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ON THE GREATEST PRIME FACTOR OF INTEGERS OF THE
FORM ab+ 1

C. L. Stewart (Waterloo)

Dedicated to Professor András Sárközy on the occasion of his 60th birthday

Abstract

Let N be a positive integer and let A and B be dense subsets of {1, . . . , N}.
The purpose of this paper is to establish a good lower bound for the greatest prime
factor of ab+ 1 as a and b run over the elements of A and B respectively.

1. Introduction

Let N be a positive integer and let A and B be subsets of {1, . . . , N}. A basic
question of combinatorial number theory is the following. What can be deduced
about the arithmetical character of integers of the form a+b with a in A and b in B
from information about the cardinalities ofA andB? There is an extensive literature
addressing this problem, see, for example, [1, 2, 3, 4, 5, 10, 16, 17, 21, 22, 23, 24],
with the work of Sárközy being of central importance.

For any set X let |X | denote the cardinality of X and for any integer n, larger
than one, let P (n) denote the greatest prime factor of n. Let ε be a positive real
number and suppose that

|A| > εN and |B| > εN.(1)

For example, in 1986, Sárközy and Stewart [22] proved, by means of the Hardy–
Littlewood method, that there is a positive number C(ε), which is effectively com-
putable in terms of ε, such that if (1) holds then there exist integers a in A and b
in B with

P (a+ b) > C(ε)N.(2)

In 1992 Ruzsa [17] gave a different proof of (2). Notice that a + b is at most 2N
and so estimate (2) is best possible up to a determination of C(ε).

Research supported in part by Grant A3528 of the Natural Sciences and Engineering
Research Council of Canada.

Mathematics subject classification numbers: primary 11N36; secondary 11L05.
Key words and phrases: greatest prime factor, Selberg’s sieve, Kloosterman sums.

0031-5303/01/$5.00 Akadémiai Kiadó, Budapest
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The multiplicative analogue of our original question is one in which integers
of the form a + b are replaced by integers of the form ab + 1. Recently there has
been much work on this question, see, for example, [9, 19, 20, 25]. For the additive
case a+ b is at most 2N, whereas in the multiplicative case ab+ 1 may be as large
as N2 + 1. In [25], Sárközy and Stewart made the following conjecture.

Conjecture. For each positive real number ε there are positive real numbers
N0(ε) and C1(ε) such that if N exceeds N0(ε) and (1) holds, then there are a in A
and b in B with

P (ab+ 1) > C1(ε)N2.

We were not able to prove the conjecture. However we were able to prove the
following result by means of an argument related to those used by Gallagher [7],
Ruzsa [17], and Chebyshev [15].

Put

Z = min(|A|, |B|).(3)

For each positive real number ε there are numbers N1(ε) and C2(ε) which are
effectively computable in terms of ε such that if N exceeds N1(ε) and

Z > C2(ε)
N

logN
,(4)

then there are a in A and b in B such that

P (ab+ 1) > (1− ε)Z logN.(5)

The main purpose of this paper is to show that we can strengthen (5) consid-
erably provided that we restrict the range given by (4) for Z.

Theorem 1. Let N be a positive integer, let A and B be subsets of {1, . . . , N}
and put Z = min(|A|, |B|). There are effectively computable positive numbers c1, c2
and c3 such that if N exceeds c1 and

Z > c2
N√

(logN)/ log logN
,(6)

then there are a in A and b in B such that

P (ab+ 1) > N1+c3(Z/N)2
.(7)

Our proof of Theorem 1 will employ a strategy first introduced by Hooley
for his proof [13] that P (n2 + 1) exceeds n11/10 for infinitely many integers n. In
particular we will make use of estimates for Kloosterman sums as well as Selberg’s
upper bound sieve. Our application of Selberg’s upper bound sieve will be similar
to that of Greaves [8] in that we will be sieving a subset of Z× Z and not a set of
integers; here Z denotes the set of integers.

