originally given. There is also a point of view which sees the F-H
approach as an alternative form of specifying the semantics of a programming
language.

8.1—Floyd-Hoare Logic for ATEN.

Floyd-Hoare logics are deductive systems for deriving statements of the
form F{C}G, where F and G are 1storder formulas (the ‘pre- and post-
conditions’), and C is a command from some imperative language. Here
we’ll choose that language to be ATEN. This choice will probably seem far too
simplistic to any reader with experience of serious work in F-H logic, which exists mainly
for more practical (and therefore complicated) languages, ones which include features
such as procedure declarations and calls. See [C]. We shall study such a language in
Subsection 8.3. In principle, of course, ATEN computes anything that is computable.
In any case, commenting about soundness and adequacy (completeness) in the case of
a simple language like ATEN serves to emphasize all the main general points, without
having intricacies which obscure them.

But what do we ‘mean’ by a string F{C}G of symbols? The idea is that
this string makes an assertion. That assertion is this : the formula G will
be true for the state resulting from executing the command C, as long as we
start from a state for which F is true and for which the execution of C does
indeed terminate. So it will come as no surprise that here, the 1storder
language from which F and G come is 1storder number theory. In the next
subsection, we shall discuss a more general situation with ATEN, as well as
languages with more complicated features.

While ATEN is the command language used, it will also be no surprise
that, in the semantics, we shall concentrate a great deal on N as the inter-
pretation.

1

But to begin, it is better to consider an arbitrary interpretation I of the
1storder number theory language. So I is a non-empty set, together with
interpretations of the symbols +, × , < , 0 and 1 over that set. We
won’t worry about how the elements of I (real numbers, for example) would
be represented in some machine which we think of as implementing ATEN
commands. Nor will we be concerned about implementing the operations
which interpret the symbols + and ×.

Definition. The F-H statement F{C}G is true in interpretation I if and
only if, for all v such that F is true at v and such that, when executed with
initial state v, the command C terminates (say, with state w), we have that
G is true at w.

So this definition merely makes more formal the earlier explanation of the
Floyd-Hoare statement F{C}G. Recall from [LM] that v = (v0, v1, v2, · · ·),
and also w, are infinite sequences from the interpretation I. We ‘store vi

in bin #i ’, for the execution of C. Note also that F and G are full-blown
formulas, not necessarily quantifier-free as with the formulas that are used
‘for control’ within whdo-commands.

The formulas F and G are also likely to have free variables, since if neither
did, the definition above would say little about the behaviour of the command
C. More precisely, it would say that, if C is a command with at least one
input state where its execution terminates, then the sentence F being true
in I implies that the sentence G is true in I (and it would put no restrictions
at all on F and G if C ‘loops’ on all inputs). (There is a text which exposits
1storder logic, religiously disallowing free variables in formulas, with considerable resulting
awkwardness. It seems ironic, in view of the above, that the author is a computer scientist,
and the intended audience consists of CSers.)

Note once again that termination of the program is part of the assump-
tions, not the conclusion in the definition. This is called partial correctness
to contrast it with total correctness, where termination is part of the con-
clusion. Because of the results of Turing about the halting problem (see
[CM]), thinking about systems for total correctness brings forward some se-
rious limitations right at the beginning. There is a considerable literature on
that topic, but we will only touch on it in the second addendum below. Ex-
pressed symbolically in terms from the beginning of [CM], a total correctness
statement would be saying

F true at s =⇒ ||C||(s) 6= err ∧ G true at ||C||(s) .

2

The definition above for partial correctness says that truth of F{C}G amounts
to, for all s,

F true at s ∧ ||C||(s) 6= err =⇒ G true at ||C||(s) .

Before getting into the proof system, possibly the reader is puzzled about
one thing—surely the standard naive thought about correctness of programs
is that the state after execution should be properly related to the state before
execution? After all, we have emphasized, as most do at an elementary level,
the idea that a command (or program) is a recipe for computing a function
from states to states. But an F-H statement seems to be only asserting some-
thing about ‘internal’ relations involving the output state, not any relation
of it to the input state. The way to deal with this question is to refer to
snapshot variables (or history, or ghost, or auxiliary variables)—an example is
the easiest way to explain this. Recall the ATEN command C whose pur-
pose was to interchange x1 and x2. We used bin 3 as an intermediate storage,
but the command didn’t use any xi for i > 3, so we’ll employ x4 and x5 as
our snapshot variables. An F-H statement whose truth should convince most
people of the correctness of C would then be the following :

(x4 ≈ x1 ∧ x5 ≈ x2) {C} (x4 ≈ x2 ∧ x5 ≈ x1) .

Admittedly, this says nothing, strictly speaking, about what happens when
we execute C without first making sure that bins 4 and 5 have identical
contents to bins 1 and 2 respectively. But it seems that one simply has to
accept as a kind of meta-semantic fact the obvious statement that the content
of bin i is unchanged and irrelevant to the computation, if xi does not occur
in the command. Only believers in voodoo would waste time questioning
that.

You can find a number of extra examples of specific F-H derivations in
the first section of [G]. An exercise would be to deduce the completeness of
the system there from that of the one below.

Definition. The deductive system we shall use is given symbolically as
follows :

(I)
F{C}G , G{D}H

F{(C; D)}H

3

(II)
empty

F [x→t]{x←: t}F

(III)
(F ∧H){C}F

F{whdo(H)(C)}(F ∧ ¬H)

(IV)
F → F ′ , F ′{C}G′ , G′ → G

F{C}G

Comments. Each of these is to be regarded as a rule of inference, for
use in derivations. The latter are finite sequences of F-H statements and of
formulas (A→ B), ending with an F-H statement. But the rule conclusions
(

under the line
) are all F-H statements, so we’ll need some discussion (below)

about how lines (A→ B) can appear in such a derivation. In any case, only
rule (IV) uses such formulas. Rule (III) contains a formula H which must be
quantifier-free, since it occurs within a whdo-command. And rule (II) may
be better regarded as a ‘logical’ axiom, since it has no premiss.

Definition. A rule α1,α2,···,αk

β
is valid in I if and only if β is true in I

whenever all αi are true in I (as per the above definition for truth of F-H
statements, or see [LM], p.212-214, for those αi which are 1storder formulas).

Definition. A system is sound for I if and only if all its rules are valid in
I. (But the defined system is written with no dependence on any particular
interpretation I, so it is simply sound (period!), as the theorem below states.
In fact, it has no dependence even on which 1storder language is used, as we
discuss in the following subsection.)

Remark. There is surely no need to get formal about derivations, nor
about the formulation, much less the proof, of the fact that all the F-H
lines are themselves true in I, in a derivation using a sound system and only
premisses that are true in I; in particular the conclusion of that derivation
(its last line) is true in I. Most derivations have no premisses, certainly ones
purporting to show that a particular program is correct. See also the second
addendum below, where a discussion of including strings with propositional

4

connectives, and where we take the viewpoint that the unruly set of all true
(in N) 1storder formulas is actually the set of premisses.

Theorem 8.1. The previous system is sound, as long as rule (IV) uses
only formulas (A→ B) which are true in the interpretation considered.

Proof. Each rule is pretty obviously valid, but we’ll give some details
below. This is written out

(1) to give the reader some practice with the definitions; and
(2) since it is a matter of experience in this subject that unsound systems have been

published several times, for the more complicated practical languages as in Subsection
8.3, and even for a system using ATEN, where one extends the F-H statements by using
propositional connectives, as we do in the second addendum below, where these statements
are called assertions.

See also the four quotes in the 4th subsection, just before the addenda.
Another reason to write this out is to avoid the need to do so later for analogous

rules in a much more complicated system for a closer to practical, but messier, command
language.

Note also that until we get more explicit about the formulas (A→ B), and even then,
one has a particular interpretation in mind when talking about derivations, which is often
not the case in pure logic.

For rule (I), if F is true at v and (C; D) is executed starting with v, then
we have the following possibilities.

(i) If C loops at v, then so does (C; D) .
(ii) If not, let C output w when its input is v. Then G is true at w, since

we are assuming that F{C}G is true.
(iii) Now if D loops at w, then so does (C; D) at v .
(iv) If not, let D output z when its input is w. Then H is true at z, since

we are assuming that G{D}H is true. But now, (C; D) outputs z when its
input is v, so we have shown F{(C; D)}H to be true, as required.

For rule (II), if F [xi→t] is true at v, then F is true at (v0, v1, · · · , vi−1, t
v, vi+1, · · ·),

that is, F is true at w, where the latter is the output state when xi ←: t is
executed on v, as required. See [LM], pp.211, 226-7, if necessary, for tv .

For rule (III), assume that H is quantifier-free, that (F ∧H){C}F is true,
and that F is true at v . Suppose also that whdo(H)(C) terminates with w,
when executed on v. Then H is false at w, so

(A) : ¬H is true there.
Also H is true before each execution of C within the execution of whdo(H)(C).

5

Then, inductively, F is also true before each such execution, using the truth
of (F ∧H){C}F each time. Using it one last time,

(B) : F is true after execution of whdo(H)(C).
Thus, by (A) and (B), F ∧ ¬H is true after execution of whdo(H)(C), as
required.

Finally, for rule (IV), suppose that v is such that F is true there and
C terminates when executed with v as input. Then F ′ is also true there,
since we are assuming F → F ′ is true in I. But now, since we are assuming
F ′{C}G′ is true, we see that G′ is true after executing C, and so, as required,
G also is, since G′ → G is true in I.

Now we shall begin to consider adequacy of the system, the reverse of
soundness. Is it possible that any true F-H statement F{C}G can be derived
within the deductive system which we have given? Well, the system hasn’t
exactly been given, since the formulas (A → B) allowed in rule (IV) need
to be specified. We certainly want them at least to be true in I, as in the
soundness theorem. But a fundamental theme from post-1930 1storder logic,
that deducibility can be much weaker than truth, has now to be considered.

For the sake of concreteness, from here on in this subsection we shall stick
to N as the interpretation. First let us suppose that we tack on (to the given
F-H proof system) some proof system for 1storder number theory formulae
which is sound with respect to the interpretation N.

(For example, the formula ¬0 ≈ x → 0 < x might be derivable for use
in rule (IV) of the F-H system, a formula which is true in N, but certainly
is not logically valid. Indeed, we might take it as one of the axioms for the
system.) This 1storder proof system is expected to be decidable or axiomatic
in that there is, for example, an algorithm for recognizing whether a given
formula is an axiom of the system.

Since the F-H system we gave is also decidable, it is a standard conse-
quence that the F-H statements which can be derived using the combined
system form a recursively enumerable set (with respect to some Gödel num-
bering of the set of such statements).

Now consider the derivable statements of the special type as follows :

0 ≈ 0{C}¬0 ≈ 0 .

Clearly one can ‘automatically’ recognize such formulas within an enumera-

6

tion as above, so we conclude that the derivable formulas of that type form
a recursively enumerable set.

But what about the set of all such statements which happen to be true
in N? It is clear, since ¬t ≈ t tends to be false in any interpretation of
any 1storder language (with equality), that 0 ≈ 0{C}¬0 ≈ 0 is true for
exactly those commands C which fail to terminate (or halt) no matter what
the input state is.

For a contradiction, suppose now that every F-H statement which is true
in N can be derived using our combined system. It follows that the set of C
which always fail to halt must be recursively enumerable. But this directly
contradicts a well-known theorem—see for example [CM], pp.106-7 where
that set is shown not to be decidable. But the complement of that set is easily
seen to be recursively enumerable (it can be semi-decided by just trying,
computational step-by-step, all possible inputs for the command, until and
if one is found where it terminates). So the set itself cannot be r.e., since,
by [CM], IV-5.3, decidability is implied for an r.e. set whose complement
is also r.e. This contradiction now shows that our combined system is never
complete, whatever axiomatic proof system for number theory we use to
supplement the four rules forming the F-H system.

For logicians, there is a rather more famous non-r.e. set, namely the set
of formulas in 1storder number theory which are true in N. (See, for example,
Appendix LL in [LM].) One can base an alternative argument to the above
on that non-r.e. set as follows. First fix a formula T which is always true, for
example, 0 ≈ 0. Now fix a command, NULL, which does nothing other than
terminate for every input. (‘It computes the identity function.’) An example
might be x0 ←: x0. Now consider the set of all F-H statements of the form
T{NULL}G. Such a statement is true in N precisely when G is. So the set
of such would be r.e. if we had a combined axiomatic proof system which
was complete, and so no such system can exist.

Note that the above arguments depend only on both the F-H proof sys-
tem for F-H statements and the proof system for 1storder formulas being
axiomatic, i.e., the rules and axioms form decidable sets. They have no de-
pendence on the particular system defined above, or really even on the choice
of ATEN as a ‘Turing-equivalent’ command language. Thus we have

7

Theorem 8.2. For no combined axiomatic proof system, using a F-H
system involving 1storder formulas combined with a proof system producing
formulas true in N, can we have adequacy (i.e. completeness). That is, some
true F-H statements will necessarily be underivable by the combined system.

So, to hope for completeness, we must have something like a ‘non-axiomatic’
system for deriving true (in N) formulas (A→ B) as input for the final rule
in our F-H system. I don’t know of any such system which is fundamentally
different from simply, in oracle-like fashion, assuming that all (true) such
formulas can be used as required. So we’ll call this the oracular F-H system.
A bit surprising (at least to me) is the fact that we now do get completeness—
somehow, rule (III), for whdo-commands, does say everything that needs to
be said, though that seems to me rather unobvious.

In [C], this idea of a non-axiomatic system is expressed that way. However, it is
probably best to just regard all derivations in the F-H system as having a set of premisses
consisting of all 1storder formulas which are true in N. So we imagine the oracle as being
able to decide truth in N, not just being able to list all true formulas in N. Thus the set of
all derivations becomes ‘decidable relative to the set of all true formulas in N’. And so the
set of all deducible F-H statements becomes ‘recursively enumerable relative to the set of
all true formulas in N’. This and the previous singly quoted phrase have precise meanings
in recursion theory.

To prove completeness, we need a new concept, the post relation, and one
good theorem about it, namely, its 1storder definability.

Definition. Let F be a 1storder number theory formula. and let C be a
command from ATEN. Let (y1, · · · , yn) be a list of distinct variables which
includes all the variables occurring in C and/or occurring freely in F . Let

Q
(y1,···,yn)
F,C be the n-ary relation on natural numbers defined by

Q
(y1,···,yn)
F,C (d1, · · · , dn) ⇐⇒

for at least one input (d′1, · · · , d′n) for which F is true [with yi = d′i], the
command C terminates with output (d1, · · · , dn) .

Theorem 8.3. For any F and C, the relation Q
(y1,···,yn)
F,C is ‘1storder de-

finable’, in that there is a formula G = GF,C with no free variables other than

y1, · · · , yn such that G is true at (d1, · · · , dn) if and only if Q
(y1,···,yn)
F,C (d1, · · · , dn).

This follows using a major result, essentially due to Gödel, given in [CM]

8

as V-2.3, p.175. Take G to be

∃z1 · · · ∃zn (F ∧H) ,

where z1, · · · , zn are distinct variables, disjoint from {y1, · · · , yn}, and H is a
formula with free variables from the yi and zi, such that

H [~y→~d , ~z→~d′] is true in N ⇐⇒ ||C||(~d′) = ~d .

The relation on the right-hand side in the display (that is, with input ~d′, com-

mand C terminates with output ~d) is clearly semi-decidable, so Gödel’s
result assures us that H exists, i.e. the relation is 1storder definable. It is
straightforward to check that G has the required property. (Readers might
give the details as an exercise—compare to the details we give for the ex-
pressivity result in the second addendum.)

In the next subsection, we’ll begin to consider more general 1storder languages, and
associated command languages. We’ll refer to such a setup as expressive when the state-
ment in 8.3 holds. That implies, for each (F,C), the existence of a formula G = GF,C

such that
(i) F{C}GF,C is true; and
(ii) for all formulas H, we have that F{C}H is true implies that

GF,C → H is true.
More elegantly, this can be stated as

for all formulas H, we have [F{C}H is true iff GF,C → H is true].

(A formula with the properties of GF,C is often referred to as a “strongest postcon-
dition”. Pressburger arithmetic for N is an example of a non-expressive language—just
drop the function symbol for multiplication from the language. A famous result says that
truth in N then becomes decidable.)

Now we can state and prove the main result of this section.

Theorem 8.4. The oracular F-H proof system is complete, in that every
F-H statement which is true in N can be derived using that system.

Remark. The statement F{C}G is clearly true in each of the follow-
ing cases. So the theorem guarantees the existence of a derivation. As an
exercise, give a more direct argument for the derivation each time.

(i) G is logically valid; any F and C.

9

(ii) F is the negation of a logically valid formula; any G and C.
(iii) C ’loops’ on every input; any F and G.
Actually, (iii) is needed later, and seems not completely obvious. The

best I can come up with is this : By (IV), we need only find a derivation
for 0 ≈ 0{C}¬0 ≈ 0 . Clearly C is not an assignment command. When
C has the form (D; E), go through that case of the proof below. When
C is whdo(H)(D), it’s certainly simpler than that case of the proof below.
Firstly, H is necessarily true for all v , as we use in the last sentence below.
Now (i) gives a derivation for 0 ≈ 0{D}H, and hence for (H ∧H){D}H ,
by (IV), since H ∧ H → 0 ≈ 0 is true. So the while-rule gives one for
H{whdo(H)(D)}(H ∧ ¬H) . But 0 ≈ 0→ H and H ∧ ¬H → ¬0 ≈ 0 are
both true, so apply (IV) again to finish.

Proof. We proceed by structural induction on C ∈ ATEN, assuming
F{C}G to be true in N, and showing how to get a derivation of it. The
initial and easier inductive cases will be done first to help orient the reader. The harder
inductive case (namely when C is a whdo-command) is a substantial argument, due to
Cook [C] (though it is far less intricate than his arguments when we have a more serious
programming language with procedure calls, as Subsection 8.3 will explain).

Initial case, where C = x←: t : Assume that F{x ←: t}G is true in
N. Then “G with all free occurrences of x replaced by the term t” is true
wherever F is true; that is, F → G[x→t] is true in N. So the semantically
complete (oracular) system for N gives a derivation of the latter formula.
Now use rule (II) to get a derivation of G[x→t]{x←: t}G. To finish, apply rule
(IV) as follows:

F → G[x→t] , G[x→t]{x←: t}G , G→ G

F{x←: t}G

Inductive case, where C = (D; E) : Assume F{(D; E)}H is true in N.
Let G express the post relation for (F, D) . By definition, F{D}G is true in
N. We’ll show G{E}H is also true in N, so, by the inductive assumption,
they both have derivations within our oracular system, and then rule (I) gives

the required result. Given a state ~d where G is true, its definition guarantees
a state ~d′ where: F is true and D ‘produces’ ~d. But then, if E ‘produces’ ~d′′

with input ~d, we must have that H is true at ~d′′, as required, since (D; E)

produces ~d′′ from input ~d′, and F{(D; E)}H is given to be true.

10

Inductive case, where C = whdo(H)(D) : Let y1, · · · , yn be the list of
all variables which occur in D and/or occur in H and/or occur freely in F
or G. Let z1, · · · , zn be distinct variables, and disjoint from the yi’s. Define
L := ∃z1 · · · ∃znJ , where J is a formula defining the post relation for
(F, whdo(K)(D)), where

K := H ∧ (¬y1 ≈ z1∨· · ·∨¬yn ≈ zn) (fortunately without quantifiers!) .

The main property needed for L is that it is true for exactly those
(d1, · · · , dn)—values of y1, · · · , yn respectively—which satisfy the following
property, which we shall refer to as (∗) :

(d1, · · · , dn) arises as the output after D has been executed a finite (possibly
zero) number of times, (1) starting with a state (d′1, · · · , d′n) where F is true;
and (2) such that H is true immediately prior to each execution.

Let us assume this, and finish the main proof, then return to prove it.
We have two formulas and a F-H statement below which I claim are true

in N :
(i) F → L : since, if F is true at (d1, · · · , dn), then so is L, by the case of

zero executions in (∗).
(ii) L ∧ ¬H → G : since, by (∗), a state where L is true and H is false

is exactly a state arising after ‘successfully’ executing whdo(H)(D) starting
from a state where F is true. But since F{whdo(H)(D)}G is here assumed
to be true, it follows that G is true in such a state, as required.

(iii) (L ∧H){D}L : since, starting from a state where both L and H are
true, executing D one more time as in (∗) still gives a state where L is true.

Now we can construct the required derivation of F{whdo(H)(D)}G as
follows. By (iii) and the induction in the overall proof of this theorem, there
is a derivation of (L ∧H){D}L. But we can then apply the two rules

(L ∧H){D}L
L{whdo(H)(D)}(L ∧ ¬H)

F → L , L{whdo(H)(D)}(L ∧ ¬H) , (L ∧ ¬H)→ G

F{whdo(H)(D)}G
to get the desired derivation. The second one displayed is indeed an instance
of rule (IV) because of (i), (ii) and the fact that the oracle allows us to use
any (A→ B)’s which are true in N.

11

To actually complete the proof, here are the arguments both ways for the
fact that (∗) holds exactly when L is true.

In one direction, let ~d be a state where (∗) holds. To show L is true

in that state, let ~d′ be a suitable input as in (∗). Now run whdo(K)(D)

starting with state (~d′, ~e) = (~d′, ~d) for (~y, ~z). This execution terminates with

state (~d,~e) = (~d, ~d) since the ~e-component clearly doesn’t change with D’s

execution, and, of course, (~d, ~d) is a state where the
“ (¬y1 ≈ z1 ∨ · · · ∨ ¬yn ≈ zn)-half of K ”

is false. Thus, (~d, ~d) is a post state for (F, whdo(K)(D)) since F holds for

(~d′, ~d), independently of the ~d-half. Thus J is true at (~d, ~d), and so L is true

at ~d, as required.
Conversely, suppose that L is true at ~d, so that, for some ~e, the formula

J is true at (~d,~e). Thus there is a state (~d′, ~e′) such that F is true at ~d′ and

executing whdo(K)(D)) on (~d′, ~e′) terminates with state (~d,~e). Therefore a

finite number of executions of D exists, starting with ~d′, where F is true at ~d′,
and terminating with ~d. Also, for each state just prior to each execution, the
formula K is true, and so H is also true. Thus (∗) holds for ~d, as required.

