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ANDRÁS SÁRKÖZY—A RETROSPECTIVE ON THE OCCASION
OF HIS SIXTIETH BIRTHDAY

C. L. Stewart (Waterloo)

(The following is the text of a lecture given July 3, 2000, in Debrecen at the Collo-
quium on Number Theory in honor of the sixtieth birthday of Professors Kálmán Győry
and András Sárközy.)

It is both a pleasure and a privilege to give a lecture on the mathematics of
András Sárközy on this occasion. András has written over 160 papers and 4 books.
He has many coauthors and has written more joint papers with Paul Erdős than
any other mathematician.

I first met András twenty years ago at the Number Theory Conference of the
János Bolyai Mathematical Society in Budapest in the summer of 1981. We have
been friends ever since and have had great fun doing mathematics together over
the years. In this talk I will survey some of András’ work. Clearly I can only pick
out some highlights and so I have focussed on the results that I have found most
appealing.

András has worked mainly in combinatorial and analytic number theory. How-
ever his first paper “On lattice cubes in three dimensional space” which appeared
in Mat. Lapok in 1961 was in geometry and another one of his early papers dealt
with classical analysis. The problem was to find, for each positive degree n, the
polynomials f for which the difference of the maximum absolute value of f and the
nearest zero on [−1, 1] is minimal. The solution is given by those polynomials which
are multiples of Tn, the n-th Chebyshev polynomial of the first kind. Lázár had
claimed a proof of this result but his proof was lost with him when he died in the
Second World War. Turán popularized the problem and Á. Elbert and A. Sárközy
solved it [14] as fourth-year university students.

Let a1 < a2 < . . . be a sequence of positive integers with the property that ai
does not divide aj whenever i is different from j. In 1935 Behrend [11] proved that
for such a sequence ∑

ai≤N
a−1
i <<

logN
(log logN)1/2 ;

here << is Vinogradov’s notation and signifies that the left-hand side of the symbol
is less than a positive constant times the right-hand side.
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Erdős, Sárközy and Szemerédi wrote a sequence of 11 papers from 1966 to 1970
[18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] dealing with extensions and generalizations
of Behrend’s result. Sárközy took up this theme later with Pomerance [54] and most
recently with Ahlswede and Khachatrian [2, 3].

Another topic on which András made significant progress is that of irregu-
larities of distribution in arithmetical progressions [10, 57, 58, 59, 63, 66]. He gave
one-sided estimates improving on the work of Roth, applied his estimates to give
lower bounds for character sums and extended the range of the subject by studying
irregularities of distribution with respect to more general sequences.

Let N be a positive integer and let ε1, . . . , εN be elements of {1,−1}. Put
εi = 0 for i less than 1 or greater than N. In 1964 Roth [55] proved that there exist
positive numbers c0 and c1 such that if N exceeds c0 then

max
a,q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+jq

∣∣∣∣∣∣ > c1N
1/4.

Ten years later Sárközy [58] proved that there exist sequences for which the above
maximum is appreciably smaller than N1/2, an estimate which one can obtain by
examining random sequences. He proved that there exists a positive number c2
such that for each positive integer N (> 1) there exists a sequence (ε1, . . . , εN) for
which the maximum is at most c2(N logN)1/3. In 1981 Beck [9] improved this to
c3N

1/4(logN)5/2 and in 1996 Matoušek and Spencer [45] showed that Roth’s result
was essentially best possible by showing that there exist sequences for which the
maximum is at most c4N1/4.

As for irregularities of distribution with respect to other sequences, we note
that an arithmetical progression is a shift and a dilation of the sequence of positive
integers. Let r be a positive integer. In 1999 Beck, Sárközy and Stewart [10] proved
that if N exceeds 5r+1 then

max
a∈Z, q,t∈Z+

∣∣∣∣∣∣
t∑

j=1

εa+jrq

∣∣∣∣∣∣ ≥ 1
4
N1/2(r+1).

