PMath 810 Operator Algebras

Instructor: L.W. Marcoux

Course Outline January 2025

 $\rm MC~5014$

Chapter One:	A review of the main theorems from Banach spaces
Chapter Two:	Banach algebras1. Basic theory2. The functional calculus3. Relative spectra
Chapter Three:	Operator algebras 1. The algebra $\mathcal{B}(\mathfrak{X}), \mathfrak{X}$ a Banach space 2. The algebra $\mathcal{B}(\mathcal{H}), \mathcal{H}$ a Hilbert space 3. Compact operators
Chapter Four:	Commutative Banach algebras1. The Gelfand transform2. Examples3. The Jacobson radical
Chapter Five:	 C*-algebras 1. Definitions and Basic Theory 2. Elements of C*-algebras 3. Ideals in C*-algebras 4. The GNS Construction
Chapter Six:	von Neumann algebras 1. An introduction

2. The Spectral Theorem for normal operators

Grading. To be determined

There is no specific text for the course, although I shall be making a typed version my notes available to you online. A preliminary version of these notes is currently available on my UW website: https://www.math.uwaterloo.ca/~lwmarcou/.

The prerequisites for this course are: PM351 (Real Analysis I - metric space theory); PM352 (Complex Analysis); PM450 (Lebesgue measure and Fourier Analysis); PM453 (Functional Analysis). At least one course on (non-commutative) rings is also very useful. The student taking this course would be well-served to review their notes for Advanced Linear algebra.

Some other textbooks which may be helpful for PMath 810 are:

Murphy, G.J., C*-algebras and Operator Theory, Academic Press, 1990.

Douglas, R., Banach algebra techniques in operator theory, Academic Press, 1972.

Kadison, R. and Ringrose, J., *Fundamentals of the theory of operator algebras*, Academic Press, 1983.

Rudin, W., Functional Analysis, McGraw-Hill, 1977.

Takesaki, M., Theory of operator algebras, Springer Verlag, 1979.