Note how this proof of (relative) adequacy is in fact (relatively) effective,
all relative to truth in N of course. Actually carrying out proofs of F-H state-
ments is a matter of considerable interest, both by hand and mechanically.

12

8.2—Floyd-Hoare Logic for ATENL.

Here we discuss generalizations of the theorems just proved. It is very
nice that the F-H proof system is so simple, just one rule for each clause in
the structural inductive definition of ATEN, plus one more rule to tie in with
formal deductions in 1storder logic. Now, by the last (completeness) theorem,
one expects to prove the following rules (which seem so fundamental that, a
priori, one would have suspected that they (or something close) would need
to be part of the basic system):

F{C}G , F{C}H
F{C}(G ∧H)

F{C}H , G{C}H
(F ∨G){C}H

However, after attempting these as an exercise, the reader may be even
more disenchanted with this oracular F-H system. The only proofs I know
would just go back to the inductive proof of 8.4 and keep pulling the oracle
rabbit out of the hat. This hardly seems in the syntactic spirit of formal proof
systems, much less in the spirit of something one would hope to automate.

But surely 8.4 has a good deal of syntactic content—we just need to
generalize the situation of the last subsection to one where there are genuine
axiomatic complete proof systems for truth in 1storder logic. One can do
this merely by allowing arbitrary (in particular, finite) interpretations of the
1storder number theory language. But for later purposes, it is useful to
discuss arbitrary 1storder languages plus interpretations, and the analogue of
ATEN for them.

So let L be any 1storder language (with equality). Associated with it,
one defines a command language ATENL in exact parallel to the original
definition : The atomic commands are assignment commands using terms
of the language. The inductive structure will use only whdo-commands and
concatenation (;) for sequenced commands as before, with quantifier-free for-
mulas (called “Boolean expressions” by CSers) from the language ‘dictating
the flow of control’ in the former. (These are also used in ite(H)(C)(D)-commands,
if the if-then-else command construction is added to the language, which is then often
referred to as the ‘while-language’—as we know, it’s extra expressiveness in the infor-
mal sense does not increase the computational power, as long as the interpretation used

13

includes something equivalent to the set of all natural numbers.) For the seman-
tics, one further fixes an interpretation of the language. Each of the usual
“bins” contains an element of the interpretation. Then one can talk about
F-H statements as before, with the so-called pre- and post- conditions being
arbitrary formulas from the language. (Note that in [C], for example, the
situation is generalized a bit further, with two 1storder languages, one for
each of the above uses, one being a sublanguage of the other. This seems
not to be a major generalization, and will be avoided here for pedagogical
reasons. Of course [C] also involves a more complicated command language,
very similar to the one discussed in the next subsection.)

Now we note that, whatever the language, for any interpretation which
is a finite set, truth is actually decidable, so there will certainly be a rather
straightforward axiomatic complete proof system. (Expressed alternatively,
the set of true formulas with respect to such an interpretation is a decidable
set, so it’s certainly a recursively enumerable set.) And so, the following
theorem, whose proof is essentially the same as that of 8.4, does have plenty
of relevant examples.

To be convincing about that, here is the argument that (L, I) is expres-
sive, as defined in the theorem just below, as long as I is a finite interpretation
of L. Let x1, · · · , xn be the variables occurring in C and/or free in F . Let
E ⊂ In be the set of values of those variables where QF,C is true; that is
outputs from C executed on some input where F is true. Now define G to
be

∨(a1,···,an)∈E(x1 ≈ a1 ∧ · · · ∧ xn ≈ an) .

This clearly does the job (and makes sense since E is a finite set!)

Theorem 8.5. Assume the pair L, I is expressive : for any F and C
there is a formula GF,C which is true at exactly those states which arise as
the output from C applied to an input state where F is true.

Then the combined F-H proof system for ATENL, using the original set
of four rules, plus an oracle, as discussed earlier, for (the 1storder language L
plus its given interpretation I), is itself complete, in that every F-H statement
which is true in the given interpretation can be derived using that combined
system.

14

8.3—F-H Logic for more complicated (and realistic?) languages.

The next job is to describe a more ‘realistic’ version of this theorem, basi-
cally Cook’s original theorem. Because the command language defined below
includes procedure calls and variable declarations, the formulation of the sys-
tem, and the proof of its soundness and adequacy, all require considerable
care.

Now this language will not allow recursive programming, and its semantics uses what
is called dyamic scope, making even it fairly unrealistic as an actual language in which
to write lots of programs. The choice of Cook’s language was made partly because of
the apparent lack of a complete, painstakingly-careful treatment in the literature. Giving
a smoother development would have been, say, a language allowing only parameterless
procedures, even including recursive programming. Such a language is dealt with briefly
in the third addendum below, and in reasonable detail in [Apt] (and also in [deB] except
for disallowing nested procedures).

Cook refers somewhat unspecifically to instances in the literature of F-H systems which
turned out inadvertantly to not be sound, including earlier versions of the system in [C].
The reader might like to look at four quotations from papers on the subject, easily found
in the final subsection, before the addenda. These will help brace and motivate you for
the painstaking technicalities at times here, though at first reading, maybe skipping a
lot of those technicalities is desirable. On the other hand, they explain the need for the
caveats given later which circumscribe the language DTEN we start with, producing a
sublanguage CTEN. The language DTEN likely admits no complete F-H proof system,
but the semantics given below are also probably ‘wrong’ anyway, without the restrictions
to CTEN, or something similar. Giving rigorous semantics for complicated command
languages has been the subject of some controversy over the years, including how necessary
the use of denotational semantics is for this. At any rate, it seems to be only at the point
where one has procedures both with parameters and allowing recursive programming that
denotational semantics becomes particularly useful (or else if one insists on having GOTO
commands, or declarations of functions, etc.) None of these three possibilities will be
considered in this write-up. As mentioned above, in the third addendum, we do consider
briefly a language with recursive programming, and give an F-H proof system for it, but,
for that one, parameters are avoided. Function declarations appear briefly in the first
addendum.

Before launching into this, it is worth mentioning a couple of more specific things
about earlier instances of technical errors. As indicated below in the middle of heavy
technicalities, we do fix one technical error in [C] which seems not to have been noticed
before. But the statements of the main results of general interest in [C] are all correct,
modulo the discussion in the next paragraph.

In [C+], there is a different correction to [C], related to the treatment of the declara-
tion of variables. The two methods given there for fixing this seem a bit ad hoc, so below
we have defined the semantics of the language a little differently than is done elsewhere.
Rather than just updates to the ‘store’ or ‘contents of the bins’, we add also an update to

15

the function which associates variables to bins. So the semantics of a given command plus
input, when defined, is not just a sequence of bin contents, but each term in the sequence
has a second component, mapping variables injectively to bins. Actually, the only type
of command which changes the latter is the variable declaration block command. This
modification of the semantics seems to me a considerably more natural way to do things,
and it does take care of the small problem in Cook’s original published paper [C] for which
[C+] gave the other fixes. Compare the definitions of Comp in [C] and [Apt] with the
definition of SSQ below, to see more precisely what is being referred to here.

The two languages considered in this subsection are essentially fragments
of ALGOL. We’ll define DTEN by structural induction, but with a slight
complication compared to earlier inductive definitions. There will be both a
set of commands and a set of declarations. These are defined simultaneously
by a mutual recursive method.

I suspect that a major reason for the popularity of BNF-notation in the CS literature
(introduced more-or-less simultaneously with ALGOL around 1960) is that it largely obvi-
ates the need for conscious cogitation concerning this sort of structural inductive definition!
The language DTEN has the “D” for “declaration” perhaps. The language CTEN is
singled out from DTEN by a list of restrictions (‘caveats’) much later, and has “C” for
caveat, or for Cook perhaps. Ours will be slightly simpler than Cook’s language, but only
by dropping the if-thendo-elsedo-command from BTEN, which is redundant in a sense,
as mentioned in the last subsection. Dropping it just gets rid of an easy case in several
lengthy definitions and proofs. A reader who wants that command constructor can easily
add it in, along with its semantics, figure out what the extra rule of inference would need
to be (see also Addendum 3 here), and then prove completeness for herself, checking her
work against [C] if desired.

Definition of the command language.
We define two string sets, COM , of commands, and DEC, of declara-

tions, by simultaneous structural induction. This will depend on a fixed
1storder language whose name will be suppressed from the notation. The
command language will of course be independent of which interpretation is
used. (But the semantics of the command language will depend on the inter-
pretation used for the 1storder [assertion] language.) We’ll define the whole
thing below in the same style (a bastardization of BNF-notation) which was
used earlier for the denotational semantics of ATEN. Recall that X∗ is the
set of finite strings of elements from some set X. Also we let X∗! be the set

16

of finite strings of distinct elements from X.

x ∈ IDE ; p ∈ PRIDE ; ~u, (~x : ~v) ∈ IDE∗! ; t ∈ TRM ; ~t ∈ TRM∗ ; H ∈ FRMfree

where TRM is the set of terms from the 1storder language, FRMfree its
set of quantifier-free formulas, IDE is its set of variables (or identifiers), and
PRIDE is a set of identifiers for ‘procedures’, which might as well be disjoint
from IDE. When paired as (~u,~t) below, we always require that “~u ” be disjoint
from “~t ”. The notation “~t ” simply means the set of all variables which
appear in the various terms ti. That notation occurs often, to save words.

Here is the Definition of DTEN:

D, D1, · · · , Dk ∈ DEC := { new x || proc p(~x : ~v) ≡ C corp }

C, C1, · · · , Cn ∈ COM := { x←: t | call p(~u : ~t) || whdo(H)(C) |

begin D1; · · · ; Dk ; C1; · · · ; Cn end }

The last construction allows k and/or n to be 0. And so, in inductive con-
structions and proofs for DTEN or CTEN, there will tend to be seven cases:
the assignment and call (atomic) commands, the whdo-command, and then
the cases k = 0 = n (do-nothing command), k = 0 < n (no declarations), and
k > 0 (two cases, depending on which type of declaration is the leftmost, D1,
in the list). Actually, our distinction between declarations and commands is
a bit moot, since the case k = 1 and n = 0 gives begin D end as a command
for any declaration D.

Notice that a call subcommand can occur without any corresponding pro-
cedure declaration within the command; in fact the call command on its own
is such a command. This is necessary in order to have inductive construc-
tions and proofs, even if it would seldom occur in a useful program. Thus,
below in the semantics, we need an extra component, π, which (sometimes)
tells us which procedure (another command) to use when p is called. The
object π itself is modified by the semantics to conform with whatever proce-
dure declarations occur within the command being ‘semantified’. Especially
in the proof system, a version of π becomes more part of the syntax.

The functions s and δ, the other two extra semantic components besides π
and the given interpretation are explained and used below. They are needed
in order to make a separation between variables and the bins/store/memory,

17

which can occur in more practical ALGOL-like languages (as opposed to
ATEN/BTEN, where no distinction is made). Treatments bypassing the
bins, e.g. [Cl1], [Old1], can be elegant and useful, but harder to motivate.

We need to modify our notation in [LM] for the semantics of 1storder
languages to conform with the above. How to do this will be fairly obvious.
We consider functions m from a finite subset of identifiers (or variables) to
the underlying set, I, of the interpretation. Further down m will always be
s ◦ δ, so we frequently consider the ‘value’ ts◦δ ∈ I, for a term t; and whether
a formula F is true or not “at s ◦ δ”.

N.B. “F is true at s|δ” will mean exactly the same thing as “F is true
at s ◦ δ”. This will be convenient notation. But elsewhere, s|δ is just a
convenient way to denote the ordered pair (s, δ). It is different than the
function s ◦ δ.

To be semi-precise, the element tm of I is undefined unless all variables in
t are in the domain of m; and otherwise, it is what we used to call tv, when
the identifiers are the variables xi, and where the ith component, vi, of v is
m(xi) if that is defined; and vi is uninteresting for the majority of i, those
with xi not in the domain of m.

Similarly, a formula being true or false at m can only hold when all free
variables in the formula are in the domain of m, and then, at least when the
identifiers are the variables xi, it means the same as the formula being true
at v, which is related to m as in the paragraph above.

Next we discuss the objects π mentioned above. These will be sometimes
written as functions

PRIDE ⊃ A
π−→ COM × IDE∗! × IDE∗! ⊂ COM × IDE∗! ,

so π(p) has the form (K, (~x : ~v)), where K is a command, and (~x : ~v) is a list
of distinct variables. The colon-divider between the ‘x-part’ and the ‘v-part’
will be later used to indicate for example that the v-part is not allowed to
appear on the left-hand side of an assignment command, because we will
substitute terms that might not be variables for it. The function π is defined
for procedure identifiers p from a given finite subset, A, of PRIDE. This
will say which procedure K in COM to activate when p is called. But, as
we see below, in the definition of SSQ for the command

begin proc p(~x : ~v) ≡ K corp ; D1; · · · ; Dk ; C1; · · · ; Cn end ,

18

the value π(p) will have been ‘changed’ to the correct thing if a procedure
declaration for the name p has already occurred within the same begin—end-
‘block’ before the call takes place. Interchangeably, we can write

π(p) = [proc p(~x : ~v) ≡ K corp] .

Since π has been introduced somewhat as a semantic concept, and we
wish to use it also syntactically, here is another alternative notation. Just as
F, C and G are names for strings of ‘meaningless’ symbols, so too we shall
take “ / π ” as short for a string

/ p1(~x1 : ~v1) ≡ K1 / p2(~x2 : ~v2) ≡ K2 / · · · / pn(~xn : ~vn) ≡ Kn .

We shall have given PRIDE a fixed total order ≺, and the finite set
{p1 ≺ p2 ≺ · · · ≺ pn} ⊂ PRIDE will be the domain of π with the inherited
order, with π(pi) = (Ki, (~xi : ~vi)) .

We shall also make minor use later of a total order on IDE, so assume
that one is given to begin.

Though it seems not to appear in exactly this form in the literature, a
more fundamental syntactic concept than a command C in a language with
procedure calls seems to be a string C/π, where π is the sort of string just
above. So these may still be conceived as syntactically generated strings of
meaningless symbols. Allowing call-commands on their own, and introducing
the /π-notation, are very convenient for theoretical considerations. An actual
program for computation would presumably have a declaration for any call,
and so “/π” would be redundant, and then we can think of it as the empty
string (or function with empty domain) for such a program.

19

Definition of DTEN’s semantics.
A preliminary definition needed is for the ‘simultaneous’ substitution of

terms for free variables in commands, as used below in defining SSQ of a
call-command with K [~x→~u , ~v→~t]. As the author of [C] knows perfectly well
(though some of his readers need lots of patience to see), defining, as on his
pp.94-95, substitution in terms of free variables, then free variables in terms of
substitution, is not circular, but can be made as a recursive definition in a
sense. But this takes more than a tiny amount of thought, when, as in that
paper, the data given by π is not made explicit. Another point motivating
a more explicit approach is that substitution cannot always be done in a
command; for example, substitution of a term which is not a variable for a
variable x in a command which includes an assignment to x.

So we’ll first define substitution for commands C by structural induction,
then for strings π by induction on the length of the string. Let ~z = (z1, · · · , zn)
and ~e = (e1, · · · , en) be finite strings (of the same length) of variables zi and
terms ei, with the variables distinct.

Simultaneous with the inductive definition below, we need the trivial
proof by induction of the fact that (begin D∗; C∗ end)[~z→~e], if defined, always
has the form begin D′∗; C

′
∗ end , where the sequences D′∗, C

′
∗ have the same

lengths as D∗, C∗ respectively.

The substitution (x←: t)[~z→~e] is defined when x = zi ⇒ ei is a variable,
and the answer is x[~z→~e] ←: t[~z→~e] . The substitutions are the obvious sub-
stitution into terms as defined in [CM].

The substitution (call p(~u : ~t))[~z→~e] is not defined when
(∃i, j, ui = zj and ej is not a variable), and also when it would produce
repeated variables left of the colon or the same variable occurring on both
sides of the colon. When it is defined, the answer is

call p(~u [~z→~e] : ~t [~z→~e]) .

This notation means : “do the substitution in each of the terms in both
strings”.

Define
(whdo(H)(C))[~z→~e] := whdo(H [~z→~e])(C [~z→~e])

where substitution into formulas is as defined in [CM].

20

Define
(begin end)[~z→~e] := begin end .

Define

(begin C1; C∗ end)[~z→~e] := begin C
[~z→~e]
1 ; C ′∗ end ,

where
(begin C∗ end)[~z→~e] = begin C ′∗ end .

To be straightforward about this last one

(begin C1; · · · ; Ck end)[~z→~e] is simply begin C
[~z→~e]
1 ; · · · ; C [~z→~e]

k end .

Define

(begin new x ; D∗ ; C∗ end)[~z→~e] := begin new x′ ; D′∗ ; C ′∗ end ,

where we let x′ be the first variable ‘beyond’ all variables occurring in the
string (including ~z and ~e), then let D′′∗ and C ′′∗ be obtained from D∗ and
C∗ respectively by replacing all occurrences of x by x′, and then define the
right-hand side in the display by (using the induction on length)

begin D′∗; C
′
∗ end := (begin D′′∗ ; C

′′
∗ end)[~z→~e] .

The reason that x is first replaced is because some of the ei may have occurrences of
x, and we don’t want those x’s to be governed by the “new” when they appear after
substitution for the z’s corresponding to those e’s. A similar remark applies in the final
case below. (One begins to appreciate why CSers tend to want to have substitution always
defined, and tend to give a correspondingly involved definition when doing basic logic and
λ-calculus. And we do need to fix a linear order beforehand on the set IDE, to make
sense above of the “. . . first variable ‘beyond’ all variables . . . ”.)

Finally define

(begin proc p(~x : ~v) ≡ K corp ; D∗ ; C∗ end)[~z→~e] :=

begin proc p(~x′ : ~v′) ≡ K ′ corp ; D′∗ ; C ′∗ end ,

21

where we let ~x′ and ~v′ be the first strings of distinct variables beyond all
variables occurring in the string, then let K ′, D′′∗ and C ′′∗ be obtained from
K, D∗ and C∗ respectively by replacing all occurrences of xi by x′i and vj by
v′j, and finally define the rest of the right-hand side in the display by

begin D′∗; C
′
∗ end := (begin D′′∗ ; C

′′
∗ end)[~z→~e] .

For substituting into π itself, define

(p1(~x1 : ~v1) ≡ C1 / p2(~x2 : ~v2) ≡ C2 / · · · / pn(~xn : ~vn) ≡ Cn)[~z→~e] :=

(p1(~x1 : ~v1) ≡ C1 / · · · / pn−1(~xn−1 : ~vn−1) ≡ Cn−1)
[~z→~e] / pn(~xn : ~vn) ≡ C [~z′→~e′]

n ,

with ~z′ being ~z with all the variables in “~xn” ∪ “~vn” removed, and ~e′ being
the terms in ~e corresponding to ~z′. Start the induction in the obvious way,
with ∅[~z→~e] := ∅ , the empty string.

The definition of free variable or global variable in a command is itself in-
ductive, and really it applies not to just a command, but a pair, command / π.
(We can always take π = ∅.) The induction is on the cardinality of the do-
main of π, and then, for fixed such cardinality, structural induction on C.
(This obviates the need to discuss “substituting the body of p for each call to
p, over-and-over till no calls remain”, which will only work because we shall
be excluding recursive commands.)

FREE(x←: t / π) consists of x and all variables occurring in t.

FREE(call p(~u : ~t) / π) consists of the ui, the variables in the tj, and,

(i) if p 6∈ dom(π) , or if p ∈ dom(π) with π(p) = (K, (~x : ~v)) but K [~x→~u , ~v→~t]

does not exist, then nothing else; whereas

(ii) if p ∈ dom(π) with π(p) = (K, (~x : ~v)), and K [~x→~u , ~v→~t] does exist, then

include also the set FREE(K [~x→~u , ~v→~t] / π′), where π′ is π, except that p
is removed from its domain. (This is the only of the seven cases where the
inductive hypothesis on the cardinality of π is used. N.B. We shall later be
excluding recursive commands, and the use of π′ rather than π here and later
is justified by that.)

22

FREE(whdo(H)(C) / π) consists of FREE(C/π) and the variables in
H. (Of course, H is quantifier-free.)

FREE(begin end / π) is empty.

FREE(begin C∗ end / π) is the union of the FREE(Ci/π)—more prop-
erly, inductively

FREE(begin C1; C∗ end / π) := FREE(C1/π)∪FREE(begin C∗ end / π) .

Define FREE(begin new x ; D∗ ; C∗ end / π) :=

FREE(begin D∗ ; C∗ end / π) \ {x} ;

that is, ‘remove’ the variable x .

Define FREE(begin proc p(~x : ~v) ≡ K corp ; D∗ ; C∗ end / π) :=

[FREE(K/π) \ (“~x ” ∪ “~v ”)] ∪ FREE(begin D∗ ; C∗ end / π) .

As indicated earlier, we shall use here (and many times below) notation
such as “~x ” ∪ “~v ” and just “~x ” in the obvious way, as the underlying set
of variables in the list.

For the ‘free’ or ‘so-called ‘global’ variables in a command C itself, just
take π to be empty; that is, the set is FREE(C/∅).

The real ‘meat’ of the semantics will be a function SSQ(C/π, s|δ) of two
(or three or four) ‘variables’, the ‘State SeQuence’, as defined below. We shall
define, inductively on n, the nth term, SSQn(C/π, s|δ) of that sequence, by
structural induction on the command C. So it’s a form of double induction.

The other two input components for SSQ are as follows, where we assume
that an interpretation of our underlying 1storder language has been fixed
once-and-for-all.

We need an injective function

IDE ⊃ B
δ−→ {bini | i ≥ 0 } ,

so δ ‘locates’ the variables from a finite subset B of variables as having
values from suitable bins. Or, as we shall sometimes say, it ‘associates’ some
variables with bins.

23

And we need
s : {bini | i ≥ 0 } −→ I ,

so s is the ‘state’, telling us which element of the interpretation I (which
‘value’) happens to be ‘in’ each bin. Sometimes the word “state” would
rather be used for the composition s ◦ δ, or for the pair s|δ.

Definition of the computational sequence SSQ.