Thus, no matter how we partition the first N (≥ 125) integers into two sets, there
will be a shift and dilation of the initial terms of the sequence of squares which
contains at least (N1/6)/4 more terms from one set than the other.

Let N be a positive integer and let A = (an)∞n=1 be an increasing sequence of
positive integers. Let A(N) denote the number of terms of A which are at most N.
Lovász conjectured that if

lim
A(N)
N

> 0,

then there exist i, j with i 6= j such that ai− aj is the square of an integer. András
proved [60] Lovász’ conjecture by means of the Hardy–Littlewood method as elab-
orated by Roth in his work on sets of integers which do not contain three term
arithmetical progressions. Furstenberg [36] gave another proof of Lovász’ conjecture
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using ergodic theory. In fact, András proved a quantitative refinement of Lovász’
conjecture. He showed that if there is no difference which is a square then

A(N)
N

= O

(
(log logN)2/3

(logN)1/3

)
.

This has since been sharpened by Pintz, Steiger and Szemerédi [53] who proved that

A(N)
N

= O
(

(logN)−(log log log logN)/12
)
.

András also addressed the more difficult problem of showing that if A has the
property that ai − aj is never of the form p − 1 with p a prime then A has upper
density 0. Note that if instead of the primes shifted by 1 we took the primes we
would be in a different situation since the positive integers divisible by 4 have the
property that all their differences are divisible by 4. András proved in 1978 [61]
that

A(N)
N

= O

(
(log3N)3 log4N

(log2N)2

)
;

where log1N = logN and logiN = log(logi−1 N) for i = 2, 3, . . . . We remark that
Kamae and Mendès-France [40] in 1978 gave a general criterion for determining
when a set of positive integers has the property that all sets of positive upper
density possess a difference from that set.

For any integer n larger than one let P (n) denote the greatest prime factor of
n. Fujii [35], Erdős and Balog and Sárközy [6] all conjectured that every sufficiently
large integer can be written as the sum of two smooth numbers.

Conjecture. For each ε > 0 there exists a positive number N0, which de-
pends on ε, such that if N is a positive integer which exceeds N0 then there exist
positive integers n1 and n2 with

n1 + n2 = N and P (n1n2) < Nε.

As a step in the direction of the above conjecture Balog and Sárközy [6] proved
that there is a positive number N1 such that if N is a positive integer which exceeds
N1 then there exist positive integers n1 and n2 with

n1 + n2 = N and P (n1n2) ≤ 2N2/5,

and later Balog improved this result.
If more summands are allowed then a much stronger conclusion applies. In

1981 Fujii [35] proved that the analogue of the above conjecture holds when 3
summands are used. Three years later Balog and Sárközy [5] proved that there is a
positive number N2 such that if N is a positive integer which exceeds N2 then there
exist positive integers n1, n2 and n3 with

n1 + n2 + n3 = N
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and

P (n1n2n3) ≤ exp(3(logN log2N)1/2).

The proof of this result makes use of the circle method.

This brings me to my first picture which was taken in December of 1985 during
a visit of András and his daughter Andrea to Waterloo. My daughter Elisa is on
my shoulders.
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A few years later Iwaniec and Sárközy [39] addressed the following problem.
Let N be a positive integer and let A and B be subsets of {N,N + 1, . . . , 2N}. For
any set X let |X | denote its cardinality. Suppose that |A| >> N and |B| >> N.
How close is a product ab to a square? They proved, by means of an estimate for
weighted exponential sums at well spaced points due to Bombieri and Iwaniec, that
there exists an integer a from A, an integer b from B and a positive integer c such
that

|ab− c2| << (c log c)1/2.

