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ON SUMS WHICH ARE POWERS

K. GYARMATI, A. SARKOZY* (Budapest) and C. L. STEWART' (Waterloo)

Abstract. The cardinality of sets A is estimated under the conditions that
every element of the sum set A + A is a power resp. powerful number (n is said
to be powerful if p | n implies p? | n). Subset sums with these properties are also
studied.

1. Introduction

Let N denote the set of positive integers and let Q denote the set of
rational numbers. For any subset A of N denote the set of subset sums of A
by P(A). Thus

P(A) = { Zeaa: ea=00r1,0< Zsa < oo}.
acA acA
Denote the set of the powers by V, so that
V={aF:zeN, keN, k>2},

and for each integer K, larger than one, put

Vi ={aF: 2N, keN, 2<k< K}
Let W be the set of the powerful numbers, so that

W ={n:n €N, p|n implies p? | n}.
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Diophantus initiated the study of sequences a1 < ag < --- with the prop-
erty that a;a; + 1 is a square for all 1 < ¢ < j. Later this problem was also
studied by Fermat, Euler, Straus and others, and recently Dujella [2] proved
that if A is a set of positive integers with this property, then 4 must be finite
and, indeed, |A| £ 9. Erdés and Moser [3] investigated the additive analogue
of the problem. They studied sequences a; < as < --- with the property that
a; + a;j is a square for ¢ # j. Rivat, Sarkozy and Stewart [12] proved that if
A ={a1,a,...} is a set with this property and A C {1,2,..., N} then, for
N large enough,

(1.1) |A| < 37log N.

Gyarmati [7] has examined generalizations of the problems of Diophantus
and Erdés and Moser.

In this paper we shall study sequences a; < ag < --- with the property
that a; + a; is always a power and sequences for which a; + a; is always pow-
erful, see [14] where the latter problem was first proposed. In [8] we treated
the case where a;a; + 1 is always a power. We proved the following. Let N
be a positive integer and A a subset of {1,..., N}. Let K be an integer with
K 2 2. If ad’ +1 is in Vi whenever a and o’ are distinct integers from A,
then

K2
(1.2) |A| <160 ———= loglog N,
(log K)

for N sufficiently large. Further if aa’ + 1 is in V' whenever ¢ and a' are
distinct integers from A, then

(1.3) |A| < 340(log N)?/loglog N,

for N sufficiently large.
We shall establish first the additive analogues of (1.2) and (1.3).

THEOREM 1. There is an absolute constant ¢y such that if N and K are
integers larger than 1, A is a subset of {1,2,...,N} and

(1.4) a+a €Vg forall ac A, d €A, a#d,
then
(1.5) |A| < ¢1¢*% log N.

Note that apart from the value of the constant factor on the right hand
side of (1.1), this includes (1.1) as a special case.
Replacing Vi by V, we can prove:
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THEOREM 2. There is an absolute constant ca such that if N is a positive
integer larger than 1, A is a subset of {1,2,...,N} and

(1.6) at+a €V foral acA d €A a#d,
then
(1.7) |A| < ez(log N)™.

Note that since Vix € V for all K, thus (1.7) also holds for sets A satis-
fying (1.4). This new upper bound (1.7) is superior to (1.5) in Theorem 1
for K > loglog N.

We will also give a lower bound:

THEOREM 3. There is a number Ny such that if N is a positive integer
larger than Ny, then there is a subset A of {1,2,..., N} with

|.A|Z[ loglog N ]

4logloglog N

which satisfies (1.6).
In case of infinite sets A £ N the situation is different:
THEOREM 4. There is no infinite set A S N satisfying (1.6).

Counsidering now the powerful numbers, we will prove the following lower
bound.

THEOREM 5. There is a number Ny such that if N is a positive integer
larger than Ny, then there is a subset A of {1,..., N} with

1
(1.8) |A| > glogN

and for which

(1.9) a+ad €W foral a€A, d €A

On the other hand we have not been able to give any reasonable upper
bound for the cardinality of sets A C {1,2,..., N} satisfying (1.9). Thus
here we will study the easier problem where the sums are replaced by subset
sums. Let F(IN) denote the largest cardinality of a subset A4 of {1,2,..., N}
for which P(A) C W.

THEOREM 6. Let N be an integer larger than 3. There are positive ab-
solute constants cs, ¢4 so that

(1.10) cs(log N)Y? < F(N) < es(log N)*(loglog N)~1/2.
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2. Lemmas

In order to prove Theorem 1 we need several lemmas.