The value, SSQ(C/π, s|δ), of the semantic function SSQ will be a non-
empty (possibly infinite) sequence ≺ s|δ , s′|δ′ , s′′|δ′′ , · · · � of pairs, which
is what we envision as happening, step-by-step, to the bin contents and
variable associations with bins, when the command C is executed beginning
with ‘environment’ [s|δ, π] . Note, from the definition below, that the second,
‘δ’, component remains constant in the semantics of any command which has
no variable declaration block. The domain of SSQ is not all quadruples— as
we see below, if C includes a call to p and p 6∈ dom(π), then SSQ(C/π, s|δ)
might not be defined, but it normally will be if the call is within a block, begin
· · · end, which earlier includes a declaration of p. Furthermore, if C includes
an assignment command involving a variable on which δ is not defined, again
SSQ might not be defined.

The seven cases above in defining freeness (and substitution) will occur
in exactly that same order, each of the three times, immediately below in
twice defining SSQ.

First we give the definition of SSQn in uncompromising detail; many
can skip this and go to the second form of the definition just afterwards.
When abort occurs below, that means that SSQ in that case is undefined.
Whereas, if non-existent occurs, that means the term of the sequence being
considered is undefined because the sequence is too short. Also we let

OUT (C/π, s|δ) :=

{
last term in SSQ(C/π, s|δ) if the latter is a finite sequence;

indifferent otherwise.

Here is the doubly inductive definition of SSQn(C/π, s|δ) :

When n = 0, the seven cases, in order, define SSQ0(C/π, s|δ) to be, re-
spectively:

24

(1) abort if some variable in t is not in the domain of δ ; otherwise
[bini 7→ if δ(x) = bini , then ts◦δ, else s(bini)] | δ ;

(2) abort if p 6∈ dom(π), or if p ∈ dom(π) with π(p) = (K, (~x : ~v)) and

K [~x→~u , ~v→~t] does not exist ; otherwise s|δ,
(3) abort if some variable in H is not in the domain of δ; otherwise SSQ0(C

′/π, s|δ)
or s|δ depending on whether H is true or false at s ◦ δ ;

(4) s|δ,
(5) SSQ0(C1/π, s|δ),
(6) s|δ,
(7) s|δ.

For the inductive step on n, the seven cases, in order,
define SSQn+1(C/π, s|δ) to be, respectively:

(1) non-existent;

(2) abort if p 6∈ dom(π), or if p ∈ dom(π) with π(p) = (K, (~x : ~v)) and

K [~x→~u , ~v→~t] does not exist ; otherwise
SSQn(K [~x→~u , ~v→~t] /π, s|δ) (which of course might itself be undefined) .

(3) abort, if δ(y) is not defined for some variable y occurring in H; otherwise
non-existent, if H is false at s ◦ δ; otherwise
SSQn+1(C

′/π, s|δ), if the latter is defined and H is true at s ◦ δ ; otherwise
SSQn−k(whdo(H)(C ′)/π , OUT (C ′/π, s|δ)), if SSQ(C ′/π, s|δ) has length
k + 1 with k ≤ n and H is true at both s|δ and OUT (C ′/π, s|δ).

(4) non-existent,

(5) SSQn+1(C1 /π, s|δ), if SSQ(C1 /π, s|δ) has length k + 1 with k > n (i.e.
SSQ0, · · ·SSQk all exist but no others);
SSQn−k(begin C∗ end /π, OUT (C1/π, s|δ)), if SSQ(C1/π, s|δ) has length
k + 1 ≤ n + 1 [so OUT (C1/π, s|δ) = SSQk(C1/π, s|δ)];

(6) Define
m = min{ a : δ(z) = binb =⇒ b < a } ;

25

δ′ := (y 7→ [if y = x then binm else δ(y)]) ;

LOUT as the lefthand component of OUT ;

and

δ′′(z) := binm if z is the first variable after dom(δ), but δ′′ = δ otherwise ;

so dom(δ′′) =dom(δ) ∪ {z} . (This uses the linear order on IDE.)

Then the answer is :
non-existent if SSQ(begin D∗ ; C∗ end/π , s|δ′) has length less than n ;
SSQn(begin D∗ ; C∗ end/π , s|δ′), if it has length greater than n ;

and
LOUT (begin D∗ ; C∗ end/π , s|δ′) | δ′′ if the length is n ; i.e. if

OUT (begin D∗ ; C∗ end/π , s|δ′) = SSQn−1(begin D∗ ; C∗ end/π , s|δ′) .

(7) SSQn(begin D∗ ; C∗ end/π′ , s|δ), where π′ is defined by

q 7→ [if q = p then (K, (~x : ~v)) else π(q)]) .

In ‘delicate’ cases later in the technical proofs, always refer back, if neces-
sary, to this definition above; but now let us repeat the definition in a more
readable form, but one where the 2nd and 3rd cases appear to be circular at
first glance, because of the hidden induction on n. We have included a more
‘CSer style’ explanation, which may help neophytes reading similar things in
the CS literature. So here’s the definition of the sequence SSQ(C/π, s|δ) as
a whole, with the seven cases in the usual order:

(1) C = x←: t : The answer is

≺ s′ : bini 7→ [if δ(x) = bini , then ts◦δ, else s(bini)] | δ �

(a sequence of length 1), and so SSQ(x ←: t / π, s|δ) is undefined exactly
when y is not in dom(δ) for some variable y which occurs in the term t.

(2) C = call p(~u : ~t) : Here SSQ(C/π, s|δ) is undefined unless the left-

hand side just following and K [~x→~u , ~v→~t] are both defined. Suppose that

26

π(p) = (K, (~x : ~v)) . Then the answer is:

≺ s|δ , SSQ(K [~x→~u , ~v→~t]/π, s|δ) � ,

where ≺ A, B � for two sequences means the first followed by the second,
as long as A is finite, but just means A if the latter is an infinite sequence.
So SSQ(call p(~u : ~t)/π, s|δ) is undefined exactly when p is not in dom(π)

or SSQ(K [~x→~u , ~v→~t] / π, s|δ) is undefined (though that is a highly ‘unop-

erational’ criterion—see just below). The case that K [~x→~u , ~v→~t] itself is
undefined (perhaps because ti is not merely a variable for some i such that
vi has an occurrence ‘to the left of a colon’) will not happen later, because
the restrictions defining CTEN will forbid that possibility.

A remark is needed here. The command K might very well itself contain
some call-subcommands (in fact, even perhaps calling p itself, though that
would be excluded in the sublanguage CTEN carved out of DTEN later).
In any case, this seems to destroy the inductive nature of this definition.
(A similar remark occurs below for whdo.) But we are simply generating
a sequence, by syntactic substitution (‘call-by-name’ if you like). So the
definition above will certainly generate a unique sequence, though one which
might be infinite. (Our previous pedantic definition, ‘term-by-term’, makes
this explanation unnecessary.) The most extreme example of this would be
where K itself is call p(~x : ~v) and where we take (~u : ~t) to be (~x : ~v). There,
the SSQ sequence S is given by the definition as S =≺ s|δ, S �. It is a
trivial induction on n to show that the nth term of any sequence S satisfying
this must always be s|δ (and obviously S must be an infinite sequence). So
S has been defined as the (expected) constant infinite sequence.

Now we resume giving the inductive definition of SSQ(C/π, s|δ).

(3) C = whdo(H)(C ′) : Recall that

OUT (C ′/π, s|δ) :=

{
last term in SSQ(C ′/π, s|δ) if the latter is a finite sequence;

indifferent otherwise.

27

Then the answer is undefined if some variable in H is not in the domain
of δ ; and otherwise is :

if H is false at s ◦ δ , then ≺ s|δ � , else

≺ SSQ(C ′/π, s|δ) , SSQ(whdo(H)(C ′)/π, OUT (C ′/π, s|δ)) � .

This is not a fixed point equation, in any subtle sense, despite the (non-
appearing) left-hand side appearing more-or-less as part of the right-hand
side. The given definition generates a state sequence, possibly infinite, in a
perfectly straightforward manner. Here it is true that, when SSQ(C ′/π, s|δ)
is undefined and H is true at s ◦ δ, then SSQ(whdo(H)(C ′)/π, s|δ) is un-
defined. But SSQ(whdo(H)(C ′)/π, s|δ) may also be undefined for reasons
related to repeated execution of C ′ possibly ‘changing’ δ and/or π.

(4) C = begin end : The answer is ≺ s|δ � .

(5) C = begin C1; C∗ end : where C∗ means C2; · · · ; Ck, including the
case k = 1 where the latter is blank. Here the answer is:

≺ SSQ(C1/π, s|δ) , SSQ(begin C∗ end/π, OUT (C1/π, s|δ)) � .

(6) C = begin new x ; D∗ ; C∗ end : With m, δ′, δ′′ and LOUT defined
as in the more pedantic version of the definition of SSQ, the answer is:

≺ s|δ , SSQ(beginD∗; C∗end/π, s|δ′) , LOUT (beginD∗; C∗end/π, s|δ′) | δ′′ �

The intended effect here is that, when executing this block, the variable x
begins with whatever value is in the first of the ultimate consecutive string of
‘unassigned to variables’ bins, that is, the mth bin (presumably ‘placed there
as input’). But it is restored to the value, if any, it had before entry to the
block, immediately upon exit from the block. Because of the injectivity of δ,
the content of the bin, if any, ‘to which x was assigned before execution of the
block’ is unaltered during that execution. In addition, a new variable is now
associated with the mth bin after the above is done. This last requirement
is the extra semantic requirement not occurring elsewhere. The variable-
declaration is the only command construction in the definition of SSQ where

28

the righthand, ‘δ’, component of any term in the sequence gets changed from
its previous value in the sequence. In other treatments, the computational
sequence has only states s as terms, so δ never really changes. The interposing
of bins in this definition is often avoided, but it does help at least one’s
intuition of what’s going on.

(7) C = begin proc p(~x : ~v) ≡ K corp ; D∗ ; C∗ end : Here the answer
is

≺ s|δ , SSQ(begin D∗ ; C∗ end/π′, s|δ) �

where
π′(q) := [if q = p then (K, (~x : ~v)) else π(q)]) .

The intended effect here is that, when executing this block, any procedure
call, to the procedure named p, will use K as that procedure, but the ‘regime’
given by π is restored immediately upon exit from the block.

This last four or five pages could all have been compressed into half a page. The
wordiness above will hopefully help rather than irritate readers, especially non-CSers who
take up the literature in the subject, which is occasionally closer to being machine-readable
than human-readable! Always admirably brief, the choice seems to be between (readability
and vagueness) or (unreadability and precision). By sacrificing brevity with a leisurely
style, I hope to have largely avoided the other two sins.

Below in the proof system, we consider ‘augmented’ F-H statements,
which are strings of the form F{C/π}G, where π is, as above, a specifi-
cation of which formal procedure is to be attached to each name from some
finite set of procedure names (identifiers).

Here is the semantics of these F-H statements. We assume that the
1storder (assertion) language has been fixed, so that DTEN and CTEN are
meaningful, and also that an interpretation of the 1storder language has been
given, so that the semantic function SSQ can be defined.

Definition of truth of F{C/π}H :

In a fixed interpretation, say that F{C/π}G is true if and only if, for any
(s, δ) for which F is true at s|δ, and for which SSQ(C/π, s|δ) is defined and
is a finite sequence, we have that G is true at OUT (C/π, s|δ).

29

Note that an undefined SSQ(C/π, s|δ) is treated here exactly as if it were
an infinite sequence, i.e. as if it produced an infinite loop.

Before listing the proof system’s rules, here are some fundamental facts
which one would intuitively expect to be true. In particular, part (b) below
basically says that truth of a F-H statement is a property to do with states, s,
(and not really to do with the functions, δ, which decide which variable should
locate in which bin). Part (a) says that the semantics of a command really
is a function of the map from variables to values in the interpretation, and
doesn’t essentially depend on the ‘bins’ as an intermediate stage in factoring
that function. Much further along in separate places you will find parts
(c), (d), (e) and (f). They have easy inductive proofs which we suppress, so
they’ve been stated as close as possible to the location where they are needed
(though it would be perfectly feasible to state and prove them here).

Theorem 8.6 (a) Given C, π, δ, s, δ, s , suppose that s◦δ(y) = s◦δ(y) for
all y ∈ FREE(C/π) (in particular, δ and δ are defined on all such y). Then,
for all i, the term SSQi(C/π, s|δ) exists if and only if SSQi(C/π, s|δ) exists
and composing their two components, the two agree on all y ∈ FREE(C/π).

(b) Given F{C/π}G, if there is a δ whose domain includes all variables
free in F, G and all of FREE(C/π), and such that

∀s , [F true at s◦δ and OUT (C/π, s|δ)] exists] =⇒ G true at OUT (C/π, s|δ),
then, referring to δ’s whose domain includes all free variables in F, G and all
of FREE(C/π), we have

∀δ ∀s , [F true at s◦δ and OUT (C/π, s|δ)] exists] =⇒ G true at OUT (C/π, s|δ).
(This second display just says that F{C/π}G is true in the interpretation.)

Proof. Part (a) is proved by induction on i, then for fixed i, by structural
induction on C. The seven cases are quite straightforward from the definition
of SSQ.

To deduce part (b) from (a), given F{C/π}G and δ as in the assumptions,
let s|δ be a pair for which F is true at s ◦ δ and OUT (C/π, s|δ)] exists. Now
choose a state s, requiring at least that s(δ(y)) = s(δ(y)) for all variables y
free in F, G and in FREE(C/π). Then part (a) gives us that the sequences

SSQ(C/π, s|δ) = ≺ s1|δ1 , s2|δ2 , · · · , sn|δn �

30

and
SSQ(C/π, s|δ) = ≺ s1|δ1 , , s2|δ2 , · · · , sn|δn �

have the same length, and, for all i, we have si ◦ δi(y) = si ◦ δi(y) for all free
variables y in F, G and C/π. But now, using this for i = n, which gives the
OUT -state for the two sets of data, the truth of G at sn ◦ δn is the same as
its truth at sn ◦ δn, as required.

This concludes the specification of the semantics for DTEN, and so
for the sublanguage CTEN singled out some paragraphs below. Because
DTEN allows various possibilities which are forbidden to CTEN, it seems
quite likely that the F-H proof system, given in the next few paragraphs,
would be unsound as applied to the entire DTEN.

CTEN and Cook’s complete F-H proof system for it.

Though perhaps useless, the system is meaningful for DTEN, so we’ll
continue to delay stating the caveats which delineate the sublanguage CTEN.
The first four rules below match up exactly with the earlier ones for the lan-
guage ATENL. As an exercise, the reader might give more exactly the
connection; that is, show how to regard ATENL plus its semantics as sitting
inside CTEN plus its semantics.

Lines in a derivation using the system about to be defined will have the
form F{C/π}G, (as well as some lines being 1storder formulas). This at first
might have seemed a bit fishy, since π had been introduced as a semantic
concept. But just as F, C and G are names for strings of ‘meaningless’
symbols, so too, we shall take “ / π ” as short for a string

/ p1(~x1 : ~v1) ≡ C1 / p2(~x1 : ~v1) ≡ C2 / · · · / pn(~xn : ~vn) ≡ Cn ,

as explained earlier. So derivations can still be thought of as syntactically
generated sequences of strings of meaningless symbols.

Validity of rules and soundness of a system of rules mean exactly the
same as in the previous subsection.

31

The system of rules of inference :

(I)
F{C/π}G , G{begin C∗ end / π}H

F{begin C; C∗ end / π}H

(II)
empty

F [x→t]{x←: t / π}F

(III)
(F ∧H){C/π}F

F{whdo(H)(C)/π}(F ∧ ¬H)

(IV)
F → F ′ , F ′{C/π}G′ , G′ → G

F{C/π}G

(V)
empty

F{begin end / π}F

(VI)
F [x→y]{begin D∗; C∗ end / π}G[x→y]

F{begin new x; D∗; C∗ end / π}G
if y is not free in F or G and is not in FREE(begin D∗; C∗ end / π).

(VII)
F{begin D∗; C∗ end / π′}G

F{begin D; D∗; C∗ end / π}G
if D = proc p(~x : ~v) ≡ K corp, and where π and π′ agree except that π′(p) is
defined and equals (K, (~x : ~v)), whatever the status of p with respect to π.

(VIII)
F{C/π′}G

F{call p(~x : ~v) / π}G
where the procedure declaration proc p(~x : ~v) ≡ C corp is included in π ; that
is, p ∈ dom(π) and π(p) = (C, (~x : ~v)) , and where π′ agrees with π, except
that p is not in the domain of π′. CAUTION: The use of π′ here would be
inappropriate, except that we shall be disallowing recursive commands.

32

(IX)
F{C/π}G

F [~y→~r]{C/π}G[~y→~r]

if no variable yi nor any variable in any term ri is in FREE(C/π) .
REMARK: This rule is more general than needed for the proof of complete-
ness. The system would still be complete if we only had call-commands for
C and only had ~r as a string of variables.

(X)
F{call p(~y : ~w)/π}G

F [~y→~u ; ~w→~t]{call p(~u : ~t)/π}G[~y→~u ; ~w→~t]

if no ui, is free in F or G, where (~y : ~w) is a list of distinct variables (not
necessarily related to the formal parameters (~x : ~v) which π might give to p).
Assume also that “~y ” ∪ “~w ” is disjoint from “~u ” ∪ “~t ”.

(XI)
F{C/π′}G
F{C/π}G

if π ⊂ π′ , i.e. they agree except that π might have a smaller domain.

Rule (XI) doesn’t occur in [C], but neither does the “ / π”-notation, so I
suppose (XI) couldn’t occur. But it does seem to be needed. The replacement
for the “ / π”-notation are phrases such as “with the understanding that all
calls to p are according to D”, and presumably the effects of rule (XI) are
built into that phraseology.

A version of rule (XI) is given backwards (i.e. π′ ⊂ π) in [Cl1], B2b),
p.138.

Theorem 8.7 Fix a 1storder language L. Let CTENL be the sublan-
guage of DTENL given by the list of restrictions CV∗ just below this theorem.
Let I be an interpretation of L. Consider the F-H proof system obtained by
combining (I) to (XI) with a decision oracle for for L, I, i.e. use the often
undecidable set of all F true in I as the set of premisses for all derivations.
Then

(i) that F-H system is sound; and
(ii) as long as L, I is expressive with respect to CTENL (which it cer-

tainly will be when I is finite, or when L is number theory and I = N) that
F-H proof system is also adequate (complete).

33

Restrictions defining CTEN as a sublanguage of DTEN.

Firstly recall that already in DTEN, the variables (~x : ~v) in a procedure
declaration are all different from each other, as are the variables ~u in a
procedure call command. And the latter cannot appear as variables in the
terms ~t.

Next we define SCOM(K/π), the set of subcommands, to be
{K} ∪ PSCOM(K/π) , where the set, PSCOM(K/π), of proper subcom-
mands is defined by induction on the length of π and structural induction:

the empty set for assignment and ‘do-nothing commands’,

SCOM(C1/π) ∪ SCOM(begin C∗ end/π) for K = begin C1; C∗ end

SCOM(begin D∗; C∗ end/π) for K = begin D1; D∗; C∗ end

SCOM(C/π) for K = whdo(H)(C)

and
SCOM(L[~x→~u ; ~v→~t]/π′) for K = call p(~u : ~t) ,

where π(p) = (L, (~x : ~v)) and π′ agrees with π, except that p is removed from
the domain. There are no proper subcommands if p 6∈domain(π). (Note that
the call command has no proper substrings which are subcommands, but
may non-the-less have plenty of subcommands—see 8.6(c) later where the
need for this slightly more subtle and inclusive definition can be motivated.
In fact, block commands can also have subcommands which are not, strictly
speaking, substrings.)

As with free variables, to get the subcommands of a command on its own,
just take π to be empty; that is, use SCOM(C/∅).

Definition of ‘indirect activation sequence’ , a.k.a. ‘i.a.s.’.
An i.a.s. for C/π is a sequence :

occ p1(~u
(1) : ~t(1))/ / K1(~x

(1) : ~v(1)) / / occ p2(~u
(2) : ~t(2))/ / K2(~x

(2) : ~v(2))
· · ·
· · ·

/ / occ p`(~u
(`) : ~t(`))/ / K`(~x

(`) : ~v(`)) / / occ p`+1(~u
(`+1) : ~t(`+1))/ / · · ·

· · ·
· · ·

occ pn(~u(n) : ~t(n))/ / Kn(~x(n) : ~v(n)) ,

34

(which may as well be finite)

such that the following hold.
(a) Its start term, occ p1(~u

(1) : ~t(1)), is an occurrence of call p1(~u
(1) : ~t(1))

as a subcommand in SCOM(C/∅).
(b) If occ p1(~u

(1) : ~t(1)) is an occurrence in a block of SCOM(C/∅) which
includes a declaration of p1, then that declaration is

proc p1(~x
(1) : ~v(1)) ≡ K1 corp ;

otherwise π(p1) = K1(~x
(1) : ~v(1)).

(a+) For all ` ≥ 1, occ p`+1(~u
(`+1) : ~t(`+1)) is an occurrence of

call p`+1(~u
(`+1) : ~t(`+1)) as a subcommand in SCOM(K`/∅).

(b+) For all ` ≥ 1, if occ p`+1(~u
(`+1) : ~t(`+1)) is an occurrence in a block

of SCOM(K`/∅) which includes a declaration of p`+1, then that declaration
is

proc p`+1(~x
(`+1) : ~v(`+1)) ≡ K`+1 corp ;

otherwise π(p`+1) = K`+1(~x
(`+1) : ~v(`+1)).

This is sometimes expressed informally by saying that calling the proce-
dure p1 indirectly activates all the p` for ` > 1 (but perhaps activates other
procedures as well, of course.)

Definition of CTEN/. Say that C/π ∈ CTEN/ if and only if the
following six (really five) caveats hold :

CV1 A given procedure identifier p occurs in at most one procedure decla-
ration within C together with all the indirect activation sequences for C/π.

REMARKS: It may occur as a declaration occurrence in a command which
appears several times, once each in several i.a.s.’s for C/π . Also, a particular
case of this caveat is that a given p is declared in C itself at most once, a
sanitary requirement which simplifies the previous statement of the seman-
tics, i.e. of SSQ. But also, in any i.a.s. for C/π, we have pn 6= p1. So this
excludes ‘recursive programming’.