An arithmetical function f is said to be multiplicative if, whenever m and n
are coprime positive integers,

f(mn) = f(m)f(n).(1)

It is strictly multiplicative if (1) holds for all positive integers m and n. We say
that f satisfies a linear recurrence of finite order if there is a positive integer k and
complex numbers a0, . . . , ak with a0 6= 0 and ak 6= 0 such that

a0f(n) + a1f(n+ 1) + · · ·+ akf(n+ k) = 0,

for n = 1, 2, . . . .
Sárközy [62] determined all multiplicative functions f which satisfy a linear

recurrence of finite order. They are, in general, of the form nhχ(n) where h is a non-
negative integer and χ is a character. Let A∗ denote the set of strictly multiplicative
arithmetical functions f which satisfy a linear recurrence of finite order, are not
identically zero, and satisfy f(n) = o(n). He proved that f is in A∗ if and only if
there is a positive integer m such that f is a character modulo m. (Earlier Lovász,
Sárközy and Simonovits [42] characterized additive arithmetical functions satisfying
a linear recurrence of finite order.)

In a series of papers András investigated the arithmetical character of sumsets.
Let N be a positive integer and let A and B be subsets of {1, . . . , N}. In 1984 Balog
and Sárközy [7] proved, by means of the large sieve inequality, that if

|A| >> N and |B| >> N(2)

then there exist a in A and b in B with

P (a+ b) >> N/ logN.

They also proved [8], under the same assumption, that there exist a1 in A and b1
in B and a prime p such that p2 | a1 + b1 and

p2 >> N/(logN)7.

For the proof they employed the circle method. In 1986 and 1988 Sárközy and
Stewart [65, 67] used the circle method to sharpen these results. They proved that
if k is a positive integer and (2) holds, then there exist a in A and b in B and a
prime p such that pk divides a+ b and

pk >>k N.(3)
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In 1992 Ruzsa [56] gave a new proof of (3) for the case when k = 1.
The general philosophy behind results of this sort is that if A and B are

sufficiently dense subsets of {1, . . . , N} then arithmetical properties of the sums a+b
should mirror those of the first 2N integers. With this in mind, it is reasonable to
ask if an Erdős–Kac theorem holds for the sums a + b. In 1987 Erdős, Maier and
Sárközy [16] established such a result. For any positive integer n let ω(n) denote
the number of prime factors of n. They proved that

1
|A||B|

∣∣∣∣{(a, b) :
ω(a+ b)− log logN

(log logN)1/2 < x, a ∈ A, b ∈ B
}∣∣∣∣

is asymptotic to

1√
2π

∫ x

−∞
e−u

2/2du,

provided that

|A||B|
N2/(log logN)1/2 →∞ as N →∞.

Both Elliott and Sárközy [15] and Tenenbaum [69] have extended this result.
While the above results treat the average behaviour of ω(a+ b) one may also

investigate the extreme values assumed by ω(a+ b). If (2) holds then it follows from
(3) that

min
a∈A, b∈B

ω(a+ b) = O(1).

What can be said about large values of ω(a+ b)?
Let m(N) denote the largest integer m for which the product of the first m

primes is at most N. Thus

m(N) = max{ω(k) : k ≤ N}.

In 1993 Erdős, Pomerance, Sárközy and Stewart [17] proved the following. For any
real number x let [x] denote the greatest integer less than or equal to x. Let ε be a
positive real number and suppose that A and B are subsets of {1, . . . , [N/2]} with

|A||B| > εN2.

There exist positive numbers c(ε) and N0(ε), which depend on ε such that if N
exceeds N0(ε) then there exist a in A and b in B with

ω(a+ b) > m(N)− c(ε)
√
m(N).(4)

Further (4) is best possible up to replacing
√
m(N) by

√
m(N)/ logm(N). One of

the ingredients in the proof is a result of Katona on the intersection of subsets of a
set.
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This brings me to the next two pictures. We were working on the above paper
in the winter of 1991. András and Carl Pomerance were both visiting Waterloo and
we decided to do some ice fishing. Picture 2 shows András on the ice of Lake Simcoe
surrounded by ice fishing huts. Picture 3 shows Carl and András fishing in one of
the huts. Alas, our catch that day was the empty set.