For positive integers N and t we put

Ut(N) = {(m,n) ∈ Z× Z | 1 ≤ m ≤ N, 1 ≤ n ≤ N, t | mn+ 1}.
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Our plan is to sieve sets of the form Ut(N) and so we require a sharp estimate
for the cardinality of such sets. Of course if t divides N then we may decompose
{(m,n) | 1 ≤ m, n ≤ N} into (N/t)2 blocks consisting of the Cartesian product of
two complete sets of residues modulo t. Thus if t divides N, |Ut(N)| = ϕ(t)(N/t)2.
In general we deduce that

|Ut(N)| = ϕ(t)
(
N

t
+O(1)

)2

=
ϕ(t)
t2

N2 +O(N).(8)

However, such a result is not sufficiently precise for our purpose. To obtain a sharper
estimate we appeal to Weil’s estimates for Kloosterman sums [27]. For any positive
integer n let d(n) denote the number of divisors of n.

Theorem 2.

|Ut(N)| = ϕ(t)
t2

N2 +O

(
t1/2d(t)3/2(log t)2 +

Nd(t) log t
t

)
.(9)

The above improvement on (8) allows us to sieve Ut(N) when t is as large as
N . For the proof of Theorem 1 it would have sufficed to establish (9) with t1/2 in
the O-term replaced by tβ for any real number β with β < 1.

2. Proof of Theorem 2

Denote e2πix by e(x). For each integer a

t−1
∑

− t2<g≤ t2

e(ga/t) =

{
1 if t | a,
0 otherwise.

Thus

|Ut(N)| = 1
t2

∑
− t2<g,h≤

t
2

∑
1≤a,b≤t

ab≡−1(mod t)

∑
1≤m,n≤N

e

(
g(m− a) + h(n− b)

t

)
.

For each integer a coprime with t let a denote the integer from {1, . . . , t} for which
aa ≡ 1 (mod t). We have

|Ut(N)| = 1
t2

∑
− t2<g,h≤ t2

t∑
a=1

(a,t)=1

∑
1≤m,n≤N

e

(
g(m− a) + h(n+ a)

t

)
.(10)

For integers g and h we put

S(g, h; t) =
t∑

a=1
(a,t)=1

e

(
ga+ ha

t

)
.(11)
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It follows from (10) and (11) that

|Ut(N)| = 1
t2

∑
− t2<g,h≤ t2

S(−g, h; t)
∑

1≤m,n≤N
e

(
gm+ hn

t

)
.(12)

The terms with g = h = 0 contribute N2ϕ(t)/t2 to the right hand side of (12).
Thus, we have

|Ut(N)| −N2ϕ(t)/t2 = L1(N, t) + L2(N, t) + L3(N, t)(13)

where

L1(N, t) =
1
t2

 ∑
− t2<g,h≤ t2

gh6=0

S(−g, h; t)
∑

1≤m,n≤N
e

(
gm+ hn

t

) ,

L2(N, t) =
N

t2

 ∑
− t2<g≤ t2
g 6=0

S(−g, 0; t)
∑

1≤m≤N
e
(gm
t

)
and

L3(N, t) =
N

t2

 ∑
− t2<h≤ t2
h6=0

S(0, h; t)
∑

1≤n≤N
e

(
hn

t

) .

Employing the inequality∑
1≤m≤N

e
(gm
t

)
= O

(
t

|g|

)
for 1 ≤ |g| ≤ t

2

we deduce that

L1(N, t) =
1
t2

 ∑
− t2<g,h≤ t2

gh6=0

S(−g, h; t)

 ∑
1≤m≤N

e
(gm
t

) ∑
1≤n≤N

e

(
hn

t

)


= O

 ∑
− t2<g,h≤ t2

gh6=0

|S(−g, h; t)|
|g||h|

 ,

L2(N, t) = O

N
t

∑
1≤|g|≤ t2

|S(−g, 0; t)|
|g|


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and

L3(N, t) = O

N
t

∑
1≤|h|≤ t2

|S(0, h; t)|
|h|

 .

It follows from a result of Estermann [6], based on the estimates of Weil [27] and a
result of Salié [18] that

|S(−g, h; t)| ≤ d(t)t1/2((h, t))1/2,

see, for example, (70) of [14]. Thus

L1(N, t) = O

 ∑
− t2<g,h≤

t
2

gh6=0

d(t)t1/2(h, t)1/2

|g||h|



= O

d(t)t1/2 log t
∑

− t2<h≤ t2
h6=0

(h, t)1/2

|h|

 .