In any indirect activation sequence for C/π, the caveats labelled with a
“+” below hold :

35

CV2 If π(p) = (K, (~x : ~v)) or if proc p(~x : ~v) ≡ K corp is a declaration in
a subcommand in SCOM(C/∅), then the latter has no subcommands of the
form vj ←: t or call (· · · vj · · · : · · ·) ; i.e. no vj to the left of a colon.

CV2+ For s ≥ ` ≥ 1, no subcommand in SCOM(Ks/∅), has the form

v
(`)
j ←: t , or the form call (· · · v(`)

j · · · : · · ·) .

CV3 If π(p) = (K, (~x : ~v)) or if proc p(~x : ~v) ≡ K corp is a declaration

in a subcommand in SCOM(C/∅), and if call (~u : ~t) ∈ SCOM(C/∅), then
“~u ” ∪ “~t ” is disjoint from FREE(K/π) .

CV3+ For s ≥ ` ≥ 1, the set “~u(`) ”∪ “~t(`) ” is disjoint from FREE(Ks/∅) .
REMARK: The caveat CV3 is just the case s = 1 = ` in CV3+ (in one par-

ticular very short i.a.s.), but we state it separately because of the frequency
to which it is referred later.

CV4+ For s > ` ≥ 1, the set “~x(`) ”∪ “~v(`) ” is disjoint from FREE(Ks/∅) .
REMARK: For s > ` = 1, this says the formal parameters in the declara-

tion of any called procedure are not free in any other procedure body which
can be indirectly activated by the call.

REMARK: All the cases ` > 1 above appear to be subsumed by simply
saying that all Ks/π are in CTEN/; but that’s a kind of circularity which
is easy to hide when speaking glibly (non-technically)!

Proof of 8.7: Note that this proof occupies much of the remainder of this work.
‘Logically’, soundness should be proved first, but we’ll start with adequacy, to make it
clear why we need all those rules, before going to the trouble of checking their validity.

For adequacy, we proceed to show (in about 18 pages!) that if F{C/π}G
is true, then we can find a derivation for it. The proof is by induction on the
cardinality of the domain of π, and then, for fixed such cardinality, structural
induction on C ∈ CTEN. (This takes the place of the need to discuss
“substituting the body of p for each call to p, over-and-over till no calls
remain”, which depends on CV1.) As with the definition of free variables,
it’s only when doing the hardest case, a call-command, that we need to appeal
to the induction on the cardinality of the domain of π.

When C is an assignment command or whdo-command, or has the form
begin C1; C∗ end, the arguments are virtually identical to the ones given in

36

the proof of 8.4, modulo the somewhat different notation for semantics. So
these cases will be omitted here, except for the following remarks. Note
that this is where the “expressive” hypothesis in the theorem is needed, both
for whdo-commands, and blocks without declarations (i.e. concatenation of
commands). The required expressiveness is formulated and used as follows.

Given F and C/π, let

DF,C/π := {OUT (C/π, s|δ) : F is true at s|δ and SSQ(C/π, s|δ) is finite } .

Then there is a formula G = GF,C/π such that G is true at s′ ◦ δ′ if and only
if s′|δ′ ∈ D. Thus, we get that F{C/π}H is true iff G → H is true in the
interpretation I.

To deal with begin C1; C∗ end in this adequacy proof, use C = C1 just
above to produce an intermediate formula G, and proceed as in 8.4.

REMARKS: It is interesting to analyze the counterexample given in [C+] with respect
to where the proof in [C] goes wrong. In [C+], the two possible fixes are presented
without any such analysis. This analysis here is a justification for inserting that last term
in the sequence SSQ for variable-declaration-commands.

The example has the form (C;D), where we simplify the concatenation notation with
brackets instead of begin. . . end, and also drop all the /π, which are irrelevant to the point
being made. Here, for a pair of distinct variables x and y,

C := begin new x ; x←: 1 end and D := begin new x ; y ←: x end .

The semantics in [C] is the same as here with one exception: drop the last term in the
defined SSQ here for variable-declaration-commands. In that semantics, δ never gets
changed for the output, so SSQ is given simply as a sequence of s’s. With that semantics
(but not with ours, nor the fixes suggested in [C+]), it is easy to see that the F-H
statement Tr{(C;D)}y ≈ 1 is true. Here Tr is any logically valid formula. But that
statement cannot be derived with the proof system. The completeness argument in [C]
appears to break down for the case of concatenation, the difficulty turning on the following
fine point concerning the existence of a strongest post-condition :

A re-wording of the fact we use above is

∀F∀C∀π∃G (∀m G is true at m ⇐⇒

∃ s|δ with F true at s◦δ and OUT (C/π, s|δ) = s′|δ′ with m = s′◦δ′.

In the semantics of [C] one can prove the corresponding

∀F∀C∀π∀δ∃G (∀m G is true at m ⇐⇒

∃ s with F true at s◦δ and OUT (C/π, s|δ) = s′ with m = s′◦δ.

37

But what is apparently needed for the completeness argument there is the more stringent
requirement in which we just permute two quantifiers; that is, replace ∀δ∃G with ∃G∀δ just
above. The example above shows by direct arguments that the more stringent requirement
is false : On the one hand, the F-H statement G{D}y ≈ 1 can only be true for a formula
G which is never true (e.g. the negation of a logically valid formula). On the other hand,
a formula G which satisfies the more stringent requirement, for C as in the example and
F = Tr, is necessarily itself also logically valid. But, as in the proof of 8.4, such a
strongest postcondition G must make G{D}H true, given that Tr{(C;D)}H is true. So
no strongest postcondition in the sense of the more stringent requirement can exist, for
F = Tr and C in the example.

Using our semantics here with H being y ≈ 1, the statement Tr{(C;D)}H simply
isn’t true, so the contradiction doesn’t arise.

When C = begin end, axiom (V) gives a derivation of F{C/π}F . The
truth of F{C/π}G shows that the formula F → G is true in I. Now just
apply rule (IV) with numerator

F → F , F{C/π}F , F → G

to get the required derivation.

The next two of the final three cases are straightforward, but a little
intricate in details, so we’ll give them both carefully. We still won’t need any
of the caveats CV carving CTEN out as a subset of DTEN for these two.
And the argument in each these cases rests on the one obviously relevant
rule.

Suppose that C = begin new x; D∗; C∗ end . Define C− := begin D∗; C∗ end.
Assume that F{C/π}G is true. Fix any variable y different from x and not
occurring in any of F or G or D∗ or C∗. We shall prove that

(∗) F [x→y]{C−/π}G[x→y] is true.

Then, by structural induction, the displayed F-H statement has a derivation.
So the proof is completed by an application of rule (VI) to get the required
derivation of F{C/π}G.

Let F be the set of variables which occur in F and/or G and/or FREE(C/π).
Choose δ′ , with domain equal to F ∪ {x, y} , by first defining it arbitrarily
(but injectively!) on F\{x, y} , then defining δ′(y) =bina and δ′(x) =bina+1,
for some a with a > i for all i with bini ∈ δ(F \ {x, y}).

38

To prove (∗), by 8.6(b), it suffices to prove the following: given s such
that F [x→y] is true at s ◦ δ′, and that SSQ(C−/π, s|δ′) is a finite sequence, we
must show

(∗∗) G[x→y] is true at OUT (C−/π, s|δ′).

Define δ so that it is defined exactly on all variables other than y in the
domain of δ′, with δ(x) = δ′(y) = bina, and δ agrees with δ′ everywhere else
on its domain.

Now δ′ (except for being defined on y, which is irrelevant, as y doesn’t
occur in C) is obtained from δ as in the definition of SSQ for C in terms of
SSQ for C−. Thus LOUT (C/π, s|δ) = LOUT (C−/π, s|δ′).

Since s ◦ δ and s ◦ δ′ agree on all variables except that s ◦ δ(x) = s ◦ δ′(y)
(and except that s ◦ δ′(x) is defined but irrelevant), and since F [x→y] is true
at s ◦ δ′, it follows that F is true at s ◦ δ.

Since F{C/π}G is true, it now follows that G is true at OUT (C/π, s|δ).
Using this, we now obtain that G[x→y] is true at OUT (C−/π, s|δ′), which

is (∗∗), as required. This last step is immediate because the corresponding
LOUT s agree (noted above), and because the ROUT s agree except that

ROUT (C/π, s|δ)(x) = δ′′(x) = δ(x) = δ′(y) = ROUT (C−/π, s|δ′)(y) ,

and they may disagree on variables beyond those occurring free in G. (Re-
call that ROUT (C/π, s|δ) is the δ′′ in the SSQ definition for variable-
declaration-commands.)

For the penultimate case, suppose that C = begin D; D∗; C∗ end for some
procedure declaration D. Define C ′ = begin D∗; C∗ end . As usual, we are
given that F{C/π}G is true, and we want a derivation for it.

Define π′ exactly the way π′ and π are related in rule (VII); that is, they
agree except that π′(p) is defined and equals (K, (~x : ~v)), whatever the status
of p with respect to π, where D is proc p(~x : ~v) ≡ K corp. By the definition
of SSQ(C/π, s|δ) in terms of SSQ(C ′/π′, s|δ), it follows that

OUT (C/π, s|δ) = OUT (C ′/π′, s|δ) .

(Again, the two SSQ sequences agree, except for a spurious copy of s|δ at
the beginning of one of them.)

39

From the display and the truth of F{C/π}G, it is immediate that F{C ′/π′}G
is true. And so, by induction, it has a derivation. Now application of rule
(VII) gives a derivation for F{C/π}G, as required.

Finally we come to the delicate case where C is a call-command. Here we
apparently need the full force of the caveats which disallow many DTEN-
commands. As far as I can determine, cases of languages closer to full ALGOL
than CTEN, and proof systems which are sound and complete for the F-H statements
corresponding to such languages, and where correct and complete mathematical proofs
have been written out for those facts, are relatively thin on the ground, and [Old1] seems
the best choice for getting at least some details. This is very technical work, and ordinary
mortals cannot become experts overnight! We refer the reader again to the quotes in the
last subsection of this paper. The proof below follows that in [C], filling in details, and
correcting a couple of errors, as noted earlier.

For the case of the structural inductive adequacy proof where C is a
call-command, and also for later purposes, we need the following lemmas.

Lemma 8.8 Let C/π be any command in DTEN/. Assume that

δ1|FREE(C/π) = δ2|FREE(C/π) where FREE(C/π) ⊂ dom(δ1)∩ dom(δ2) ,

and that the minimum m greater than all i for which bini is in the image of
δ1 is the same as that for δ2. Then

LOUT (C/π, s|δ1) = LOUT (C/π, s|δ2) .

(Recall that LOUT is the left-half, the ‘s-half’, of OUT .)

Proof. This is an induction ‘on SSQ’ (very similar to the one in the
proof of 8.6(a)) showing that the left-halves of SSQn agree for all n. The
case C = begin new x; D∗; C∗ end is the only one where the ‘answer’ uses a
different δ than the starter. In that case, the conditions above, relating the
starters δ1 and δ2, insure that the same conditions relate the two δ’s used in
calculating SSQ inductively. So the induction goes through. (This lemma is
used only once below, non-essentially, so we won’t flesh this proof out.)

40

Definition. We say that “s|δ is (~x→ ~u , ~v→ ~t)—matched to s|δ”, if and
only if the following four conditions hold:

(A) [y ∈ dom(δ)∩dom(δ) and y 6∈ “~x ”∪“~v ”∪“~u ”] =⇒ s◦δ(y) = s◦δ(y)] ;

(B) ∀k , s◦δ(xk) = s◦δ(uk) ;

(C) ∀j , s◦δ(vj) = ts◦δj ;

(D) s(bini) = s(bini) for i−m = i−m ≥ 0 where m and m

are the smallest subscripts of bins larger than the subscripts of

all bins in the images of δ , δ respectively.

NOTE: Including · · · ∪ “~u ” here in (A) disagrees with [C], but his
analogue of 8.10 below is false.

Lemma 8.9 Assume given a formula F [and/or a term t], as well as
s, δ, s, δ, ~x, ~u,~v,~t such that :

(i) s|δ is (~x→ ~u , ~v→ ~t)—matched to s|δ;
(ii) δ and δ are defined for all variables free in the formulas F and

F [~x→~u , ~v→~t] [and/or all variables in the terms e and e[~x→~u , ~v→~t]] ;
(iii) the variables in “~u” do not appear in F and/or e.
Then

F [~x→~u ; ~v→~t] is true at s ◦ δ ⇐⇒ F is true at s ◦ δ ;

[and/or

(e[~x→~u ; ~v→~t])s◦δ = es◦δ] .

NOTE: Requiring (iii) here (because of the · · ·∪“~u ” in (A) of the definition)
weakens this compared to the corresponding Lemma 2 in [C]. But all five
applications of this lemma below do in fact work alright. And Lemma 3
in [C] turns out to actually be false because · · · ∪ “~u ” wasn’t required in
[C]—see the example at the end of the six page proof of 8.10 just ahead.

Proof. This is basic 1storder logic. It uses (A), (B) and (C) (but not (D)
of course). The point is simply that substitutions into formulas and terms
give answers whose semantics, relative to that prior to substitution, vary only
with respect to the variables involved in that substitution.

41

Lemma 8.10 Let [K, π, (~x : ~v), (~u : ~t)] be such that :
(i) the usual disjointness of the variables in (~x : ~v) and in (~u : ~t) holds ;
(ii) K/π ∈ CTEN/ ;
(iii) for any p ∈ PRIDE, every i.a.s. for call p(~u : ~t)/π which begins as
occ p(~u : ~t)//K(~x : ~v)// · · · satisfies the caveats CV2+, CV3+ and CV4+ in
the definition of CTEN.

[This is more-or-less saying that K is a procedure which can be “legally”
called within CTEN/. The specification of the second term in the i.a.s.
amounts to requiring that π(p) = (K, (~x : ~v)).]
Assume that s|δ is (~x→ ~u , ~v→ ~t)—matched to s|δ. Then

OUT (K/π , s|δ) is (~x→ ~u , ~v→ ~t)−matched to OUT (K [~x→~u ; ~v→~t]/π , s|δ).

Its three applications. It is readily checked that (i),(ii) and particu-
larly (iii) hold for [K, π, (~x : ~v), (~u : ~t)] in the following three examples,
(α), (β) and (γ). These are the three situations [8.11, validity of (IX),(X)]
where the lemma will be applied below. Checking these three may also help
to familiarize the reader with the technicalities. In [C], the entire set of
assumptions is stated “where K is any statement such that p(~x : ~v) proc K
could be a legal declaration for a legal statement call p(~u : ~t)”. But I could
not find a less technical way to formulate this so that both its proof and its
applications inspired reasonable confidence.

(α) For some p, call p(~u : ~t)/π ∈CTEN/ and π(p) = (K, (~x : ~v)).

(β) [C, π, (∅ : ~y), (∅ : ~r)] where C/π ∈CTEN/ and “~y ”∪“~r ” is disjoint
from FREE(C/π).

(γ) [L, π, (~y : ~w), (~u : ~t)] where (~y : ~w) ∈ IDE∗! , “~y ” ∪ “~w ” is disjoint
from “~u ”∪ “~t ”, and L = K [~x→~y ; ~v→~w] with [K, π, (~x : ~v), (~u : ~t)] as in (A).

Notation. Very occasionally, we shall need to separate OUT (K/π, s|δ)
into its two halves, which we’ll then specify by putting an L for “left” and
an R for “right” in front of the OUT . That is,

OUT (K/π, s|δ) =: LOUT (K/π, s|δ) | ROUT (K/π, s|δ) .

Proof of 8.10. This is an induction on the cardinality of SCOM(K/π),
and then on K, which has several non-obvious cases (of the usual seven cases), including

42

the cases of variable-declaration commands and assignment commands, where the caveats
CV singling out CTEN from DTEN play a crucial role, and worse, if anything, the case of
a call-command, where the CV + are crucial. We’ll leave the case of assignment commands
to the last, for reasons indicated in the small print just after the proof. Unfortunately,
this is where we (unavoidably it seems) reach an orgasm of technicalities. So some readers
may prefer to skip the 9-page proof for now. On the other hand, this is really where the
reasons for the restriction from DTEN to CTEN become manifest, at least if one cannot
think of alternative lines of argument (or alternate lines of argument, for USers).

To help express the various cases of the proof readably, let us denote the
displayed OUTputs in the lemma as

OUT (K/π , s|δ) = σK(s|δ)

and
OUT (K [~x→~u ; ~v→~t]/π , s|δ) = σK(s|δ) .

And let’s suppress the ~x→ ~u ; ~v→ ~t from the notation. And finally let’s
shorten “—matched” to just “–m–”

So we must prove

s|δ −m−s|δ =⇒ σK(s|δ)−m−σK(s|δ) .

Note before starting that condition (iii) on K in the lemma is inherited by
any subcommand, so it is only the penultimate of the seven cases below
(the call-command) where we need to check that the inductive assumption
actually applies to the relevant command.

Case when K = begin end.

This is beyond the pale of triviality.

Case when K = begin C1; C∗ end.

Applying the structural induction twice, s|δ −m−s|δ implies that

σC1
(s|δ)−m−σC1(s|δ) . But then the latter implies that

σbegin C∗ end(σC1
(s|δ)) −m− σbegin C∗ end(σC1(s|δ)).

However, the definition of SSQ for K in terms of C1 and C∗ immediately
shows that the last statement is identical with the required one, namely

σK(s|δ)−m−σK(s|δ) .

43

Case when K = whdo (H)(C).

Modulo one crucial observation, this is really all the instances of the
previous case of the form begin C; C; · · · ; C end. But we also must ob-
serve that, in the relevant cases (where the whdo-command terminates),

the formulas H and H [~x→~u ; ~v→~t] become false after exactly the same num-
ber of iterations in both cases, by 8.9 and induction. This uses 8.9 ap-
plied to the formula H, and our extra condition (iii) there holds, because
no ui can occur free in K, by CV3+, ` = s = 1, so in particular, in H. (The

double-underlined is first in our recorded list of the assumptions about the
given data which are needed to push the proof through.)

Case when K = begin D; D∗; C∗ end, with D a procedure declaration.

Let K ′ = begin D∗; C∗ end. Recall, from the definition of SSQ for this
case, that we modified π to π′ to express the state sequence for K in terms
of that for K ′. In fact, π′ agrees with π, except that it maps the procedure
name in D to its body and formal parameters, which need no notation here.
We shall use π and π′ in the subscripts on the σ’s in the obvious way. Then
the definition of SSQ just referred to gives

σK/π(s|δ) = σK′/π′(s|δ) and σK/π(s|δ) = σK′/π′(s|δ) .

But now the inductive hypothesis applied to K ′ gives exactly the required
statement about K.

Case when K = begin new x; D∗; C∗ end.

Let K ′ = begin D∗; C∗ end. As in the definition of SSQ for K in terms
of K ′, define δ′, δ′ to agree with δ, δ, except that they map the variable x
to binm, binm, respectively. And define δ′′, δ′′ to agree with δ, δ, except that
they map variables z, z to binm, binm, respectively, where z, z are the least
variable after the domains of δ, δ respectively.

If x occurs in (~x : ~v), consider the simultaneous substitution in which the
one for x is omitted, but which is otherwise identical to ~x→ ~u ; ~v→ ~t . Use
notation “–m∗–” for the matching corresponding to that (possibly restricted)
substitution. Direct from the definition of freeness, x is not free in K, so these
two (possibly different) substitutions have the same effect on K

Now, direct from the definition of matching, that s|δ −m−s|δ gives that

s|δ′ −m−s|δ′ .

44

The equations for the latter are identical with the equations for the former,
except for the following : the equation s(binm) = s(binm) from part (D)
of the former isn’t part of (D) for the latter, but is used rather for one new
equation needed to verify part (A) or (B) or (C) of the latter, depending
respectively on whether the variable x is not in “~x ” ∪ “~v ” ∪ “~u ”, or is in
“~x ”, or is in “~v ”. (If it’s in “~u ”, there is no extra equation to worry about.)

Then, applying the inductive hypothesis to K ′ and using the display
immediately above,

σK′(s|δ′) –m∗– σK′(s|δ′).

Now the definition of SSQ for K in terms of K ′ shows the displayed claim
just above to be the same as

(∗) LOUT (K/π, s|δ) | δ∗ –m∗– LOUT (K [~x→~u ; ~v→~t], s|δ) | δ∗,
for δ∗, δ∗ defined by the right-hand sides of the first and third displays just
below.

The claim about (∗) holds because

σK′(s|δ′) = OUT (K ′/π, s|δ′) = (say) LOUT (K/π, s|δ)|δ∗ ,

where
LOUT (K/π, s|δ)|δ′′ = OUT (K/π, s|δ) = σK(s|δ) ;

and because

σK′(s|δ′) = OUT (K ′[~x→~u ; ~v→~t]/π, s|δ′) = (say) LOUT (K [~x→~u ; ~v→~t]/π, s|δ) | δ∗ ,

where

LOUT (K [~x→~u ; ~v→~t]/π, s|δ)|δ′′ = OUT (K [~x→~u ; ~v→~t]/π, s|δ) = σK(s|δ) .

The middle equality in the last display depends on the fact that

K ′[~x→~u ; ~v→~t] = (K [~x→~u ; ~v→~t])′ .

By the second and fourth displays above, proving the required

(∗∗) σK(s|δ) –m– σK(s|δ)
amounts to changing, in (∗), the δ∗, δ∗ in (∗∗) to δ′′, δ′′, and getting rid of
the “∗” on the matching. This where we get mildly painstaking. The crucial

45

observation in each case is that the execution of K using δ, because it starts
with declaring “new x”, has no effect on the contents of the bin δ(x); that is,
all the states in its SSQ-sequence map δ(x) to the same value.

Here is a formal version of the general result needed for this observation,
which is intuitively obvious, and can be proved very easily for the state SSQn

by induction on n, then by structural induction :

8.6(c) For any (C/π, s|δ) whose computation sequence exists, if

SSQ(C/π, s|δ) =≺ s1|δ1 , s2|δ2 , · · · � ,

then, for all but finitely many bins b, we have sn(b) = s(b) for all n. In
particular, this can fail to hold only for b = δ(z) for variables z for which
some assignment command z ←: e is in SCOM(C/π). In particular, this
unaffectedness of s ◦ δ(z) by execution of C/π holds for all variables z not in
FREE(C/π)

[since z ←: e ∈ SCOM(C/π) =⇒ z ∈ FREE(C/π)] .