Let A = {a1, a2, . . . } be a set of positive integers and put A = Z+\A. As
before, for N in Z+ put

A(N) = |A ∩ {1, . . . , N}|
and

A(N) = |A ∩ {1, . . . , N}|.
For each positive integer n let R(n) (= RA(n)) denote the number of solutions of

ai + aj = n with i ≤ j.
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Suppose a1 < a2 < . . . . In a series of papers [19, 20, 21, 22, 23] Erdős, Sárközy
and Sós investigated the behaviour of the function R(n) and two related counting
functions. They proved that any smooth function in the appropriate range can be

realized as a counting function RA for some set A up to a small error and they gave
limitations on the size of the error. They also studied when R(n) is monotone and
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when R(n)−R(n− 1) is bounded. For instance they proved that if

lim
N→∞

A(N)
logN

=∞

then there is no positive number C such that

R(n+ 1) ≥ R(n) for n > C.

Balasubramanian [4] gave an independent proof of this result. Further, A is said
to be a Sidon sequence if R(n) is at most 1 for all positive integers n. They proved
that if A is an infinite Sidon sequence then there exist infinitely many integers k for
which R(2k) = 1 and R(2k + 1) = 0.

In 1992 [64] András proposed the study of the arithmetical character of inte-
gers of the form ab+ 1 where a is from A and b is from B where A and B are dense
subsets of the first N integers. In this case the expectation is that the properties of
the terms ab+ 1 should be similar to those of the first N2 + 1 positive integers and
results of this sort have been established. Furthermore, just as in the additive case,
it is possible to prove some results when no restriction is placed on the density of
the sets A and B. For instance, in 1996, Győry, Sárközy and Stewart [38] proved
that if A and B are finite sets of positive integers with |A| ≥ |B| ≥ 2 then there
exists an effectively computable positive number c such that

ω

 ∏
a∈A, b∈B

(ab+ 1)

 > c log |A|.

The proof relies on estimates for the number of solutions of S-unit equations due
to Evertse. In addition, they proved that there are large sets A and B for which
all expressions of the form ab+ 1 have small prime factors. Let ε be a positive real
number and suppose that k and ` are positive integers with

k ≥ 16 and 2 ≤ ` ≤
(

log2 k

log3 k

)1/2

.

There exists a positive number C(ε), which depends on ε, such that if k exceeds
C(ε) then there are sets of positive integers A and B with |A| = k and |B| = ` for
which

P

(∏
a∈A

∏
b∈B

(ab+ 1)

)
< (log k)`+1+ε.

The additive analogue of this result is due to Erdős, Stewart and Tijdeman [34].
In this context Győry, Sárközy and Stewart [38] made the following conjecture.

Conjecture. Let a, b and c denote distinct positive integers. If max(a, b, c)→
∞ then

P ((ab+ 1)(bc+ 1)(ca+ 1))→∞.
While the conjecture remains open, Győry and Sárközy [37] proved in 1997
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that it holds if at least one of a, b, c, ab ,
b
c and c

a has bounded prime factors. Bugeaud
[12] later gave a quantitative form of this result. Also in 1997 Stewart and Tijdeman
[68] showed that the conjecture holds if (loga)/ log(c+ 1) tends to infinity.

For any positive integer n let p(n) denote the number of partitions of n. In
papers from 1921 and 1926 MacMahon [43, 44] developed efficient methods for cal-
culating the parity of p(n). During this period Ramanujan determined congruences
that hold for p(n) with respect to other moduli such as 5, 7 and 11. However it
was not known that p(n) is even for infinitely many integers n or that p(n) is odd
for infinitely many integers n until the work of Kolberg [41] in 1959. Mirsky [48],
in 1983, was the first to give a quantitative form of Kolberg’s result. His result
was sharpened by Nicolas and Sárközy [50] in 1995. They proved that there exist
positive numbers C and c such that if N exceeds C then

|{n : p(n) ≡ 0(mod 2), n ≤ N}| > (logN)c

and

|{n : p(n) ≡ 1(mod 2), n ≤ N}| > (logN)c.