Since ∑
1≤h≤ t2

(h, t)1/2

h
=
∑
d|t

∑
1≤h≤ t2
(h,t)=d

√
d

h
≤
∑
d|t

∑
1≤k≤ t

2d

1√
dk

= O

∑
d|t

log t√
d

 = O

log t
d(t)∑
n=1

1√
n


= O(d(t)1/2 log t),

we find that

L1(N, t) = O(t1/2d(t)3/2(log t)2).(14)

By Theorem 272 of [12], |S(−g, 0; t)| ≤ (g, t) and so

L2(N, t) = O

(
N

t

t∑
g=1

(g, t)
g

)
.

We have
t∑

g=1

(g, t)
g

=
∑
d|t

t∑
g=1

(g,t)=d

d

g

≤
∑
d|t

t
d∑

k=1

1
k

= O(d(t) log t).



86 c. l. stewart

Therefore

L2(N, t) = O

(
Nd(t) log t

t

)
.(15)

In a similar fashion we deduce that

L3(N, t) = O

(
Nd(t) log t

t

)
.(16)

Theorem 2 now follows from (13), (14), (15) and (16).

3. Preliminary lemmas

Let N be a positive integer, let A and B be subsets of {1, . . . , N} and put
Z = min(|A|, |B|). Define E by

E =
∏

a∈A, b∈B
(ab+ 1)(17)

and put

E1 =
∏
p≤N

pordpE ,(18)

where the product is taken over primes p up to N and ordp denotes the p-adic order.

Lemma 1. Let ε > 0. There exists a positive number N0(ε), which is effec-
tively computable in terms of ε, such that for N > N0(ε),

logE1 < (1 + ε)Z2 logN.

Proof. This follows from the proof of Theorem 2 of [25], see 4.14 of [25].

Let t be a positive integer. We define ft(d) for each positive integer d by

ft(d) =
d∏

p|d
p-t

(
1− 1

p

) .
Observe that ft(d) is multiplicative and, for each positive integer n, put

gt(n) = ft(n)
∏
p|n

(
1− 1

ft(p)

)
.

Since

ft(p) =

{
p if p | t
p2

p−1 if p - t,
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we see that

gt(n) = n
∏
p|n
p|t

(
1− 1

p

) ∏
p|n
p-t

(
1 +

1
p(p− 1)

)
.(19)

For each integer z with z ≥ 2 and each positive integer t, we put

Vt(z) =
∑
n≤z

µ2(n)
gt(n)

.(20)

Let t and N be positive integers and let z be an integer with 1 ≤ z ≤ N . We
put Ut(N, z) = {(m,n) | 1 ≤ m ≤ N, 1 ≤ n ≤ N, t | mn + 1, all prime factors of
(mn+ 1)/t exceed z}.

Lemma 2. Let ε be a positive real number and let N, t and z be positive
integers with t > N2/3 and z ≥ 2. Then

|Ut(N, z)| ≤ N2ϕ(t)
Vt(z)t2

+Oε
(

(t1/2z3)1+ε
)
.

Proof. We shall estimate |Ut(N, z)| by means of Selberg’s upper bound sieve
[26], (see also [11] and [14]). We shall follow the approach taken in Chapter 1,
Section 2 of [14].

For each real number z with z ≥ 2 we sieve the set Ut(N) by the primes p up
to z. In other words, for each prime p we remove the pairs (m,n) from Ut(N) for
which p divides (mn+ 1)/t. The set remaining is Ut(N, z).