LEMMA 1. If p is a prime, x is a multiplicative character mod p which
is not the principal character, and A,B C {1,2,...,p}, then we have

3 Y xla+b)| < (plAl1B]) 2.
ac A beB

PRrROOF. This is a result of Erdés and Shapiro [4].
In Lemma 2 and its proof, ¢, q1, g2, ... will denote primes.

LEMMA 2. Let K be an integer with K 2 2 and put Qg = [] q. Assume
=K
that p is a prime with
(2.1) p=1 (mod Qk).

Let B be a set of integers such that whenever b and V' are distinct ele-
ments of B, then b Z b' (mod p) and there exists an integer k with 2 < k < K
and an integer = for which

(2.2) b+t =zF (mod p).

Then there is a positive absolute constant cs such that

(2.3) 1B| < c5(log K)2m(K)pl/2,
PROOF. If (2.2) is solvable, then

(2.4) b+t =y? (mod p)

is also solvable with some prime ¢ | £ where ¢ £ £ < K. For a prime ¢ and
n € Z, define fy(n) by fy(n) =1 if

(2.5) z¥=n (mod p)
is solvable and f,(n) = 0 if (2.5) is not solvable. Then for n € Z we have

[T (1-fm) =

25¢SK

0 if (2.5) is solvable for some g with 2 < ¢ £ K,
1 otherwise.
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Thus writing

(2.6) Fem)=1- J] (1-f,n),

25¢SK

we have

Fie(n) 1 if (2.5) is solvable for some ¢ with 2 < ¢ £ K,
n)=
K 0 otherwise.

By our assumption on B, it follows that

(2.7) SN Fr(b+b)z Y 1=[B*—B.
beB veB b,t'eB
b£b

If ¢ is a primitive root modulo p and ¢ is a prime with ¢ £ K, then let
Xq(n) denote the uniquely determined character modulo p defined by

Xql9) =€ (é) ;

note that by ¢ £ K and (2.1) we have ¢ | p — 1 thus there is such a character
modulo p. This is a character of order ¢, thus for (n,p) = 1 clearly we have

(2.8) - (for (n,p) =1).

'-Q

—
Q

I ¥

o

It follows from (2.6) and (2.8) that

w(K) 4
(2.9) Fg(n)=Y_ (=)™ > [[fa(m
=1 q1<...<q€§[(i:1
m(K) - Q-1 q—1
=2 0T X (n
=1 @< <q<K Ci=0 =0

for (n,p) = 1. Thus denoting this last expression (for all n) by F*(n), we
have

Frg(n) = Fg(n) for (n,p)=1
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and clearly
Fg(n)=1 and Fg(n)=0 for p|n.
It follows that

(2.10) SN Frb+V) =) > Fr+b)+ > L

beB b EB beB b EB bb'eB
p|b+b’

For all b € B there is at most one b' with p | b+ b, thus it follows that

SN Fe+¥) Y > Fr(b+V) + 18]

beB bV eB beB VeB

Now consider the characters ¢ = xJt -~ xJ in (2.9). We have

¥(9) = (X0 (9)” -+ (xau(9)) " = (j—l +o ot j—é> :

q1 qe

and for 0 < j1 < gq1,...,0 £ jy < g, clearly we have L + .. + I € Z, hence
1 is the principal character modulo p, if and only if j; =--- = 5, = 0. Thus
separating out the contribution of the principal character modulo p we obtain

w(K)
211) > N Fre+v)=> (-t Y ! Yoo
beB beB =1 g<eq<k B e

(b+b',p)=1

7(K)

YT Y e Y Y S0 b)

/=1 @a<-<q<K 0<515q1,..,0<5,<q, bEB b EB
(J15+5J0)#(0,...,0)

Here we have

wn (1) 3 el I )
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Moreover, in ), none of the characters X‘Zﬁ e X‘,% is the principal character.
Thus, by Lemma 1, we have

(2.13) ‘22‘
DI >

q1---qe . )
<K 0=51541,...,0550Sqp
(J15+530)#(0,...,0)

I S B
<@ <K

m(K)
<
> o

I qi<<qiK 0=515q1,..,055,Zqe
(J15--30)#(0;-..,0)

m(K)
<p2BI Y. > 1<pt?Bj2r®

Z Z Xtthz ’ Xt]z(b + b,)

beB VeB

By (2.7), (2.10), (2.11), (2.12) and (2.13) we have

—1BISY Y Fxb+0)<s)y +)  +IB]

beB b'eB

< (1— 1T (1—5))|B| +p?|B27) + |B|

4K

whence

11 (1 - é) 1B| < pt/22m(E) 4 9,

<K
By using Merten’s Theorem, (2.3) follows.