A significant improvement of these estimates was obtained by Nicolas, Ruzsa and
Sárközy [49] three years later. They proved that there exist positive numbers C1
and C2 such that if N exceeds C1 then there are at least C2N

1/2 positive integers
n up to N for which p(n) is even. Further, for each positive real number ε there is
a number C3(ε) such that if N exceeds C3(ε) then there are at least

N1/2 exp(−(log 2 + ε) logN/ log logN)(5)

positive integers n up to N for which p(n) is odd. The proofs of these results
are elementary in character. Serre [49] gave a different proof of the first assertion
by making quantitative a theorem of Ono [51]. The proof relies on the theory of
modular forms. Ahlgren [1] gave a quantitative version of Ono’s theorem for odd
values of the partition function and was able to sharpen (5) to cN1/2/ logN for
some positive number c, see also Ono [52].

The final aspect of András’ work that I wish to discuss concerns finite pseu-
dorandom binary sequences. Let N be a positive integer and let EN = (ε1, . . . , εN )
be a binary sequence with εi in {−1, 1} for i = 1, . . . , N. Put

U(EN , t, a, b) =
t∑

j=1

εa+jb.

The well distribution measure W (EN ) of EN is given by

W (EN ) = max
a,b,t
|U(EN , t, a, b)|

where the maximum is taken over all triples (a, b, t) with a an integer, b and t
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positive integers and 1 ≤ a+ b ≤ a+ tb ≤ N. Next let k and M be positive integers
and let D = (d1, . . . , dk) with d1, . . . , dk integers satisfying 0 ≤ d1 < · · · < dk. Put

V (EN ,M,D) =
M∑
n=1

εn+d1 · · · εn+dk .

The correlation measure Ck(EN ) of order k of EN is defined as

Ck(EN ) = max
M,D
|V (EN ,M,D)|,

where the maximum is taken over all D and M such that M + dk is at most
N. Mauduit and Sárközy [46] introduced the well distribution measure and the
correlation measure as tests for randomness. The objective is to find sequences for
which W (EN ) and Ck(EN ) are small for small positive integers k. Such sequences
are called pseudorandom. Niederreiter had earlier introduced a different measure of
randomness based on ideas from the theory of uniform distribution.

Mauduit and Sárközy [46] proved that if p is a prime number and N = p− 1
then the sequence

EN =
{(

1
p

)
,

(
2
p

)
, . . . ,

(
N

p

)}
,

where
(
i
p

)
is the Legendre symbol for i modulo p, satisfies

W (EN ) << N1/2 logN and Ck(EN ) << kN1/2 logN,

and so is a “good” pseudorandom sequence. The proof of these results depends
on Weil’s theorem. Mauduit and Sárközy [47] also gave estimates for W (EN ) and
Ck(EN ) when EN is an initial segment of such well known sequences as the Cham-
pernowne sequence, the Rudin–Shapiro sequence and the Thue–Morse sequence. In
addition Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy [13] studied a sequence
generated by the Liouville function λ. For each positive integer n let Ω(n) denote
the number of prime factors of n counted with multiplicity. The Liouville function
is λ(n) = (−1)Ω(n). Put

LN = (λ(1), . . . , λ(N)).

While the expectation is that the sequence behaves like a random sequence, this is
very difficult to show. They were able to show, subject to the generalized Riemann
hypothesis, that for each positive number ε there is a positive number N1(ε) such
that if N exceeds N1(ε) then

W (LN ) < N5/6+ε.
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Let me conclude with a picture showing that some of our fishing expeditions
have been successful and with a wish for András on his sixtieth birthday that he
catch many more tasty fish and that he prove many more great theorems.
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[15] P. D. T. A. Elliott and A. Sárközy, The distribution of the number of prime
divisors of sums a+ b, J. Number Theory 29 (1988), 94–99.
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[18] P. Erdős and A. Sárközy, On the divisibility properties of sequences of integers,
Proc. London Math. Soc. 21 (1970), 97–101.
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