Recall that SCOM(K/π) is the set of subcommands, defined earlier, and it
includes subcommands in all procedures that might get called and executed.
In each case below, we are using σ [and σ respectively] as short for the left
half of σK(s|δ) [and σK(s|δ) resp.]

Case (a) : x 6∈ “~x ” ∪ “~v ” ∪ “~u ”.

Here the two substitutions are actually the same. With one switch, most
equations for (∗∗) are the same as those for (∗). For (D) in (∗∗), we need
the bottom case

σ(binm) = σ ◦ δ′(x) = σ ◦ δ′(x) = σ(binm) ,

the middle equality being part of (A) for (∗). Also there is the additional
equation in (A) for (∗∗), namely

σ ◦ δ(x) = s ◦ δ(x) = s ◦ δ(x) = σ ◦ δ(x) .

The two outside equalities are the principle (concerning the computation not
affecting most bins) discussed just above; that is, use 8.6(c). The middle
one is the basic matching hypothesis in this lemma.

46

Case (b) : x ∈ “~x ”.

With two exceptions (the displays below), the equations for (∗∗) are the
same as those for (∗). For (D) we need the bottom case

σ(binm) = σ ◦ δ′(x) = σ ◦ δ′(x) = σ(binm) ,

the middle equality being part of (A) for (∗). And, for (B), if xk = x, we get

σ ◦ δ(xk) = σ ◦ δ(uk)

because the same holds with s, s in place of σ, σ, and because the bins δ(xk)

and δ(uk) are unaffected by the execution of K and K [~x→~u ; ~v→~t] respectively.
Note that uk is not free in the latter command because it’s not free in K, it
doesn’t get substituted for x because x is not free in K, and it’s different from
all the other ui’s and the variables in the tj’s (even if we were in DTEN).

Case (c) : x ∈ “~v ”.

With two exceptions (the displays below), the equations for (∗∗) are the
same as those for (∗). For (D) we need the bottom case

σ(binm) = σ ◦ δ′(x) = σ ◦ δ′(x) = σ(binm) ,

the middle equality being part of (A) for (∗). And, for (C), if vj = x, we get

σ ◦ δ(vj) = tσ◦δj ,

as required, because the same holds with s, s in place of σ, σ, and because
the bins δ(z) for all variables z in tj (and δ(vj) respectively) are unaffected

by the execution of K [~x→~u ; ~v→~t] (and K respectively). The argument for this

last claim is as follows : These variables z can be free in K [~x→~u ; ~v→~t], but,
because vj is not free in K, so tj doesn’t get substituted for it, this can only
happen with another vi being replaced by some ti, for i 6= j, where ti and tj
have the variable z in common. But then no z ←: e is in SCOM(K [~x→~u ; ~v→~t])
because vi cannot occur to the left of a “ ←: ” in K, by CV2, and so δ(z) is

unaffected by executing K [~x→~u ; ~v→~t], as required.

47

Case (d) : x ∈ “~u ”.

With one exception (the same old one!), the equations for (∗∗) are the
same as those for (∗). For (D) we need the bottom case

σ(binm) = σ ◦ δ′(x) = σ ◦ δ′(x) = σ(binm) ,

the middle equality being part of (A) for (∗).

This completes the case of a command which is a ‘variable-declaration block’.

Case when K = call p′(~u′ : ~t′).

If p′ is not in the domain of π, the displayed OUT -states in the theorem
do not exist and there’s nothing to prove.

Otherwise, let π(p′) = (L, (~x′ : ~v′)). Now, assuming that the inductive

hypothesis applies to L1 := L[~x′→~u′ , ~v′→~t′], the proof is completed in this case
as follows. We have, for some N , using the definition of SSQ for calls,

σK(s|δ) := OUT (K/π, s|δ) = SSQN(K/π, s|δ) =

SSQN−1(L1/π, s|δ) =: σL1
(s|δ) .

Define
u′′j := u′j

[~x→~u , ~v→~t] and t′′i := t′i
[~x→~u , ~v→~t] .

Because “~x ” ∪ “~v ” is disjoint from FREE(L/π) by CV4+ , a direct elemen-

tary argument shows that

L[~x′→~u′′ , ~v′→~t′′] = L
[~x→~u , ~v→~t]
1 .

Thus

σK(s|δ) := OUT (K [~x→~u , ~v→~t]/π, s|δ) = OUT (call p′(~u′′ : ~t′′) /π, s|δ) =

OUT (L[~x′→~u′′ , ~v′→~t′′] /π, s|δ) = OUT (L
[~x→~u , ~v→~t]
1 /π, s|δ) =: σL1(s|δ) .

So we have reduced the matching question from the required K to the com-
mand L1.

The set SCOM(L1/π) is a proper subset of SCOM(K/π), with cardinal-
ity one less. So the inductive hypothesis does indeed apply to L1, completing
the proof here, once we have argued that [K,π, (~x : ~v), (~u : ~t)] satisfying

48

(iii) implies that [L1, π, (~x : ~v), (~u : ~t)] also satisfies (iii) (in the statement
of 8.10).

To do that, consider an i.a.s. for call p(~u : ~t)/π as follows:

occ p(~u : ~t)/ / L1(~x : ~v)/ / occ p2(~u
(2) : ~t(2))/ / · · ·

The third term is an occurrence of a call in L1 = L[~x′→~u′ , ~v′→~t′]. The corre-
sponding call occurrence in L cannot involve the variables in “~x′ ” ∪ “~v′ ”
because of CV4+ for K, applied to i.a.s.’s which have K in their 2nd term
and L in their 4th term. Thus the third term in the display is identical
with its corresponding call occurrence in L. So all the conditions with s > 1
automatically hold in the case of L1 because they hold for the above i.a.s.’s
which have K in their 2nd term and L in their 4th term.

Thus what remains to check are the conditions on [L1, π, (~x : ~v), (~u : ~t)]
which are CV2+ and CV3+ for s = ` = 1. For the latter, the set “~u ” ∪ “~t ”
is disjoint from FREE(L1/∅) because the same holds for L. For the former,
no vi occurs left of a colon in L1 again because the same holds for L.

This completes the case of a call-command.

Case when K is the assignment command z ←: e.

Here there is no induction to rest on, and one must simply go back to the
definition of matching and check the equations carefully.

Firstly, our assignment command, z ←: e, changes s only on the bin δ(z)
(if it exists), so the bins not in the images of δ and δ are unaffected. Thus
condition (D) in the definition clearly holds for the output states.

Let e1 := e[~x→~u , ~v→~t]. Then, by 8.9, we have es◦δ
1 = es◦δ . For this, note

that ui 6∈ “e” for all i, since those variables cannot be free in K by CV3, so

the new condition (iii) in 8.9 holds.
Also, letting

z1 :=

{
ui if z = xi ;
z if z 6∈ “~x ”;

we get
(z ←: e)[~x→~u , ~v→~t] = z1 ←: e1 .

(By CV2, the vi cannot appear left of the colon in an assignment command in K,

so the case z = vi does not arise above.)

49

Here we will again use shorter notation for the left-hand side of state-
pairs, viz.

σz←: e(s|δ) = σ|δ and σz←: e(s|δ) = σ|δ
defines σ and σ.

Thus

σ := LOUT (z1 ←: e1/π, s|δ) =


δ(ui) 7→ es◦δ

1 = es◦δ , and
other binq 7→ s(binq) if z = xi;
δ(z) 7→ es◦δ

1 = es◦δ , and
other binq 7→ s(binq) if z 6∈ “~x ”;

whereas

σ := LOUT (z ←: e/π, s|δ) =

{
δ(z) 7→ es◦δ , and

other binq 7→ s(binq) .

To check condition (C) for σ and σ in the “matching”-definition, we have

σ◦δ(vj) = s◦δ(vj) = ts◦δj = tσ◦δj as required, for the following reasons :

The first equality is immediate from the calculation just above of σ, since
z = vj cannot occur because none from ~v can appear to the left of the “:” in

an assignment command by CV2, so vj 6= z.

The second equality is condition (C) for the “matching” assumed in this
lemma.
The final equality is clear as long as σ ◦ δ(y) = s ◦ δ(y) for all variables y
in the term tj. But that is clear from the calculation just above of σ, since
no variable in tj can be a ui, or be z by CV3.

To check condition (B), immediately from the basic calculations of σ and
σ in the above large displays, we get

σ ◦ δ(uk) =


es◦δ , if z 6∈ “~x ” and uk = z ;

s ◦ δ(uk) if z 6∈ “~x ” and uk 6= z ;
es◦δ , if z = xk ;

s ◦ δ(uk) if z = xi and i 6= k ;

whereas

σ ◦ δ(xk) =

{
es◦δ , if z = xk ;

s ◦ δ(xk) if z 6= xk .

50

But the very top of the six right-hand sides simply doesn’t occur here,
because of CV3, viz. no variable in ~u is free in K. It is immediate that the

two left-hand sides agree, as required, from condition (B) for the “matching”
assumed in this lemma.

Finally, to check condition (A), assume that y 6∈ “~x∪~v∪~u ”. Immediately
from the early calculations of σ and σ, we find

σ ◦ δ(y) =


es◦δ if z = xi and ui = y ;

s ◦ δ(y) if z = xi and ui 6= y, so y 6= z since y 6∈ “~x” ;
es◦δ , if z 6∈ “~x” and y = z ;

s ◦ δ(y) if z 6∈ “~x” and y 6= z ;

whereas

σ ◦ δ(y) =

{
es◦δ , if y = z ;

s ◦ δ(y) if y 6= z .

If the first of the six right-hand sides cannot happen, it is immediate that the
two left-hand sides agree, as required, using condition (A) for the “matching”
assumed in this lemma. But the top right-hand side cannot happen because
we picked a variable y with y 6∈ “~u ”.

This finally completes the proof of 8.10. The condition that y 6∈ “~u ” in the final
line of that proof is essential, as the following example shows. This is a counterexample
to Lemma 3 in [C], where the definition of matching does not include that condition in
its part (A). (Fortunately) the rest of Cook’s proof goes through (because I don’t know
any different proof!) with the weaker definition of matching and the consequential weaker
version of his Lemma 2, our 8.9. Note that both 8.9 and 8.10 are used crucially several
times in the proof of adequacy and in the proof of soundness.

For the example, take the variables to be w1, w2, · · · ; take δ and δ both to be defined
on w1, w2, w3 only, mapping wi to bini, except that δ maps w1 to bin2 and w2 to bin1; take
s = s to be the state given by 0, 0, 1, 0, 0, 0, · · ·; take K to be the assignment command
w1 ←: w3; and finally take ~v and ~t to be empty, and ~x = (w1) and ~u = (w2), i.e. u1 = w2.

This satisfies the hypotheses of 8.10 even if we don’t required y 6∈ “~u ” in (A) of
the definition of matching, i.e. if we’d used Cook’s definition. Our definition requires
σ ◦ δ(y) = σ ◦ δ(y) only for y = w3, whereas the stronger version of (A) requires it also for
y = w2. But both hold, w2 giving the value 0, and w3 the value 1.

A quick calculation gives σ = σ to be the state given by 0, 1, 1, 0, 0, 0, · · ·. The sub-
stitution changes the command to w2 ←: w3 . Then the matching conclusion of 8.10 of
course holds for our ‘matching definition’. But it fails for the other, because

0 = σ ◦ δ(w2) 6= σ ◦ δ(w2) = 1 .

51

Continuation of the proof of 8.7.
The final case for adequacy is for call commands.
Assume that F{call p(~u : ~t)/π}G is true, and we’ll find a derivation.

The asinine subcase is that when p is not in the domain of π. (In that
case, F and G could be any formulas.) Extend π to π′, which agrees with
π, and has only p added to its domain, with π′(p) = B, where B is some
command which fails to terminate no matter what the input. By (XI), it
suffices to find a derivation for F{call p(~u : ~t)/π}G. By (VIII), it suffices
to find a derivation for F{B/π′}G. The analogue was done just before the
proof of 8.4 when we were in the child’s world of the language ATEN. The
solution here does require going through all seven cases in the structural
inductive definition of commands in DTEN. But it is essentially elementary
and will be left to the reader as an exercise. (Note that π might just as well
be empty here.)

In the non-asinine subcase, let π(p) = (K, (~x : ~v)). Let ~z be a list of
all variables in ~t. Let ~x′, ~v′, ~x′′, ~v′′, ~z′ be a string of distinct variables,
completely disjoint from any variables occurring so far in this case, and any
variables in FREE(call p(~u : ~t)/π). (The individual string lengths can be
guessed from the letters used, or deduced from the various substitutions
below.)

Let ~t′ := ~t [~z→~z′], and define

F1 := ~v ≈ ~t′ ∧ (F [(~x,~v)→(~x′′, ~v′′)])[~u→~x , ~z→~z′] .

The notation used should be fairly obvious. In particular, the ‘vector’ equal-
ity formula before the conjunction is really a multiple conjunction of equalities
of variables with terms. Get G1 from G by the same pair of two successive
simultaneous substitutions that were applied to F in the display just above :

G1 := (G[(~x,~v)→(~x′′, ~v′′)])[~u→~x , ~z→~z′] .

Lemma 8.11 The F-H statement F1{K/π′}G1 is true, where π′ agrees
with π, except that p is not in the domain of π′.

Delaying the proof, it now follows by the inductive hypothesis pertaining
to π′ being ‘smaller’ than π that the F-H statement in the lemma is derivable.

52

Immediately from rule (VIII), the statement

F1{call p(~x : ~v) / π}G1

is derivable.
Now, in rule (X), take ~y, ~w, ~u,~t to be ~x,~v, ~x′, ~v′ respectively. (So we are

temporarily changing ~u,~t from its fixed meaning in this case.) Certainly no
x′i even occurs in F1, so the rule applies. Looking at the definition of F1,

(and noting that [~u
(i)→ ~x

(ii)→ ~x′ and ~v
(ii)→ ~v′, where (ii) is the substitution in the

lower line of rule (X), and (i) is in the superscript in the definition of F1),
we get the statement as follows to be derivable:

(~v′ ≈ ~t′ ∧ (F [(~x,~v)→(~x′′, ~v′′)])[~u→~x′ , ~z→~z′]) {call p(~x′ : ~v′)/π} (G[(~x,~v)→(~x′′, ~v′′)])[~u→~x′ , ~z→~z′] .

Now easily apply rule (IX) with ~y = ~z′ , ~r = ~z and C = call p(~x′ : ~v′)
to get the same thing as above, except that the “~t′” becomes “~t ” on the far
left, and the “, ~z→ ~z′ ” are erased on the far right of the superscripts for
both F and G.

Again, in rule (X), take ~y, ~w, ~u,~t to be ~x′, ~v′, ~u,~t respectively, (where we
are now back to the fixed meaning of ~u,~t). Certainly, no ui occurs free in
the pre- and post- conditions of the F-H statement because of the ~u→ ~x′. So
(X) does apply, and the substitutions in its lower line are ~x′→ ~u , ~v′→ ~t. So
we get the statement as follows to be derivable:

(~t ≈ ~t ∧ F [(~x,~v)→(~x′′, ~v′′)]) {call p(~u : ~t)/π} G[(~x,~v)→(~x′′, ~v′′)] .

Now we can just erase the “~t ≈ ~t ∧” at the front, by using rule (IV) with the
upper line

F2 → ~t ≈ ~t ∧ F2 , (~t ≈ ~t ∧ F2){C/π}G2 , G2 → G2 ,

where the middle of the display is the F-H statement in the display second
above.

Finally, in rule (IX), take ~y = (~x′′, ~v′′) , ~r = (~x,~v) and C = call p(~u : ~t)
to obtain, as required, the derivability of F{call p(~u : ~t)/π}G. The rule is
applicable, since variables in (~x′′, ~v′′) are not in FREE(call p(~u : ~t)) by the
choice of those new variables disjoint from earlier ones, and those in (~x,~v)
also do not appear in FREE(call p(~u : ~t)/π) by its definition and our caveat
CV4+ .

53

This completes the proof of the adequacy half of 8.7, modulo proving
8.11, which we now proceed to do, before going on to proving the soundness
half of 8.7. Notice that the only two uses of rule (IX) above had ~r as a
list of variables both times and also had the command as a call-command
both times. So, at least to that extent, the proof system could be pared to a
minimum by restricting (IX) to that situation.

Proof of Lemma 8.11.
By the definition of SSQ, the truth of F{call p(~u : ~t)/π}G (assumed for

the final case of adequacy) gives the truth of F{K [~x→~u , ~v→~t] / π′}G. That in
turn gives the truth of

F [(~x,~v)→(~x′′, ~v′′)]{K [~x→~u , ~v→~t] / π′}G[(~x,~v)→(~x′′, ~v′′)] (∗)

because none of the variables involved in the formula substitutions occur in
the command.

Now assume F1 to be true at s1 ◦ δ1, where δ1 is defined at least on all
free variables in F1 and G1 and K. Also assume that SSQ(K/π′, s1|δ1) is a
finite sequence. We must show that G1 is true at OUT (K/π′, s1|δ1).

Pick an s|δ so that the following four conditions hold:

s ◦ δ(y) = s1 ◦ δ1(y) for all y 6∈ ~x ∪ ~v such that δ1(y) exists ;

s ◦ δ(ui) = s1 ◦ δ1(xi) ;

s ◦ δ(z) = s1 ◦ δ1(z
′) ;

s1(bini1) = s(bini) for i1 −m1 = i−m ≥ 0 where m1 and m

are the smallest subscripts of bins larger than the subscripts of

all bins in the images of δ1 , δ respectively.

The pair s1|δ1 is then (~x→ ~u ; ~v→ ~t)—matched to s|δ . Checking condition(C)
in the definition of “—matched” also uses the “~v ≈ ~t′-part” of F1 .

Because of the definition of (s, δ) on the variables in F [(~x,~v)→(~x′′, ~v′′)], that
formula is true at s ◦ δ because (the right-hand half of) F1 is true at s1 ◦ δ1.

Combining this with (∗), we see that G[(~x,~v)→(~x′′, ~v′′)] is true at

OUT (K [~x→~u , ~v→~t]/π′, s|δ) = OUT (K [~x→~u , ~v→~t]/π, s|δ) .

54

But, by 8.10, the OUT in this display is (~x→ ~u ; ~v→ ~t)—matched to

OUT (K/π′, s1|δ1) := OUT (K/π, s1|δ1) ,

Changing from π′ to π in both OUT -displays above follows from 8.6d) just
below, since no calls to p can occur in the commands, by CV1.

Combining these facts from the OUT -displays with 8.9, we find that G1

is true at OUT (K/π′, s1|δ1), as required.

8.6(d) Let C ∈DTEN and let π′, π and p be such that
(i) p 6∈ dom(π′) ;
(ii) dom(π) = {p}∪dom(π′) and π, π′ agree except that π(p) is defined ;
(iii) The procedure identifier p is not in any indirect activation sequence

arising from C/π .
Then

SSQ(C/π, s|δ) = SSQ(C/π′, s|δ) for any s and δ .

The proof is a straightforward induction.

Completion of the proof 8.7 (i.e. proof of the soundness half).
The validity of rules (I) to (IV) is very straightforward, with proof similar

to the arguments given in tedious detail in 8.1 for ATEN, so these four will
be omitted here.

Rule (V) is beyond the pale of triviality.

Validity of rule (VI) :

Let C = begin D∗; C∗ end and C+ = begin new x; D∗; C∗ end . Assume
the truth of the upper line in (VI), i.e.

F [x→y] {C/π} G[x→y] is true (∗)

To show the truth of the lower line, i.e. F {C+/π} G, assume that F is true
at s ◦ δ, and that SSQ(C+/π, s|δ) is a finite sequence.

We must prove that G is true at OUT (C+/π, s|δ).
This comes from

55

F true at s ◦ δ ⇒ F [x→y] true at s ◦ δ∗ ⇒ G[x→y] true at OUT (C/π, s|δ∗)

⇒ G true at LOUT (C/π, s|δ∗) | δ′′ ⇒ G true at OUT (C+/π, s|δ) ,

where we define δ′ and δ′′ as in the definition of SSQ for variable-declaration-
commands, and define δ∗ = δ′ except that δ∗(y) = δ(x).

The first implication is because δ and δ∗ agree, except that δ∗(y) = δ(x)
and the values δ∗(x) and δ(y) (if defined) are irrelevant, because y is not free
in F , and x is not free in F [x→y].

The second implication is immediate from (∗).
The third implication follows because δ′′ and ROUT (C/π, s|δ∗) agree,

except the first maps x to what the second maps y to, and their values on y
and x respectively are irrelevant.

The fourth implication follows from

OUT (C+/π, s|δ) = LOUT (C/π, s|δ′) | δ′′ = LOUT (C/π, s|δ∗) | δ′′ ,

where the second equality holds because δ∗ and δ′ agree except on y, but y
is not in FREE(C/π). (This may be proved directly in this simple case, but
it is also the one application for 8.8.) The first equality is immediate from
the definition of SSQ(C+/π, s|δ) in terms of SSQ(C/π, s|δ′).

Validity of rule (VII) :

Let C = begin D∗; C∗ end and C+ = begin D; D∗; C∗ end , where
D = proc p(~x : ~v) ≡ K corp . Assume the truth of the upper line in (VII), i.e.
F {C/π′} G is true . To show, as required, that F {C+/π} G is true ,
where π = π′ except that π′(p) = (K, (~x : ~v)), suppose that F is true at
s ◦ δ, and that SSQ(C+/π, s|δ) is a finite sequence. We must check that
G is true at OUT (C+/π, s|δ) But it is true at OUT (C/π′, s|δ), so we only
need the equality of these “OUT s”. And that follows because the sequences
SSQ(C+/π, s|δ) and SSQ(C/π′, s|δ), by definiton of SSQ, only differ by a
spurious initial term.

56

Validity of rule (VIII) :

Let C+ = call p(~x : ~v) and suppose that F{C/π′}G, the upper line in this
rule, is true, where π(p) := (C, (~x : ~v)) adds p to the domain to give π with
a strictly larger domain than π′. To show that F{C+/π}G, the lower line,
is true, suppose that F is true at s ◦ δ, and that SSQ(C+/π, s|δ) is a finite
sequence.