Note that by Theorem 2, for each positive integer d,

|Utd(N)| = |Ut(N)|
ft(d)

+Rd

where, since t > N2/3,

Rd = Oε

(
(td)1/2+ε

)
.(21)

Take

λd =
ft(d)
Vt(z)

∑
sd≤z

µ(s)µ(sd)
gt(sd)

,

for 1 ≤ d ≤ z. By Selberg’s upper bound sieve, see (11), (15) and (16) of Chapter 1
of [14],

|Ut(N, z)| ≤ |Ut(N)|
Vt(z)

+O

 ∑
d1,d2≤z

|λd1 ||λd2 ||R[d1,d2]|

 ,(22)
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where [d1, d2] denotes the least common multiple of d1 and d2. By (18) of Chapter 1
of [14], |λd| ≤ 1 and so by (21),

∑
d1,d2≤z

|λd1 ||λd2 ||R[d1,d2]| = Oε

 ∑
d1,d2≤z

(td1d2)1/2+ε


= Oε

(
(t1/2z3)1+ε

)
,

and the result now follows from (22).

4. Proof of Theorem 1

Let ε be a positive real number and let N0, N1, . . . denote positive numbers
which are effectively computable in terms of ε. Define E by (17) and E1 by (18)
and put E2 = E/E1. The proof proceeds by a comparison of estimates for E.

Clearly

E ≥
∏
a∈A
a≥ εZ10

∏
b∈B
b≥ εZ10

((
εZ

10

)2

+ 1

)

≥
(
εZ

10

)2(|A|− εZ10 )(|B|− εZ10 )
≥
(
εZ

10

)2(1− ε
10 )2

Z2

.

Thus, by (6),
logE > (2− ε)Z2 logN,

for N > N0. By Lemma 1

logE1 < (1 + ε)Z2 logN,

for N > N1, hence, for N > N2,

logE2 > (1− 2ε)Z2 logN.(23)

Let P denote the greatest prime factor of E. Then

E2 ≤
∏

N≤p≤P
pordpG,(24)

where

G =
∏

1≤m,n≤N
(mn+ 1).(25)

Put P = NY and note that∑
N<p≤NY

ordpG log p =
∑

N<p≤NY

∑
1≤m,n≤N
p|mn+1

log p.(26)
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Observe that

(27)

∑
N<p≤NY

∑
1≤m,n≤N
p|mn+1

mn+1≤ N2

(logN)2

log p ≤ 2
∑

1≤m,n≤N
mn+1≤ N2

(logN)2

logN

= O(N2) = o(Z2 logN),

and so, by (23), (24), (25), (26) and (27), for N > N2,∑
N<p≤NY

∑
1≤m,n≤N
p|mn+1

mn+1> N2

(logN)2

log p > (1− 3ε)Z2 logN.(28)

Put

St(N) =
∑

1≤m,n≤N
mn+1=tp
N<p≤NY

mn+1> N2

(logN)2

1.

If Y > N1/4 the result holds and so we may suppose that Y ≤ N1/4. Then, by (28),∑
N

Y (logN)2
<t≤N

log
(
N2 + 1

t

)
St(N) > (1− 3ε)Z2 logN,

and so, for N > N3, ∑
N

Y (logN)2
<t≤N

St(N) >
Z2

3
.(29)

For each real number z with 2 ≤ z ≤ N,

St(N) ≤ |Ut(N,N)| ≤ |Ut(N, z)|.(30)

Let c4, c5, . . . denote effectively computable positive numbers. It follows from
(19) that

gt(n) ≤ c4n,

hence, by (20), that

Vt(z) > c5 log z.(31)

We now apply Lemma 2 with z = N1/7 and ε = 1
20 to conclude, from (30) and (31),

that for N > N3 and N
Y (logN)2 < t ≤ N,

St(N) < c6
N2ϕ(t)

(logN)t2
,
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and so

(32)

∑
N

Y (logN)2
<t≤N

St(N) < c6
N2

logN

∑
N

Y (logN)2
<t≤N

1
t

< c7
N2

logN
(logY + log logN).

Now provided that c2 in (6) is chosen to exceed (6c7)
1
2 we find that

c7
N2 log logN

logN
<
Z2

6

and so, from (29) and (32),

Z2 < 6c7N2(logY )/ logN.

Therefore

Y > N c8(Z/N)2

and this completes the proof since P = NY .
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[3] A. Balog and A. Sárközy, On sums of sequences of integers, III, Acta Math. Hung.
44 (1984), 339–349.
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