LEMMA 3. Let A be a set of integers in the interval [M + 1, M + N]. For
each prime p let v(p) denote the number of residue classes modulo p that
contain an element of A. Then for any finite set of primes P we have

> logp —log N
2.14 A<
2.14) A

s v(p)

provided that the denominator is positive.
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PRrROOF. This is Gallagher’s “larger sieve” [5].

We will also need the fact that in an arithmetic progression of modulus
q there are many relatively small primes (below ¢¢). This fact is closely
related to Linnik’s theorem on the least prime in an arithmetic progression
and, correspondingly, it can be derived from a result whose variants occur in
several papers dealing with Linnik’s constant. To formulate this result, we
need a formula of Turdn. Let k& = 2, and write

K(w) = ———, K;(w) = K(2wlogq)

and

1 —w
R(n) = Imi / K (w)n™" dw.
Rew=2

Then (see [10]) for all ¢ € N, ¢ = 2 we have

=0 if 1< n<g¢*4orn> gttt
(2.15) R(n) Co

if q4k—4 <n< q4k+47
log q

and for a € Z, (a,q) = 1,

(2.16) > A(n)R(n)n~!

RN s
—w(q)(l > Lo 1>)+o<q )

where for each character x (mod ¢), o, runs over the non-trivial zeros of
L(s,x).

LEMMA 4. There is a positive absolute constant c; such that for k 2 19,

S0 Y Koy~ 1| €30 X Koy - 1] <1
X Ox X Ox

PROOF. This is proved by Jutila in [10, pp. 59-61] (see also formula (23)
in [6]).
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LEMMA 5. There are absolute constants qq, cg such that if ¢ 2 qo, a € Z,
(a,q) =1 and

(2.17) z > q%,
then
1 1
(2.18) Yoo P 8
I ©(q)
p=a (mod q)

Note that the exponent in (2.17) could be improved upon by using more
recent works [1, 6, 9] on Linnik’s constant. However, from our point of view
this improvement is not significant.

PROOF. Define k to be the largest integer for which ¢*** < z so that
k=19 by (2.17). Thus by Lemma 4, for ¢ > ¢; the absolute value of the
right hand side of (2.16) is

1 _
(219) i G Yo S Aten - )+ 0l
L 20, _o b o
= o0 (1 ; QZXKI(QX I)D 27 e@T @ el

On the other hand, by (2.15) and (2.17) for ¢ > g9 the absolute value of
the left hand side of (2.16) is

—-1 Co A(n)
(2.20) > AmRn)n g g >
g tcn<gthte q%<n<m
n=a (mod q) n=a (mod q)
c lo lo c lo
il 2 ) D
& <p<z &<k S <p<z
p=a (mod q) p=a (mod q)
c11 logn Cs log p 1
+ > =< > + o
log g Jren " log g F P q
p=a (mod q)

For g > g2, (2.18) follows from (2.16), (2.19) and (2.20), and this com-
pletes the proof of Lemma, 5.
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3. Completion of the proof of Theorem 1

Assume that A satisfies (1.4). Thus if ¢ and @' are distinct elements of
A, there are positive integers z and k with 2 < k < K and

(3.1) a+d =z"
Let p be any prime satisfying (2.1), and define B, by
B, = {b: be{0,1,...,p—1}, 3 a € Asuch that a = b (mod p)}

Since (3.1) holds for all a,a’ € A, a # o' with some 2z € N and 2 <k < K,
thus B, satisfies the assumptions in Lemma 2 for each of these primes p. By
Lemma 2 it follows that (2.3) holds. Put |B,| = v(p) so that

(3.2) v(p) < c5(log K)2mH)pt/2

for all p satisfying (2.1).
As in the statement of Lemma 2, we put

QK:Hq7

<K

where the product is taken over primes g with ¢ < K.