To show, as required, that G is true at (OUT (C+/π, s|δ), note that G is
true at OUT (C/π′, s|δ), which exists because of the display below. We claim

SSQ(C+/π, s|δ) = ≺ s , SSQ(C [~x→~x , ~v→~v] / π, s|δ) �

= ≺ s , SSQ(C/π, s|δ) � = ≺ s , SSQ(C/π′, s|δ) � .

And so the two relevant OUT s agree, and we’re done, as long as the equalities
claimed above are correct. The first equality is just the definition of SSQ
for C+ in terms of that for C. The substitution is a ‘non-starter’, giving the
second one. Using 8.6(d), the last equality holds since CV1 implies (iii) in
8.6(d) for C/π.

Validity of rule (IX) :

Assume that F{C/π}G is true, and that no variable yi nor any variable in
any term ri is in FREE(C/π). To show, as required, that F [~y→~r]{C/π}G[~y→~r]

is also true, assume that F [~y→~r] is true at s ◦ δ, and that SSQ(C/π, s|δ) is
a finite sequence. We must prove that G[~y→~r] is true at (OUT (C/π, s|δ).

Determine s1 by

s1 ◦ δ(z) = s ◦ δ(z) for z 6∈ “~y ” with z ∈ dom(δ) ;

s1 ◦ δ(yi) = rs◦δ
i ;

s1(binn) = s(binn) for binn 6∈ Image(δ) .

Then s1|δ is (empty subn. , ~y→ ~r)—matched to s|δ. In twice applying 8.9
below, hypothesis (iii) there holds vacuously.

By 8.9, F is true at s1 ◦ δ, and so, since F{C/π}G is true, G is true at
OUT (C/π, s1|δ).

By 8.10, OUT (C/π, s1|δ) is (empty subn. , ~y→ ~r)—matched to
OUT (C [~y→~r]/π, s|δ).

Thus, by 8.9, G[~y→~r] is true at OUT (C [~y→~r]/π, s|δ).

57

Now the following general result gives that last OUT to agree with
OUT (C/π, s|δ), so we’re done.

8.6(e) If no yi nor any variable in ri is in FREE(C/π), then C [~y→~r] = C
.

The proof of this almost tautological fact is a straightforward induction.

Validity of rule (X) :

Let C = call p(~y : ~w) and C+ = call p(~u : ~t) , with conditions as in rule
(X) holding.

If π(p) is not defined, there is nothing to prove, since then, F1{C+/π}G1

is true for any F1 and G1, because SSQ(C+/π,−|−) is undefined..
So let π(p) = (K, (~x,~v)). Suppose that F{C/π}G is true. To show that

F [~y→~u , ~w→~t]{C+/π}G[~y→~u , ~w→~t]

also is true, as required, assume that F [~y→~u , ~w→~t] is true at s ◦ δ, and that
SSQ(C+/π, s|δ) is a finite sequence.

We must prove that G[~y→~u , ~w→~t] is true at OUT (C+/π, s|δ) .
Pick some s1|δ1 which is (~y→ ~u, ~w→ ~t)—matched to s|δ. Then F is true

at s1 ◦ δ1 by 8.9. And so G is true at OUT (C/π, s1|δ1) , since F{C/π}G is
true.

Because of the way SSQ is defined for call-commands,

OUT (C+/π, s|δ) = OUT (K [~x→~u , ~v→~t]/π , s|δ) .

Define L := K [~x→~y , ~v→~w] , so that

K [~x→~u , ~v→~t] = L[~y→~u , ~w→~t] .

But this last equality gives that

OUT (C+/π, s|δ) = OUT (L[~y→~u , ~w→~t]/π , s|δ) .

Now

OUT (C/π, s1|δ1) := OUT (call p(~y : ~w)/π, s1|δ1)

= OUT (K [~x→~y , ~v→~w]/π , s1|δ1) := OUT (L/π, s1|δ1) .

58

The non-definitional equality is immediate from the definition of SSQ for
call-commands.

By 8.10, the right-hand side OUT s of the previous two displays are
matched, and so the left-hand sides also are; that is, OUT (C/π, s1|δ1) is
(~y→ ~u, ~w→ ~t)—matched to OUT (C+/π, s|δ).

Using 8.9, and the truth of G at OUT (C/π, s1|δ1) , we see that G[~y→~u ; ~w→~t]

is true at OUT (C+/π, s|δ), as required.

Validity of rule (XI) :

Here we use a final general result about the semantics, whose proof is yet
another straightforward induction.

8.6(f) If π ⊂ π′ and SSQ(C/π, s|δ) is a finite sequence, then so is
SSQ(C/π′, s|δ), and they have the same last term.

Now assume that F{C/π′}G is true, and that F is true at s ◦ δ. Sup-
pose that SSQ(C/π, s|δ) is a finite sequence. The result above gives that
SSQ(C/π′, s|δ) is also a finite sequence, and that

OUT (C/π′, s|δ) = OUT (C/π, s|δ) .

So G is true at OUT (C/π, s|δ), as required to show that F{C/π}G is also
true.

59

8.4—The non-existence of a complete F-H proof system for the
full languages ALGOL and PASCAL.

The language CTEN is nowhere close to full ALGOL. Only a few of
the caveats apply there. For example, certainly recursive procedures are
allowed, indeed, very much encouraged! (But see Addendum 3 below.) And
there are function declarations, GOTO-commands, etc. in ALGOL. So the
following question arises: for which practical software languages do we have
the existence of a complete F-H proof system in the sense of the theorems of
the last two subsections?

In [Cl1] there are a number of cases more general than CTEN of this
last theorem where such a proof system is claimed to exist, and a partial
proof is given in one of these cases. The literature does abound with papers
on this sort of question. But many of them also refer, more-or-less explicitly,
to mistakes in earlier papers. The situation can be mildly confusing to a
neophyte with mathematical interests but not a lot of knowledge of the CS
jargon nor of which claims are to be regarded as reliable.

Here are a few of the negative quotes:

In [Cl1] it was argued that if use of global variables was disallowed,
then denesting of internal procedures would be possible. Thus, the proof
system . . . could be adapted. . . . This argument was shown to be incorrect
by Olderog.

Clarke 1984[Hoare-Shepherdson eds]p.98

An amusing sidenote here is that, in the title in Clarke’s reference list for his
own paper (our [Cl1]), the word “impossible” got changed to “possible”!

We thank . . . G.Plotkin, for his elegant counterexamples to the soundness
of Clarke’s procedure call axiom.

Trakhtenbrot, Halpern,Mayer 1983[Clarke-Kozen eds]p.497

Whether such systems are to be used for formal verification, by hand
or automatically, or as a rigorous foundation for informal reasoning, it is
essential that they be logically sound. Several popular rules in the Hoare
logic are in fact not sound. These rules have been accepted because they
have not been subjected to sufficiently strong standards of correctness.

M.J. O’Donnell 1981[Kozen-ed.]p.349

60

The rules for procedure call statements often (in fact usually) have tech-
nical bugs when stated in the literature, and the rules stated in earlier ver-
sions of the present paper are not exceptions.

S. Cook 1978[C]p.70

One major motivation for the (excessive?) detail in the last subsection
is just this queasy situation. I hope that I got it right! As mentioned ear-
lier, the paper [Old1] gives fairly comprehensive results, and seems to be
unquestioned as far as accuracy is concerned, though some disagree with the
specification method for the semantics. It deals essentially with producing
careful analysis of F-H proof systems for the five cases of command languages
with procedure declarations plus all but one of the five language features dis-
played below in italics, where we explain briefly why such a system couldn’t
exist with all five features in the language. In the third addendum below, we
at least give a system for a language with recursive programming.

Note also that O’Donnell’s remarks quoted above concentrate on two fea-
tures of programming languages which have not been discussed at all here
yet—declared functions and GOTO-commands. It is interesting that ‘Frege’s
Folly’, AKA Russell’s Paradox, was inadvertantly re-created 90 years after
Frege in trying to invent proof rules for function declarations, as first observed
by Ed Ashcroft, an occurrence which undoubtedly helped to get people seri-
ous about proving soundness of proof rules in this subject. See Addendum
1 below for a short discussion on function declarations and Ashcroft’s obser-
vation, and see O’Donnell’s paper quoted above for other details.

I don’t know whether there is anything close to a rigorously proved com-
plete F-H proof system for an ALGOL-style language such that any ‘known’
language feature which is missing cannot be added without making it impos-
sible for such a proof system to exist. Most work after the mid-80’s seems to
concentrate on parallel and concurrent programming.

So we’ll finish with a brief description of the major negative result in
[Cl1], which apparently implies that there cannot be a complete F-H proof
system for full ALGOL. It is natural to wonder whether, and to what extent,
all this theory influenced the design of C, C++, C#, etc.

No attempt will be made to give exhaustive mathematical details here.
The negative argument of the first subsection gives us the following. Suppose
given a command language C which has the 1storder language L as its basis.
Fix an interpretation I of L, so that C can be given a corresponding semantics.
Assume this is done with sufficient rigour that one can prove:

61

(1) the halting problem for C relative to I to be undecidable; and
(2) there is a complete axiomatic proof system for L relative to I.
It follows from (1) that the set of commands C which loop on all inputs

is not recursively enumerable. But a complete F-H proof system plus (2)
would imply that set to be recursively enumerable.

Now (2) will certainly hold if I is finite. Clarke’s major achievement here
was to show how, if C had a certain list of features, namely:

(if you know the jargon) —procedures as parameters of procedure calls,
recursion, static scope, global variables, and internal procedures—

then, for every I with more than one element (including of course finite
I), the halting problem for C is undecidable, so (1) holds. And therefore
the standard argument of Cook above applies : there can be no (relatively)
complete F-H proof system for such a language.

It hardly needs saying that this surprising theorem of Clarke has been of
huge importance in the field.

62

Addendum 1 : Function Declarations and Ashcroft’s ‘Paradox’.

We introduce a very simple function declaration string, to jazz up the
language in Subsection 1. Funnily enough, it takes the form

fun y ∼ f(x)⇐− K nuf ,

where K is a command (very likely containing at least the variable x). Be-
forehand, one has specified a set FIDE of function identifiers with typical
member f . The above y is then intuitively “the value of the function f at
x”, where y really refers to the value of that variable in the state after K has
been executed, and x really to its own value in the state before K is executed.

A function declaration is not dissimilar to a procedure declaration. But
one is, so to speak, only interested in the one value, y, within the output
from K, not with the entire output state. And there is no direct function
call—f(· · ·) is simply allowed to be used wherever we formerly used terms
from the 1storder language, anywhere within the block starting with the
function declaration, in assertions, commands and other declarations. So,
for example,

whdo(f(x) + z < w × f(t + z))(C)

and
w ←: f(x) + z

would be a new sorts of commands, usable within that block; and

∀w (f(x) + z < w × f(t + z))

would be a new sort of assertion, for any variables x, z, w and any term t.
Thus one would define three sets, say ASS, COM and DEC, of asser-

tions (“formulas”), commands and declarations, respectively, by simultane-
ous structural induction. We won’t go into details here. For the example
below, you can imagine that DEC has only function (not variable nor pro-
cedure) declarations; that COM is the usual ATEN except for also using
blocks beginning with a declaration, and allowing the use of f as just above
in assignments and in the formulas for controlling ‘while-do’-commands; and
that ASS is just ‘1storder number theory souped up with functions’, again
using f as just above, and also in substitutions for variables.

63

One sanitary requirement would be that any f ∈ FIDE occurs at most
once in declarations within a block. Also, we might as well forbid recursive
function declarations for our simple purposes here.

A proper treatment would give also a careful definition of the semantics,
depending on a chosen interpretation of the 1storder language. Again what’s
below is independent of the interpretation, but if definiteness is desired, take
it to be N.

Now a rule which had been proposed, to go along with the four usual
rules for ATEN, is

F{K}G
F → G[y→f(x)]

,

for any F, G in ASS, and K in COM , where f is a function identifier appear-
ing in a declaration as at the beginning of the addendum. (We can weaken
it to stick to 1storder formulas F and G without defined functions, but the
Ashcroft example below still applies.)

The reader is urged not to think too much about this rule right now, other
than to say quietly: “That looks reasonable—when F is true then G with y replaced

by f(x) must be true, if f is computed using K, and the F-H statement in the numerator is

true”. If you feel a bit puzzled about this rule, after the Ashcroft contradiction
just below, our discussion will hopefully explain away any puzzlement.

Now let K be the command whdo(0 ≈ 0)(x ←: x) , which for these
purposes could be any command which just loops forever on any input. Let
f occur in the declaration as at the beginning with this particular K.

Now we get a derivation as follows :
•
•
•

0 ≈ 0{K}¬0 ≈ 0
0 ≈ 0→ (¬0 ≈ 0)[y→f(x)]

•
•

¬0 ≈ 0
The first few lines would be a derivation fragment as discussed in (iii)

after the statement of 8.4 ; because K loops, one could have any pre- and
post-conditions here. The next line just applies the new rule. And the last

64

few lines merely give a 1storder derivation, using the logical validity of 0 ≈ 0,
and a presumed rule which at least allows us to derive H from H [y→f(x)] when
the formula H has no free y. Actually H and H [y→f(x)] must be exactly the
same string under these circumstances, once all the definitions have been
fleshed out in detail.

Being able to derive ¬0 ≈ 0 seems undesirable, to say the least, and we’ll
just leave it at that—there seems little motivation at this point to try to find
any kind of semantics which are reasonable, and for which the given rule is
sound!

Additional Remarks. At first, having a rule whose conclusion is like a
1storder formula seems puzzling. Heretofore, each rule had an F-H statement
as its conclusion. After all, if we are working ‘oracularly’ as discussed in
Subsection 1, we are given all true 1storder formulas by the oracle, so who
needs to derive them?

Also the rule’s conclusion isn’t actually in the 1storder language because
of the occurrence of f .

These two objections seem to cancel each other : the conclusion is in the
enlarged ASS ⊃ FORM , and maybe we want to be able to derive ‘formulas’
in ASS of the form H → H ′, for use in a souped up version of the rule

(IV)
F → F ′ , F ′{C}G′ , G′ → G

F{C}G

This unfortunate ‘rule’ was originally stated with a universally quantified
conclusion ∀x (F → G[y→f(x)]). However, the presence or absence of the
quantifier is moot, if one is actually talking about truth in an interpretation,
as opposed to truth at a particular state.

But now one ponders it a bit more and puzzles concerning the restric-
tion in the rule about f appearing in a certain declaration. This is getting
stranger, since after all, given any two 1storder formulas F and G, we can
certainly find a command K already in the original ATEN for which the
numerator of this rule can be derived. That’s just the discussion of (iii) af-
ter the statement of 8.4 again. So the ‘rule’ would allow one to derive any
assertion as in its denominator. And it seems to have no relevance at all to
F-H logic as it has been presented here, since f doesn’t really mean anything
in particular.

65

One suspects that the intent of this rule was for producing intermediate
1storder formulas somewhere ‘in the middle of an execution of a program’.
These formulas were presumably supposed to be true for the state produced
at that stage. The intended rule is perhaps more like this :

F{K}G
Tr{begin fun y ∼ f(x)⇐− K nuf ; Null end}(F → G[y→f(x)])

,

where Tr and Null are any formula and command which are logically valid
and ‘do nothing’, respectively.

In any case, Ashcroft’s contradiction above applies just as well in that
context, so it was “back to the drawing-board”. General discussions, building
up from ‘while’ to more complicated command-constructions, of F-H logic,
such as [Apt] or [deB], seem to carefully avoid this topic, perhaps for good
reason. Other than deBakker-Klop-Meyer, p.94 in [Kozen-ed.], I haven’t
been able to find any thorough analysis of function declarations for F-H logic
as it is normally presented. That paper doesn’t include detailed proofs of
soundness and completeness. It is interesting that the set-up there is quite
elaborate, involving a functional programming language to supplement the
command language, and ‘meaning’ definitions which are given using denota-
tional semantics.

66

Addendum 2 : Propositional Connectives applied to
F-H Statements, and Total Correctness.

There are two aspects of the formulation of F-H logic earlier which some
may find unnatural because of a lack of generality :

(1) The F-H statement F{C}G (or F{C/π}G) is like a closed 1storder
formula in that it is either true or false in an interpretation: its truth value
does not vary with different states from a given interpretation. It may seem
more natural to introduce a syntactic notation [F : C : G] whose semantics
will say that it is true at a given state v exactly when [if F is true at v and
||C||(v) 6= err, then G is true at ||C||(v)]. In this addendum, we shall always
have C from a command language that is called the ‘while’ language, basically
ATEN plus the if-then-else command construction (a halfway house between
ATEN and BTEN). So the semantics is self-evident. One can think of the
string F{C}G as the (universal) closure of [F : C : G].

(2) The other ‘unnaturality’ is in only dealing with F-H statements them-
selves, and not, say, with negations or conjunctions of them, or implications
between them. As illustrated in the next addendum, when trying to give an
F-H proof system for a command language with procedures in which recur-
sive programs are allowed, it is almost necessary to deal not just with F-H
statements, but also with implications and conjunctions iteratively applied
to them, such as

F{C}G & F ′{C ′}G′ or (F{C}G =⇒ F ′{C ′}G′) & F ′′{C ′′}G′′ .

Temporarily, we shall use

¬¬ ; & ; =⇒ ; ⇐⇒ ,

to keep these connectives distinct from the analogous connectives

¬ ; ∧ ; −→ ; ←→ ,

which are parts of formulae from L, the underlying 1storder language. There
are some good reasons for this distinction, despite it being patronizing—the
sensitive reader can adopt the attitude that it’s me, not him or her, who
needs to keep from getting confused!

67

So below we consider what happens when both of these extra general-
ities are introduced. This is related to (but is done somewhat differently
than in) dynamic logic. Certainly we’ll be less general than the latter’s
most abstract form, which, for example, has non-deterministic constructs—
the output sometimes not being unique for a given input to a terminating
program.

First we remark on how this extra generality (perhaps unexpectedly)
expresses much more than the F-H partial correctness from which we started.
But the spirit here is merely intellectual interest—no claim is made about
the languages below being just the right ones for all the important practical
questions about programs.

Here is some notation, part of which is stolen from dynamic logic.
The language consisting of assertions, denoted A, B, etc., depending on

a given 1storder language plus its associated ‘while’ command language, will
be as follows :

atomic assertions: [F : C : G]

for F, G in the underlying 1storder language; C from its ‘while’ language;

general assertions: ¬¬A (A&B) ∀xA [A : C : B]

The last of these is needed for simplifying the formulation of the proof system.

Now use the following abbreviations :

(A =⇒ B) abbreviates the assertion ¬¬(A&¬¬B) ;

(A ⇐⇒ B) abbreviates the assertion ((A =⇒ B)&(B =⇒ A)) ;

Bracket removal abbreviations will be natural ones as in [LM], no memorizing precedence
rules! For example, only the outside brackets should disappear on that last string. But “&”
is ‘stickier’ than both “=⇒” and “⇐⇒”, as everyone knows without needing to memorize
it!

Tr (for “true”) abbreviates the formula x0 ≈ x0 ;

Nu (for “null”) abbreviates the command x0 ←: x0 ;

[C]G abbreviates the assertion [Tr : C : G] ;

‘G‘ abbreviates the assertion [Nu]G , that is, [Tr : Nu : G] ;

68

[C]A abbreviates the assertion [‘Tr‘ : C : A] ;

<C>G abbreviates the assertion ¬¬[C]¬G ;
and

<C>A abbreviates the assertion ¬¬[C]¬¬A .

These abbreviations each get their semantics from the basic semantics for
[F : C : G] given above, plus the usual semantics for ¬¬ , & and ∀x. The
semantics for [A : C : B] is exactly as given at the beginning of the addendum
for its dwarf cousin [F : C : G]. This can be re-worded to say that [A : C : B]
is true at a given v exactly when [A is false at v, or ||C||(v) = err, or B is
true at ||C||(v)].

Recall also that ∀xA is true at v iff A is true at all states w which agree
with v except possibly at the variable x. When v and w are related like this,
we abbreviate this to v ∼x w . This may also be written : v(y) = w(y) for
all variables y except possibly y = x.

Thus ‘G‘ is true at v iff G is true at v (in the normal 1storder logic
sense). So the new language can be thought of as an extension of 1storder
logic, and many would regard maintaining the distinction between G and ‘G‘
as unnecessary.

As above, the F-H statement F{C}G can be taken to be any assertion

∀y1 · · · ∀yk [F : C : G]

where the yi include all the variables in C and every free variable in F or G.
It is a simple exercise to show that [F : C : G] and ‘F ‘ =⇒ [C]G have

exactly the same semantics; that is, they are truth equivalent.
But now consider the semantics of

‘F ‘ =⇒<C>G .

This is true at v iff

[either ‘F ‘ is false at v or <C>G is true at v] iff

[either F is false at v or ¬¬[C]¬G is true at v] iff

[either F is false at v or [Tr : C : ¬G] is false at v] iff

[either F is false at v or [||C||(v) 6= err and ¬G is false at ||C||(v)]] iff

[if F is true at v then [C terminates at v and G is true at ||C||(v)]] .

69

So we see that ‘F ‘ =⇒<C>G being true at all v from an interpretation
is exactly the statement asserting the total correctness of the command C
for precondition F and postcondition G !

This is the (at least to me) slightly surprising fact which more-or-less tells
us that a ‘complete’ theory of partial correctness which includes propositional
connectives will necessarily include a theory of total correctness. (For total
correctness, there no standard notation such as F{C}G or {F}C{G}, which
are almost universally used by partial correctologists.)

Another way of viewing this, as the dynamic logicians do, is as a kind of
duality between the [] and <> operators, analogous to the duality between
∀ and ∃, or, more to the point, the duality between “necessity” and “possi-
bility” operators in modal logic. But recasting everything in that style, with
Kripke semantics, etc., seems to be unnecessary for us. Note however that
[] and <> play a big rôle in expressing the proof system below. And also
the final rule of inference below is similar to rules that occur in the theory
of total correctness, different from any that have so-far appeared here. (It
seems to be even different in a minor but essential way from what appears
anywhere else, having the advantage over others of being sound!—see later
comments on this.)

The semantics of [C]A and <C>A on their own (and similarly with G
replacing A, but we might as well just take A = ‘G‘) can be easily checked
to be the following:

[C]A is true at v iff either ||C||(v) = err or A is true at ||C||(v).

<C>A is true at v iff both ||C||(v) 6= err and A is true at ||C||(v).

Now we present a proof system for this [language plus semantics]. We
must back off from previous generality and assume that the underlying
1storder language is number theory and that the interpretation is N. (See
[Harel], p. 29, for a notion of arithmetical universe which generalizes this.)
We shall continue to deal only with derivations in which the premiss set is the
highly unruly set of all ‘F ‘ for which F is true in N.

Here is the system which gives the completeness theorem below for this
assertion language. The first seven are axioms, and the rest are rules with
at least one premiss.

70

The System

(I)A =⇒ A&A (II)A&B =⇒ A (III)(A =⇒ B) =⇒ (¬¬(B&C) =⇒ ¬¬(C&A))

These three plus (MP), Rosser’s system, can be replaced by any axioms which, with (MP),
give a complete system for classical propositional logic, a so-called ‘Hilbert-style proof
system’. This is referred to below as “propositional completeness”.

(IV) [F : C : G] ⇐⇒ (‘F ‘ =⇒ [C]G)

(V) [x←: t]F ⇐⇒ ‘F [x→t]‘

(VI) [(C1; C2)]F ⇐⇒ [C1][C2]F

Notice that, on the right-hand side here, we have an assertion of the form [C1]A, not
just [C1]H for a formula H from the underlying 1storder language. This is really why we
needed the language to include the assertion construction [A : C : B], or at least the case
of it where A is ‘Tr‘. However, expressivity will say that [C1][C2]F ‘could be replaced’ by
[C1]H for some 1storder formula H.

(VII) [ite(H)(C1)(C2)]G ⇐⇒ (‘H‘ =⇒ [C1]G)&(‘¬H‘ =⇒ [C2]G)

(VIII)
A , A =⇒ B

B
, i.e. modus ponens, or (MP)

(IX)
A =⇒ B

[C]A =⇒ [C]B

(X)
A =⇒ B

∀x A =⇒ ∀x B

(XI)
[F ∧G : C : F]

[F : whdo(G)(C) : F ∧ ¬G]

(XII)
‘F [x→0] → ¬G‘ , ‘F [x→x+1] → G‘ , < F [x→x+1] : C : F >

< ∃xF : whdo(G)(C) : F [x→0] >

for x 6∈ C∪G , and defining < J : C : K > := ‘J ‘ =⇒< C > K .

71

Then we get a completeness theorem by adopting methods due to Harel
in dynamic logic, and of course inspired by Cook :

There is a derivation for A if and only if A is true at all states from N.

Proving this is in detail will be somewhat lengthy.

Except for brevity in the instance of proving validity of the last rule, (XII),
the soundness half of the proof is a sequence of brief and straightforward
verifications of validity of each axiom and rule separately. Validity for axioms
means “true in N”. Validity for rules means that, when each assertion in
the numerator is true in N, then so is the denominator. One is not claiming
to be true in N a (stronger than the rule) axiom which says “conjunction
of numerator assertions =⇒ denominator assertion”. That would amount to
changing the second previous sentence by using “true at v” everywhere. The
deduction lemma in general form will not be deducible in this system, which
is analogous to System from [LM], rather than to System∗.

A version of that last rule, (XII), is unsoundly stated in all other sources
which I have seen. More specifically, the statements in [Apt], Rule 6, p.441,
and [Harel] , bottom of p.37, fail to have the restriction that the variable x
does not occur in G. Here is a simple counterexample to the soundness of
that stronger rule used by those much-cited papers. We now drop the silly
single quotes that we’ve been putting around each 1storder formula .

(x ≈ y)[x→0] → ¬x + 1 ≈ y , (x ≈ y)[x→x+1] → x + 1 ≈ y , < x + 1 ≈ y : “y ←: y − 1” : x ≈ y >

< ∃x x ≈ y : whdo(x + 1 ≈ y)(“y ←: y − 1”) : (x ≈ y)[x→0] >

Explanation : This is an example of rule (XII), except that x does occur
in G, which is taken to be x + 1 ≈ y for a pair of distinct variables x and y.
The formula F is taken to be x ≈ y. The command C, written “y ←: y−1”, is
intended to be any command (easy to come by) which decreases the value of
y by 1 when the input is any state where y has positive value; which may do
almost anything you want when y has value zero, including perhaps looping;
which never affects the value of x; and indeed, when written out properly as
a ‘while’-command, has no occurrence of x.

It is evident from the description of C that the total correctness assertion
on the right in the numerator is true in N. The middle formula is tautological.

72

The truth in N of the formula on the left is established without any major
intellectual effort. (It’s not true in Z, of course.)

However, the total correctness statement in the denominator is certainly
not true in N. Just take any state v in which v(x) = 1 = v(y) . The formula
on the left, ∃x x ≈ y, is true there (in fact, at any state, since it’s logically valid.
But actually x ≈ y itself is true there, making this also a counterexample to validity for
Harel’s version, as discussed in the next paragraph.) At this state v , the command
whdo(G)(C) does no passes of C at all, since x + 1 ≈ y is false at v. And
so termination does hold, with ||whdo(G)(C)||(v) = v. But the formula on
the right in the denominator, namely 0 ≈ y, is certainly false at v, so the
correctness aspect fails. Thus the assertion in the denominator is false in N,
as required. (If desired, one can certainly give an example where the whdo-command
does any pre-assigned finite number of passes—but counterexamples here are necessarily
to correctness, not to termination.)

In [Harel], p.37, the rule we’ve named (XII) also has the ∃x in the de-
nominator missing. That weakens it, but the above counterexample still
works to prove unsoundness. For that reason, and since we have proposi-
tional completeness, Harel’s system as he states it may be used to derive any
assertion whatsoever, and so one cannot claim that it is inadequate. How-
ever, if one puts our restriction that x 6∈ G into his rule, but continues to
omit the “∃x”, I don’t know how to prove that system to be adequate, if it
is, in fact, adequate. He provides all the fundamental ideas for the proof of
completeness we give below, but scrimps on details which would be needed
to verify by means of such a proof that his system is complete.
Example: The assertion < C > J is clearly true in N, where

C is whdo(0 < y)(“y ←: y − 1”) , and J is y ≈ 0 .

A derivation of it (within our system) is fairly easy to come by: Taking x to
be any variable not occurring in C, rule (XII) yields a derivation of

∃x y ≈ x → < C > J ,

since J is (y ≈ x)[x→0] . The rule is applicable since the corresponding
assertions in the numerator of that rule, namely

y ≈ 0→ ¬0 < y , y ≈ x+1→ 0 < y , and < y ≈ x+1 : “y ←: y−1” : y ≈ x >

73

are clearly all derivable, the first two being premisses. The last would have
an elementary proof, once the command is written out in detail, involving
only the first eleven axioms and rules. But now ∃x y ≈ x, being logically
valid, is true in N and so derivable, and thus (MP) immediately yields the
required result.

But this argument wouldn’t work using the fixed-up rule from [Harel],
since we have to drop the “∃x”, so logical validity evaporates. I suspect, and
will leave it to the reader to attempt to verify, that < C > J is not derivable
in the latter system, which would therefore be incomplete. In fact, it seems
likely that A →< C > J is derivable in that system only for assertions A for
which A → y ≈ x is true in N.

In the proofs below, we shall point out where use is made of the two
matters discussed above re rule (XII) (certainly essential use, in the case of
x 6∈ G, and probably for ∃x).

Here then is a proof that the rule (XII), as we state it, is sound.

With the notation from that rule, assume that the three assertions in its
numerator are true in N.

Let v be such that ∃x F is true at v. Choose some w with v ∼x w ,
and with F itself true at w . Let n := w(x). For 0 ≤ i ≤ n, define
w(i) := w(x 7→n−i), which maps x to n − i, but any other y to w(y). Thus
w(0) = w ; w(n)(x) = 0N ; and w(i) ∼x v for all i . Now we have a
\tiny diagram of implications, explained below, where t is short for “is true
at”. Of course, the \tiny =⇒’s and ⇓’s in this diagram are from the
metalanguage of this writeup, not from the formal language of assertions!

F tw(0) ⇒ F [x→x+1]tw(1) ⇒ F t||C||(w(1))⇒ F [x→x+1]t||C||(w(2))⇒ F t||C||2(w(2))⇒ · · ·F [x→x+1]t||C||n−1(w(n))⇒ F t||C||n(w(n))

⇓ ⇓ ⇓ ⇓

Gtw(1) Gt||C||(w(2)) · · · Gt||C||n−1(w(n) F [x→0]t||C||n(w(n)

⇓ ⇓ ⇓ ⇓

Gtv Gt||C||(v) · · · Gt||C||n−1(v) ¬Gt||C||n(w(n))

⇓

¬Gt||C||n(v)

74

On the top row, the 1st, 3rd, 5th, etc. =⇒’s are correct because, quite
generally, F being true at u(x 7→i) implies that F [x→x+1] is true at u(x 7→i−1). We
need also to use that, because x 6∈ C, one has ||C||j(w(i)) = ||C||j(w)(i).

On the top row, the 2nd, 4th, etc. =⇒’s follow because of the truth of
< F [x→x+1] : C : F > in N (the rightmost assertion inside the numerator of
the rule). It gives us that, when F [x→x+1] is true at u, it follows that F is true
at ||C||(u), which is 6= err there. Part of the intended information in the
diagram is that each state appearing there is 6= err, any questionable case
following because of the =⇒ coming into the spot where that state appears.

As for the downward implications which are not in the rightmost col-
umn, those in the upper row are correct immediately from the truth of
F [x→x+1] → G (the middle formula from the numerator of the rule). That
those in the second row are correct comes from observing that w(1) ∼x v,
then that ||C||(w(2)) ∼x ||C||(v) because w(2) ∼x v and x 6∈ C, then that
||C||2(w(3)) ∼x ||C||2(v), etc. · · · ; and also using the quite general fact that
[u ∼x z and x 6∈ G] implies that G is true at u if and only if G is true at z .
(This is the one place where x 6∈ G is used. When proving adequacy, we’ll point
out how the restriction is not a problem.)

As for the downward implications which are in the rightmost column :
The top one is correct because of the general fact that if u(x) = 0N ,

then H is true at u iff H [x→0] is true there, and the special fact that because
w(n)(x) = 0N and x 6∈ C, we get ||C||i(w(n))(x) = 0N for all i .

The middle one is correct simply because F [x→0] → ¬G (the leftmost
formula from the numerator of the rule) is true in N.

And the bottom one is correct just as with the bottom downward impli-
cations in the other columns.

Now that you buy the correctness of the diagram, we can finish quite
quickly the proof that the assertion from the denominator of the rule is true
in N. The statements at the bottoms of all the columns in the diagram
immediately show that the ‘while-do’ command does terminate on input v .
More precisely

||whdo(G)(C)||(v) = ||C||n(v) 6= err .

But now the formula F [x→0] is true at that state, as required. That last claim
is just what appears as the second-from-top statement in the last column of
the diagram, except that v has been replaced by w(n). But that’s no problem,

75

as those two states are related by ∼x , and the formula in question has no
free x, as it has been substituted by 0.

The three underlined statements in this proof say exactly that the asser-
tion from the denominator of the rule is true in N, as required.

Proof of adequacy (completeness) of the system.

We must prove, for assertions A :

(∗) if A is true in N, then A is derivable.

It will be convenient (and of educational value) to pass over to a slightly
different language. In this language, each 1storder formula will actually be
an assertion (so we get rid of those silly single quotes ‘F ‘). The main change
is to use directly, not as an abbreviation, the string [C]A, and we get rid of
the [A : C : B], which will be replaced by A =⇒ [C]B. This language will
really be a specialized form of a dynamic logic language.

The language is defined in the usual structural inductive fashion :
Each atom will be an atomic 1storder formula . (These are the formulas s ≈ t
and s < t, for any terms s and t, built up using variables and the symbols
+, ×, 0 and 1.)
Compound assertions are built as

A 7→ ¬A ; (A,B) 7→ (A ∧ B) ; A 7→ ∀x A ; and A 7→ [C]A .

The first three of these four build any 1storder formula of course. We’ll revert
to ¬ , ∧ and → , to conform with the notation used in [LM], our canonical
reference for 1storder logic. (That gives the reward of letting us use =⇒ in the
metalanguage of this discussion without fussy comments!)

The new proof system will be obtained simply from the old one :
(1) drop the single quotes on each 1storder formula ;
(2) omit axiom (IV), which is meaningless for the new language anyway;
(3) alter rules (XI) and (XII) to

F ∧G→ [C]F

F → [whdo(G)(C)](F ∧ ¬G)

and

F [x→0] → ¬G , F [x→x+1] → (G ∧ < C > F)

∃xF →< whdo(G)(C) > F [x→0]
for x 6∈ C ∪G .

76

In this new language, as before, define < C > F := ¬[C]¬F .
The semantics of the new language is exactly the same as that of the old.

But what is a definition here for, say, the primitive string [C]F in the new
language, was a little proposition for that abbreviation in the old language.

Now I claim that proving (∗) above for the new language and proof system
suffices to get it for the old. That seems fairly obvious, but let us at least
give a sketch of how to check this.

Use Lold, Lnew, sysold, sysnew in the obvious way for the old and new
languages and proof systems. The original (∗) says

N |= O implies sysold ` O

for any O in the old language. Below we shall prove

N |= N implies sysnew ` N

for any N in the new language. In both cases, the ` means to use the system,
and to take every 1storder formula which is true in N as a premiss.

Define, by induction on structure, a map

ϕ : Lold → Lnew ,

via
ϕ([F : C : G]) := F → [C]G ;

ϕ(¬A) := ¬ϕ(A) ; ϕ(A ∧ B) := ϕ(A) ∧ ϕ(B) ; ϕ(∀x A) := ∀x ϕ(A) ;

and
ϕ([A : C : B]) := ϕ(A)→ [C]ϕ(B) .

Then it is mildly tedious checking to show

N |= O if and only if N |= ϕ(O) ,

and
sysold ` O if and only if sysnew ` ϕ(O) .

These obviously do the needed job (in fact, just the “only if ” in the first
and the “if ” in the second). We’ll leave it to the reader to go through
the checking, proceeding by induction on O, which carefully verifies the two
displays just above.

77

If that’s disagreeable, you can think of the completeness of the new system as being
the main point of this addendum. And regard the old language as just motivation being
used to facilitate the passage from classical Floyd-Hoare logic to this concrete subtheory
of dynamic logic.

Before proving adequacy for the new system, we need an expressiveness
result, namely :

For any assertion A in the new language, there is a 1storder formula A
such that A↔ A is true in N.

The initial and three of the four inductive cases (of the proof by structural
induction on A) are very easy. The other case, when A is [C]B, can, as with
the proof of 8.3, be done easily with the help of Gödel’s definability result
for semi-decidable relations, as follows :

Firstly, it’s clearly equivalent(and turns out to seem linguistically simpler)
to deal with < C > B instead of [C]B. Let all the variables in C and the free
ones in B be from among the distinct variables y1, · · · , yn. Let x1, · · · , xn be
distinct variables, disjoint from the yi’s. For the fixed command C, define a
2n-ary relation, RC , on natural numbers by

RC(a1, · · · , an, b1, · · · , bn) ⇐⇒ ||C||(~a) = ~b .

This is semi-decidable (indeed, the archetype of such!), so, by Gödel, let H
be a 1storder formula with free variables from among the xi and yi, such that

RC(~a,~b) ⇐⇒ H [~x→~a , ~y→~b] is true in N .

By the inductive hypothesis, choose a 1storder formula B with free variables
from among the yi, such that B ↔ B is true in N.

Now define A to be ∃y1 · · · ∃yn (H ∧B) .
Then

A is true at ~a ⇐⇒ for some ~b , (H ∧B)[~y→~b] true at ~a ⇐⇒

for some ~b , both H [~x→~a , ~y→~b] and B[~y→~b] are true in N ⇐⇒

for some ~b , both RC(~a,~b) holds and B is true at ~b ⇐⇒

for some ~b , ||C||(~a) = ~b and B is true at ||C||(~a) ⇐⇒

||C||(~a) 6= err and B is true at ||C||(~a) ⇐⇒ < C > B is true at ~a .

78

Thus, as required, A ↔ < C > B is true in N.

Now let’s proceed to the proof of adequacy for the new system. Accuse
an occurrence of ∀x in A of being dull when its scope is a 1storder formula.
Define, for A in the new language,

MA := #non-dull occurrences in A of ∀x for various x +

#occurrences in A of [C] for various C .

Then A is a 1storder formula if and only if MA = 0 . (As it happens, if
#occurrences in A of [C] is 0, then every occurrence of ∀x is in fact dull.)

We shall prove (∗) (for A from the new language) by induction on MA .
Since all 1storder formulas are premisses, the start of the induction is trivial.

Here is the overall sketch of the lengthy inductive step, in reverse order :

First reduce it to proving (∗) for assertions A → symB, in the four cases of the symbol
string

sym = [C] or ¬[C] or ∀x or ¬∀x ,

where the latter two cases involve non-dull occurrences (that is, B is not a 1storder for-
mula).

Further reduce it to proving (∗) for assertions of the form F −→ [C]G and F −→ ¬[C]G
for 1storder formulas F and G. (So we are down to two particular cases of when MA = 1.)

Finally give separate, somewhat parallel, lengthy arguments for those two cases.

Now we proceed to do these in reverse order.

Proof of (∗) for A of the form F −→ [C]G .
This proceeds by structural induction on C, simultaneously for all 1storder

formulas F and G.

When C is x←: t : By (V), G[x→t] −→ [x ←: t]G is derivable, so it
remains to show F −→ G[x→t] is derivable, and then to apply hypothetical
syllogism from propositional completeness. But the 1storder formula
F −→ G[x→t] is a premiss, since it is true in N, because both F −→ [x←: t]G
[by assumption] and [x ←: t]G −→ G[x→t] [soundness of half-rule (V)] are
true in N.

When C is ite(H)(C1)(C2) : Use (VII) more-or-less as we used (V) just
above. We need only show

F −→ (H −→ [C1]G) ∧ (¬H −→ [C2]G)

79

to be derivable. By propositional completeness, this reduces to the derivabil-
ity separately of

F −→ (H −→ [C1]G)) and F −→ (¬H −→ [C2]G) ,

or indeed
F ∧H −→ [C1]G) and F ∧ ¬H −→ [C2]G .

The latter two are immediate, by the induction on C, since the truth in N
of the latter formulae is clear from the truth of F −→ [C]G.

When C is (C1; C2) : Here axiom (VI) is of course crucial, but expressiv-
ity (not unexpectedly!) is also involved. By expressivity, choose a 1storder
formula H so that H ←→ [C2]G is true in N. By the structural induc-
tion on C, the assertion H −→ [C2]G is derivable. So, by (IX), the asser-
tion [C1]H −→ [C1][C2]G is derivable. By hypothetical syllogism, and since
[C1][C2]G −→ [C]G is derivable, [i.e. ‘is’ half of axiom (VI)], it remains only
to show that the assertion F −→ [C1]H is derivable. This follows from the
inductive hypothesis as long as that assertion is true. But in

F −→ [(C1; C2)]G −→ [C1][C2]G −→ [C1]H

we have that ‘each −→’ is true, respectively, by assumption, by soundness
of half-(VI), and essentially by soundness of half-(IX), knowing [C2]G −→ H
to be true.

When C is whdo(H)(D) : Using expressivity, choose a 1storder formula
J with J ←→ [C]G true in N.

I claim that each of the following is derivable :

(1) F → J ; (2) J → [C](J ∧ ¬H) ; (3) J ∧ ¬H → G .

If so, then (3) and axiom (IX) give [C](J ∧ ¬H) → [C]G to be derivable.
So the double application of hypothetical syllogism to that assertion, (2) and
(1) yields the desired derivation of F → [C]G .

Verifying (1) : Both ’→’s in F → [C]G→ J are true (by assumption and
choice of J), and so F → J is a premiss.

Verifying (2) : The new rule (XI) :

J ∧H → [D]J

J → [whdo(H)(D)](J ∧ ¬H)
,

80

leaves us only to derive J ∧ H → [D]J . That follows from its truth in N
by the overall induction on C of this part of the proof. To see its truth : for
a contradiction, suppose v is such that J ∧ H is true at v , ||D||(v) 6= err,
and J is false at ||D||(v) . From ‘while-do’ semantics and the truth of H at
v , we get

||C||(v) = ||C||(||D||(v)) .

Thus J being false at ||D||(v) gives, by the specification of J , that [C]G
is false at ||D||(v) . Thus the right-hand side of the display is 6= err , and
G is false there.

So the left-hand side of the display is 6= err . But then, since J , therefore
[C]G, is true at v, we see that G is true at the left-hand side of the display.

The underlined statements contradict the display.

Verifying (3) : That 1storder formula is a premiss, since its truth in N is
easy to see : If J ∧ ¬H is true at v, then so are :

¬H , giving ||C||(v) = v , and
J , and so [C]G , giving either ||C||(v) = err or G true at ||C||(v) .

So, indeed, G is true at v, as required.

Proof of (∗) for A of the form F −→ ¬[C]G .
Since < C > G := ¬[C]¬G , derivability of F −→ ¬[C]G1 (for all F and

G1 where it’s true) is equivalent to derivability of F −→< C > G (for all F
and G where it is true)—by ‘taking G and G1 to be negations of each other’,
so to speak. Proving the latter also proceeds by structural induction on
C, simultaneously for all F and G, quite analogously to the previous proof,
though the last case, of a ‘while-do’ command, is somewhat harder.

Indeed, the first three cases may be done almost word-for-word as before,
changing [] to <> everywhere. For this, we need only show to be derivable
the assertions (V)<> , (VI)<> , and (VII)<> , these being the corresponding
axioms with [] changed to <> everywhere. To check them :

< x←: t > F = ¬[x←: t]¬F ←→ ¬(¬F)[x→t] = ¬¬F [x→t] ←→ F [x→t] .

The first ‘←→’ is derivable using (V) and propositionality; and the second is
just propositionality. For (VI), write down

81

< C1 >< C2 > F = ¬[C1]¬¬[C2]¬F ←→ ¬[C1][C2]¬F

←→ ¬[(C1; C2)]¬F = < (C1; C2) > F ,

and say a few words. The last one even gives some minor propositional
subtlety :

< ite(H)(C1)(C2) > G = ¬[ite(H)(C1)(C2)]¬G

←→ ¬((H −→ [C1]¬G) ∧ (¬H −→ [C2]¬G))

←→ ¬((H −→ ¬ < C1 > G) ∧ (¬H −→ ¬ < C2 > G))

←→ ¬((< C1 > G −→ ¬H) ∧ (< C2 > G −→ H))

←→ (H −→< C1 > G) ∧ (¬H −→< C2 > G) .