Next write Z = CQ8(log N)? where C is a positive number larger than
3 which will be fixed later. Clearly we have

(3.3) 7> Q%.
Write

P={p:pprime,p< Z, p=1 (mod Qk)},
and observe that by (3.2) we have

log p 1 logp
(3.4) > C12
pEZP v(p) (log K)27(K) peZP pl/2

1 log p
=2 e
(log K)27(K) ;gz pl/2

p=1 (mod Qx)

1 logp ( Z )1/2
>Clo————~ — .
(log K)27(K) Z§p<z P Q%

Q5
p=1 I((mOd Qk)
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By (3.3), (2.17) in Lemma 5 holds with Qx and Z in place of ¢ and z, re-
spectively, so that we may use Lemma 5 to estimate the last sum in (3.4).
We obtain

Zlogp S 1 Z21og Qi
—= >c ¢
v(p) ~ " (log K)27 ) Qlep(Qxe)

peP

> 13O/ log Qk log log Q)

K 135
(log K)275) Q% log N.

Since for K — 0o we have Q = e(l+o()K

log Qi loglog QK 35 _ (35+0(1) K
(log K )27 (k) K '

It follows that if C' is large enough, then uniformly for K = 2 and N = 2 we
have

1
Z oBp > 234K Jog N

o vp)
whence
1
(3.5) Z ;(gpl)) —log N > &3 1og N > 0.

pEP

We are now in a position to apply Lemma 3. By the Brun—Titchmarsh
Theorem, the numerator in (2.14) is

(3.6) Z logp —log N < Z log Z < 2
pEP p<Z

p=1 (mod Qk)

A
— logZ
o(Qx)logZ °

log log Qi

< cuuld
. Qx

< 015Q}?(log N)2 loglog Qk < 616680K(log N)Z.

(1.5) follows from (2.14), (3.5) and (3.6), and this completes the proof of
Theorem 1.
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4. Proof of Theorem 2

Let A ={a1,a9,...,a:}, and write each a; in the (unique) form
(4.1) a; = 2% (4wi + ei)

log N }
log2 80

that in (4.1) we have 0 £ u; £ L. We will group the a;’s according to the

values of u; and e;, i.e., for 0 S u < L, e € {—1,+1} we write

where u;, w; are non-negative integers and e; € {—1,+1}. Set L = [

Awe =1ai: 1215t uy=u, e =e}.
Then we have
L
(42) A= U U A(u,e)
u=0 ec{—1,+1}
so that it remains to give an upper estimate for ‘A(u,e)‘ (for all u,e).

Fix u and e, and assume that a,a’ € A(,). Then by A, ) & A we have

a +a' €V so that there are integers =, k with a + o’ = z*. If ¢ is a prime

with ¢ | k (say, g is the smallest prime divisor of k), then, writing y = ¥/,
we have

(4.3) a+a =yl
Moreover, for all a,a’ € A(, ), clearly a +a’ can be written in the form
(4.4) a+a =22z 4+ 1).

It follows from (4.3) and (4.4) that

(4.5) q| (u+1).

Write

(4.6) Qu) = H q.
ql(u+1)

Now we will use an argument which is a variant of the proof of Theorem 1;
thus we will leave some details to the reader.
We will replace Lemma 2 by
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LEMMA 2'. Let u € N and define Q(u) by (4.6). Assume that p is a
prime with

(4.7) p=1 (mod Q(u)).
Let B be a set of integers such that whenever b and V' are distinct elements

of B, then b b (mod p) and there exists a prime q with q | (u+ 1) and an
integer y for which

b+t =y? (mod p).

Then there is a positive absolute constant c17 such that
1\ !
(4.8) 1B| < 720D ] (1 — —) p'/2.
q
q|(u+1)

PROOF. Replacing Qx by Q(u) in the proof of Lemma 2, in the same
way we obtain

(4.9) 1 (1 _ 1) IB| < pl/22¢it]) 4o
q
dl{ut)

(4.8) follows from (4.9), and this completes the proof of the lemma.
Now let p be any prime satisfying (4.7), and define B, by

B, = {b: be{0,1,...,p—1}, 3 a € A, such that a = b (mod p)}
Since (4.3) holds for all a,a’ € A(ye), @ # o' with some y € N and a prime

q satisfying (4.5), thus B, satisfies the assumptions in Lemma 2’ for each of
these primes p. By Lemma 2’ it follows that, writing |B,| = v(p) we have

-1
(4.10) v(p) =Byl < Cl?Qw(u—I—l) H (1 _ l) p1/2‘
ql(u+1)

Next we write Z(u) = C(Q(u)) 80(log N)? where C is a positive number
larger than 3 which will be fixed later. Clearly we have

(4.11) Z(u) > (Q(w) ™.