Each ‘←→’ is in fact derivable in the system, the last one being the mildly
subtle fact that

¬((J −→ ¬H) ∧ (K −→ H)) and (H −→ J) ∧ (¬H −→ K)

are derivable from each other in propositional logic.
This leaves only one case in the structural inductive proof of the deriv-

ability of F →< C > G when that assertion is true, namely the case

When C is whdo(H)(D) :
Pick a 1storder formula J and a variable x 6∈ D ∪G ∪H such that

J is true at v if and only if : with n := v(x) we have

(α) ||D||n(v) 6= err and H is true at ||D||i(v) for 0 ≤ i < n ;
and

(β) G ∧ ¬H is true at ||D||n(v) .

To prove that J can be found, first define a command

D# := whdo(0 < x)(D ; “x←: x− 1”) .

Let ~y = (y1, y2, · · · , yr) be a list of distinct variables including all those in
D ∪G ∪H. Here, as earlier, the command “x←: x− 1” has the effect, when
the value of x is positive, of decreasing it by 1 without altering any yi (but
it can behave arbitrarily otherwise.) We’ll ‘contract’ v down to just writing
the relevant variables. Then

||D#||(n,~a) = (0, ||D||n(~a)) ,

82

where the first coordinate is the value of x and the vector coordinate is the
value of ~y [and (0, err) on the right-hand side would mean just err of course].

Now use expressivity for the assertion <D#> H to find a 1storder formula
K such that

K [x→i , ~y→~a] is true in N ⇐⇒ ||D#||(i,~a) 6= err and H is true there .

Use expressivity again, this time for the assertion <D#> (G ∧ ¬H) to find
a 1storder formula L such that

L[x→n , ~y→~a] is true in N ⇐⇒ ||D#||(n,~a) 6= err and (G∧¬H) is true there .

Then let z be a ‘new’ variable, and define the required formula by

J := ∀z ((z < x→ K [x→z]) ∧ (z ≈ x→ L[x→z])) .

Then

J is true at (n,~a) ⇐⇒ J [x→n , ~y→~a] is true in N ⇐⇒

∀z ((z < n→ K [x→z , ~y→~a]) ∧ (z ≈ n→ L[x→z , ~y→~a])) is true in N ⇐⇒

true in N are : K [x→i , ~y→~a] for 0 ≤ i < n, and L[x→n , ~y→~a] ⇐⇒

||D#||(i,~a) 6= err and H is true there for 0 ≤ i < n and

||D#||(n,~a) 6= err and G ∧ ¬H is true there ⇐⇒

||D||n(~a) 6= err, the formula G∧¬H is true there, and H is true at ||D||i(~a) for 0 ≤ i < n ,

as required.

I claim that the following are all true in N.

(1) J [x→0] → G ∧ ¬H ; (2) J [x→x+1] → H∧ < D > J ; (3) F → ∃x J .

Suspending disbelief in this for the moment, the following are then deriv-
able :

J [x→0] → ¬H ; J [x→x+1] → H ; J [x→x+1] →< D > J ;

the first two being premisses, and the latter because it is true and therefore
derivable by the induction on C.

By rule (XII) and since x 6∈ D ∪H, we get a derivation of

∃x J → < C > J [x→0] .

83

But the 1storder formula J [x→0] → G is a premiss, and therefore the assertion
< C > J [x→0] →< C > G is derivable by a rule which is (IX) except with [C]
replaced by < C >, and which is easily verified from (IX) and the definition
of < C > F . Finally F → ∃x J is true, so derivable. A double dose of
hypothetical syllogism then shows F →< C > G to be derivable, as required.

It remains to check the truth of (1), (2) and (3), using the assumed truth
of F →< whdo(H)(D) > G.

(1) Assume J [x→0] is true at w. Then J itself is true at v := w(x 7→0). So
n = 0 in the specification defining J . From (β) we get that G ∧ ¬H is true
at v. But since v ∼x w and x 6∈ G ∪H, we get, as required, that G ∧ ¬H is
true at w.

(2) Assume that J [x→x+1] is true at w.
Then J itself is true at the state v := w(x 7→w(x)+1). In the specification of

J , we have n = v(x) = w(x) + 1 > 0 . So i = 0 occurs in (α)v,n, and we get
that H is true at ||D||0(v) = v . So H is true also at w (which is half the
required), since v ∼x w and x 6∈ H.

But, since n ≥ 1, condition (α)v,n also gives ||D||(v) 6= err. And so
||D||(w) 6= err, since v ∼x w and x 6∈ D. Furthermore, J is true at ||D||(w):
We check this using the definition of J as follows. Here

||D||(w)(x) = w(x) = n− 1 ,

so we must verify conditions (α)||D||(w),n−1 and (β)||D||(w),n−1 .
For the first, note that ||D||n−1(||D||(w)) = ||D||n(w) 6= err, since we

have ||D||n(v) 6= err. Also, for 0 ≤ i < n − 1, the formula H is true
at ||D||i||D||(w)) = ||D||i+1(w), since again, w may be replaced by v, and
because i + 1 < n, making use of (α)v,n.

For (β)||D||(w),n−1 , we again use the fact that ||D||n−1||D||(w)) = ||D||n(w),
and G ∧ ¬H is indeed true there, because it is true at ||D||n(v).

The underlined above show that J [x→x+1] →< D > J is true in N, com-
pleting the discussion of (2).

(3) Assume that F is true at v. Our basic assumption that the assertion
F →< whdo(H)(D) > G is true in N yields that

||whdo(H)(D)||(v) = ||C||(v) 6= err ,

84

and that G is true at ||C||(v). Thus, there is a (unique of course) n ≥ 0 such
that (α)v,n and (β)v,n hold, by the semantics of ‘whdo’. Now define w by
w ∼x v and w(x) = n. By the definition of J , the latter formula is true at
w . Since w ∼x v, it is immediate from the basic (Tarski) definition of truth
for an existential 1storder formula that ∃x J is true at v , as required. (But
not necessarily J itself, so more is needed to establish adequacy with a weakening
of Harel’s rule to make it sound, perhaps more than more!)

This finally completes the (structural induction on C) proof of (∗) for A
of the form F −→< C > G , and so for A of the form F −→ ¬[C]G .

To complete the (induction on MA) proof of (∗) for all A in the new
language, let sym denote one of the symbol strings

[C] or ¬[C] or ∀x or ¬∀x .

Lemma. For any C in the new language, there is a propositional deriva-
tion of an assertion of the form

C ⇐⇒ ∧αDα ,

where the finite conjunction on the right-hand side has each Dα as a finite
disjunction of assertions, each of which has the following form : either each
is a 1storder formula , or else at least one of them has the form symB for our
four possible sym’s, where B is not a 1storder formula when sym is either ∀x
or ¬∀x.

The proof of this proceeds by structural induction on C, and is simplified
by simultaneously proving the dual fact, where the prefixes “con” and “dis”
trade places. The initial case is trivial. In two inductive cases, namely
A 7→ ∀x A ; and A 7→ [C]A , one simply has a single conjunct (resp.
disjunct), which itself is a single disjunct (resp. conjunct). The inductive
step for negations is easy because of proving the duals simultaneously : up to
cancellation of double negations, deMorganization converts each expression
from the right-hand side of the lemma to its dual. The symmetry breaks for
the final case of conjuncting two assertions. For the actual lemma statement,
the result is numbingly obvious. For the dual statement, it is run-of-the-mill
obvious by using distributivity of ∧ over ∨. (All we are really talking about
here is conjunctive and disjunctive form.)

85

Since a conjunction is derivable (resp. true in N) if and only if each
conjunct has the same property (using propositionality of our system for the
derivability), and since every true 1storder formula is a premiss, the lemma
reduces the question to proving (∗) only for assertions of the form E ∨ symB.
(One may use E = 0 ≈ 1 for any conjunct consisting of a single disjunct
symB.) Taking A as ¬E ,

we need only prove (∗) for assertions of the form A → symB,
where, since B is not a 1storder formula in two of four relevant cases, the
inductive assumption applies to all assertions whose ‘M -function’ does not
exceed that of one or the other of A or B. All we are saying here is that

MA→symB = MA + MB + 1 .

By expressivity, choose A and B, each a 1storder formula , such that both
A←→ A and B ←→ B are true in N.

The proof will now be completed by considering each of the four possi-
bilities for sym.

sym is [C] : Use hypothetical syllogism after establishing the derivability
of the three ‘→’ below :

A → A → [C]B → [C]B .

A → A is true, therefore derivable by the induction on the number M .
B → B is true, therefore derivable by induction, and then so is the assertion
[C]B → [C]B derivable, using axiom (IX).
Derivability of A → [C]B follows from its truth and the first of the earlier
agonizingly established (∗)’s. Its truth is clear, since it ‘factors into true
assertions’ :

A → A → [C]B → [C]B .

sym is ∀x : Just replace [C] by ∀x everywhere in the previous paragraph,
and appeal to (X) rather than (IX), and get derivability of A→ ∀x B much
more easily, as a premiss.

sym is ¬[C] : Just replace [C] by ¬[C] everywhere in the second previous
paragraph, and make a few tiny wording changes :

86

Use B → B true, so derivable by induction on the number M , to get
[C]B → [C]B, and thence ¬[C]B → ¬[C]B both derivable.

This case of course uses also the even more agonizingly established version
of (∗) giving the derivability of A→ ¬[C]B.

sym is ¬∀x : Write out the previous paragraph properly, then replace each
¬[C] by ¬∀x, again appealing simply to the ‘premissiveness’ of A→ ¬∀x B,
rather than needing the prickly proof of the derivability of A→ ¬[C] B .

So we’re done : the proof system is indeed complete.

An exercise is to derive directly, from this system, all the rules from the
first subsection of this chapter, as well as the rules at the beginning of the
second subsection.

I don’t yet know how to generalize this completeness to arbitrary under-
lying 1storder languages and interpretations, nor to a system which merely
extends the collection of F-H statements by adding in the propositional
connectives—but these seem natural questions to consider. Nor do I un-
derstand why some denotational semanticizers require that one should use
intuitionistic propositional logic here, rather than the classical logic as ex-
emplified by modus ponens plus the first three axioms above.

Exercise. Going back to the old language beginning this addendum,
show that ¬¬F{C}¬G is true in an interpretation iff there is at least one
state v for which F is true at v, and ||C||(v) 6= err, and G is true at ||C||(v).

It seems that one cannot get total correctness from partial correctness
plus propositional connectives directly. One apparently needs one of the
(interdefinable and slightly more refined) syntactic ‘concepts’ [F : C : G]
or [C]G or <C>G or < F : C : G > .

87

Addendum 3 : F-H Proof Systems
where Recursive Programming Occurs.

Stephen Cook in [C] has at least the following fundamental accomplish-
ments in this subject :

(1) isolating a notion of relative completeness which is meaningful, and
generally (but not perhaps universally) regarded as significant;

(2) inventing the fundamental idea of the post relation (or strongest post-
condition, as it is more popularly named) and its 1storder definability (i.e.
expressiveness), and using it to establish a benchmark completeness theorem
for the ATEN-language (or, more accurately, the ‘while-language’) as in the
first two subsections above;

(3) pretty much establishing the completeness and soundness of a proof
system for the F-H statements concerning a command language with proce-
dures which have parameters and global variables, as exposited at length in
our third subsection.

One major sense in which this completeness work is ‘incomplete’ is that
recursive procedures are forbidden. Here we give a command language which
includes recursive programming, but vastly simplify by having no parameters.
This is also simplified by avoiding declarations of variables. The semantics
is given in the same style as the third section. Then we write down a proof
system which is sound and complete, but don’t include the proofs of the latter
claims. At the end are some comments on what appear to this author to be
the most (perhaps the only) reliable write-ups on systems for languages which
get closer to ‘real-live Algol’, by having recursive declared procedures with
parameters, and other features (but not so many as to contradict Clarke’s
famous theorem from the fourth subsection above).

The language, (operational) semantics and proof system below are closely
related to those in Ch.5 of [deB]. He goes further in later chapters, to have
both recursive programs and parameters, but avoids having nested proce-
dures, even in Ch.5. We allow them, as only later chapters of [deB] ap-
parently need to avoid nesting, or indeed really need to use denotational
semantics, on which many words are devoted there. See also the comments
near the end of this addendum. All the details for the soundness and ade-
quacy of the system here have been checked, as we did in our third section,
but it’s quite lengthy, when done in enough detail to inspire confidence. This
paper is getting far too verbose, so we’ll not include the details here, risking

88

a crisis of confidence, not a novelty in this subject.
Actually, if we had followed Harel’s wise comments quoted just below,

this is where all the details would have been included, rather than in the
tortuous 3rd subsection above!

There is seemingly a drawback to our treatment in the fact that we do
not provide tools for including any kinds of parameters in the programming
language. The reason is our wanting to achieve a clarification of the mech-
anisms for reasoning about pure recursion. Our experience in digesting the
literature on this subject indicates that in most of the cases the presentation
of basic principles suffers from being obscured by rules for dealing with the
parameters.

David Harel [FODL], p. 44

The language RTEN.
As before, the set of procedure identifiers, disjoint from the variables, will

have members with names like p, q, etc. And, quite similar to the beginning
of Section 3 above, the set DEC ∪ COM of declarations and commands is
defined by mutual structural induction as follows :

D, D1, · · · , Dk ∈ DEC := { − || [p : C] }

C, C1, · · · , Cn ∈ COM := { x←: t | call p || ite(H)(C1)(C2) |
begin D1; · · · ; Dk ; C1; · · · ; Cn end }

Intuitively, the declaration [p : C] is just saying “the procedure to be associ-
ated with the identifier p is to be C ”. In the block-command just above, if Di

is [pi : Ki], we require the identifiers p1, · · · , pk to be distinct. As before, the
case k = 0 = n gives the ‘skip’ or ‘null’ or ‘do-nothing’ command, namely
begin end, which really is a third atomic command. We have resurrected
the ite-command (if-then-else) from BTEN, so H above is any quantifier-
free formula from the underlying fixed 1storder language L (with equality).
But we have omitted the whdo-command, to shorten the treatment, with
justification as follows :

Exercise. Using the semantics defined just below, show that the meaning
of (i.e. the SSQ-sequence of)

begin [p : ite(H)(C; call p)(begin end)] ; call p end

89

(a block-command with k = 1 = n) is the same as the SSQ-sequence of
whdo(H)(C) , as given in Section 3.

After reading in [LM], Sect.IV-11: McSelfish Calculations how McCarthy’s
McSELF-language gives a completely general definition of computability with-
out needing whdo, this exercise should come as no surprise. The command
in the display above is a typical example of recursive programming, at least
for the case where only one procedure identifier is involved. Mutual recur-
sion with several declared procedures can also happen in interesting ways, of
course.

Semantics of RTEN.
Here the extra semantics components s and δ are the same as in the third

section; whereas π will be much simpler :

PRIDE ⊃ finite set
π−→ COM .

We shall be writing strings C/π , where π is now more of a syntactic com-
ponent, which could be identified with a string

[p1 : K1] [p2 : K2] · · · [p` : K`] ,

where
domain(π) = {p1 ≺ p2 ≺ · · · ≺ p`}

with respect to some fixed linear order “≺” on PRIDE, and where
π(pi) = Ki for 1 ≤ i ≤ `.

When it is defined, the semantic object SSQ(C/π, s|δ) will be a (pos-
sibly infinite) sequence of states s—no need to include the “|δ-half”, as in
Subsection 3 above). The definition will have six cases : the three types of
atomic commands, the ite-command, and the two cases (k = 0 < n) and
k > 0, n ≥ 0) of the block-command.

C = x←: t or begin end or begin C∗ end. Defined the same as in Sub-
section 3, dropping all the |δ’s.

C = call p. The sequence SSQ(call p/π, s|δ) is undefined unless p is in
domain(π), in which case, with π(p) = K, it is

≺ s , SSQ(K/π, s|δ) �

90

(which might also be undefined, of course).
Remarks. Note that, just as in the third section, the definition, which

we are halfway through giving, proceeds to define the nth term, SSQn, of
the sequence by induction on n, and, for fixed n, by structural induction on
C. The reader might prefer to re-write it in the stricter style we adopted at
first in Section 3. Quite baffling to me are the sentence in [deB] on p. 150 :

Note that, strictly speaking, the definition of Comp(< E | P >) is not
fully rigorous · · · it · · · may be made more precise (cf. the remark following
Theorem A.27 of the appendix · · ·

and that remark :

The non-trivial step in this approach to the definition of Comp is the use of
the recursion theorem · · ·

Note that (essentially) “Comp” is our SSQ, “E” is π, “P” is C, and “the
recursion theorem” is one of Kleene’s famous results from the theory of re-
cursive functions (see [CM], IV-7.2). Although we haven’t bothered with
so-called ‘array variables’, AKA ‘subscripted variables’, which are irrelevant
here, by not forbidding nested procedures, we have a more general command
language here. But the need for machinery from recursive function theory to
define operational semantics seems out of the question. In any case, a defi-
nition is either rigorous or not; being “strictly speaking” not “fully rigorous”
is an odd turn of phrase!

So let us complete the definition of SSQ.

C = an ite-command. Define

SSQ(ite(H)(C1)(C2)/π, s|δ) :=


undefined if free(H) 6⊂ dom(δ);

≺ s, SSQ(C1/π, s|δ) � if H is true at s ◦ δ;
≺ s, SSQ(C2/π, s|δ) � if H is false at s ◦ δ.

C = begin [p : K]; D∗; C∗ end . Define

SSQ(C/π, s|δ) := ≺ s , SSQ(begin D∗; C∗ end/π′, s|δ) � ,

where π′ agrees with π, except that π′(p) = K, whatever the status of p with
respect to π.

91

The assertion language and proof system.
We shall adopt the approach of the previous addendum. But here, as in

Section 3 as opposed to Sections 1 and 2 and the last addendum, the basic
F-H statement has the form F{C/π}G. That is, it includes π, as well as
formulas F and G in L and a command C from the language RTEN.

So this language of assertions will start with atomic strings [F : C/π : G]
for F, G in the underlying 1storder language; C from RTEN. Then it builds
up compound assertions using

¬¬A , (A&B) , ∀xA and [A : C/π : B].

As before, the F-H statement F{C/π}G is the (universal) closure of the
assertion [F : C/π : G].

We are using A , A′ , A1 , B etc. as names for assertions. And let < F >
be an abbreviation for 0 ≈ 0{begin end/π}F . Alternatively, < F > can
be ‘F1‘, where F1 is any (universal) closure for F .

The proof system
———————————
IN THE EARLIER VERSION ON THIS WEB PAGE HAD SEVERAL DRAW-

BACKS which I realized after a lot of work on a dynamic logic version of a pure
recursion language. So the reader should go to numbers 14, 15 and 16 on this
web page for a great deal of detail on this, and should wait breathlessly while I
try to improve what had been here, based on that experience.

———————————
Besides the proofs of soundness and adequacy, we have also left the reader

with the preliminary job of giving careful definitions of the various sets of
free variables, then of the substitution notation, both for variables and for
procedure identifiers. As indicated via the expressiveness hypothesis in the
theorem, one will also need to use a 1storder definability result via Gödel
numbering for the ‘post relation/strongest postcondition’ for RTEN, or al-
ternatively, a ‘weakest precondition’ version.

The papers of Olderog [Old1], [Old2] give what seems to be definitive
positive results regarding complete F-H proof systems for imperative lan-
guages with procedures, allowing nesting, recursion, parameters, free vari-
ables and so-called sharing. Note that he doesn’t bother with a full propo-
sitional language of F-H assertions, but most of his rules begin H =⇒ · · ·

92

on both top and bottom. Going to a full propositional presentation, writing
some rules as axioms, and using the propositional tautology

(A =⇒ B) =⇒ [(H =⇒ A) =⇒ (H =⇒ B)] ,

these would simplify somewhat, but it’s all a matter of taste.
Trakhtenbrot, Halpern and Meyer in [Clarke-Kozen eds] have some

disagreement with the use of ‘copy rules’ in the above papers (rather than
denotational semantics) for defining the semantics of the language. However
I haven’t succeeded in finding a detailed treatment of their approach.

93

References

[Apt] Apt, K.R., Ten Years of Hoare’s Logic: A Survey—Part 1. ACM
Trans. Prog. Lang. Syst. 3,4, Oct. 1981, 431-483.

[deB] deBakker, J.W., Mathematical Theory of Program Correctness. Pren-
tice Hall, N.J., 1980.

[Cl1] Clarke, E.M. Jr., Programming Language Constructs for which it is
Impossible to Obtain Good Hoare-like Axioms. J. ACM 26, 1979, 129-147.

[Clarke-Kozen eds] Logics of Programs. Lecture Notes in CS # 164,
Springer, 1984.

[C] Cook, Stephen A., Soundness and Completeness of an Axiom System
for Program Verification. SIAM. J. COMPUT. (7), 1978, 70-90.

[C+] Cook, Stephen A., Corrigendum : etc. SIAM. J. COMPUT. 10(3),
1981, 612.

[Harel] Harel, David, First-Order Dynamic Logic. Lecture Notes in
CS # 68, Springer, 1979.

[G] Gordon, Michael J.C. Programming Language Theory and its Imple-
mentation. Prentice Hall, London, 1988.

[CM] Hoffman, P. Computability for the Mathematical. this website,
2005.

[Hoare-Shepherdson eds] Mathematical Logic and Programming Lan-
guages. Prentice Hall, N.J., 1985.

[Kozen-ed.] Logics of Programs. Lecture Notes in CS # 131, Springer,
1982.

[LM] Hoffman, P. Logic for the Mathematical. this website, 2003.

[Old1] Olderog, E-R. A Characterization of Hoare-like Calculi Based on
Copy Rules. Acta Inf. 16, 1981, 161-197.

[Old2] Olderog, E-R. Sound and Complete Hoare’s Logic For Programs
with Pascal-like Procedures. Proc. 15th ACM Symp, Theory of Computing,
1983, 320-329.

94