Write
Pu) = {p : p prime, p < Z(u), p=1 (mod Q(u)) }
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By (4.10) we have

logp —w(ut1) 1 logp
2 V(p)>c182 IT (! q 2 pl/?

pEP(u) al(u+1) pEP(u)
1/2
> cl82—(;.1(u—|—1) H (1 . l) Z logp ( Z(u) 8)
dewrn 1 s P\ (Qw)
2(w)/(Qw)) <p<z(u)
p=1 (mod Q(u))

By (4.11), (2.17) in Lemma 5 holds with Q(u) and Z(u) in place of ¢ and
x, respectively, so that we may use Lemma 5 to estimate the last sum. We
obtain

5P g wtutD) 1) (Z@) 105Q)
% )~ H)< q> Q)" “e(Q)

> cgeg2 0 o1/2 (Q(u)) % log Q(u) log N.

Since we have

2ot = ] 22 ¢ =Q(u),

thus it follows that

1
(4.12) 3 P e OV (Q(u) * log N

Now we fix C: we choose it so large (in terms of ¢g and ¢13) that the constant
factor in this lower bound is greater than 2. Then we obtain

Z logp > 2(Q(u)) i log N,

P v(p)
so that, by (4.12),
1
(4.13) Y P 1ogN > (Qw)* log N > 0.
ey v(p)
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Thus we may apply Lemma 3 with A, () and P(u) in place of A and P, re-
spectively. Then by the Brun-Titchmarsh Theorem, the numerator in (2.14)
is

(4.14) z logp —log N < Z log Z (u)
PEP(u) P=Z(u)
p=1 (mod Q(u))

Z(u)
¢(Q(u)) log Z(u)

It follows from (2.14), (4.13) and (4.14) that

<2 log Z(u) < 2Z(u) = 2C(Q(u)) * (log N)>.

(4.15) | Ao < c19(Q(w) *log N.

For all u £ L we have

(4.16) Quy= J] ¢Su+15L+1
gl(u+1)

Thus it follows from (4.15) that
(4.17) | Aue)| < c19(L +1)* log N.
By (4.2) and (4.17) we have

L
A=Y > el

u=0 ee{—1,+1}
L
< max e Y. D 1<en@+1)*(log N)2(L + 1)
’ u=0 ec{-1,+1}

log N
log 2

47
= 2019(L + 1)47 IOgN = 2619 <|: :| + 1) IOgN < 020(10g N)48

which completes the proof of Theorem 2.

We remark that while we cannot improve on Theorem 1 for “small” K
(say, K = o(loglog N)) and on the upper bound following from Theorem 2
under assumption (1.4) with “large” K (say, K > loglog N), a small im-
provement could be made on the exponent of log N in Theorem 2 assuming
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(1.4) with “medium size” K. This could be done replacing Q(u) in the proof
Theorem 2 by

ql(u+1)
gSK

and then instead of using a uniform (in u) upper bound of type (4.16) for
Qi (u), utilizing the fact that Qg (u) is “small” for a “random” v < L. How-
ever, this would make the proof more complicated and the improvement
obtained in this way is not very significant (more could be achieved by im-
proving on Lemma 5), thus we decided to present here only this simpler
version.

5. Proof of Theorem 3

Let us put A = {z,2z,3z,...,nz} where n = [41_100%8%]. We will fix the
value of z later. Then for all a,a’ € A we have a + da' € {22, 3z,...,2nz}.

Let p; denote the ¢-th prime number. Define the positive integer ¢ by
pe £ 2n < ppyq. For 1 £t < 2n — 1, write

t41= pf1,tp2ﬂ2,t . 'pfz,t

Qa2

and suppose that z is also of the form p{'p5? - - - p;*. Then (t+ 1)z is a p;-th
power for all 1 £¢ < 2n — 1 if and only if

(5.1) aj+ By =0 (modp;) for 1<iS¢, 1St<2n—1.
It follows from the Chinese Remainder Theorem that (5.1) has a solution in
(a1, @9, ...,ay) which is unique modulo pips - - pop—1. So we may assume
that a1, aq,...,ap satisfy (5.1) and
0 a; <pip2---pan1 for 12024
this defines 2. Then the sum of any two elements of A is a power and
0S5 ; <pip2- pon_1 <3P 1 < 63n10gn7
nr = np?lpgz .. p?l < n(ppo .. ‘pé)exp(i’m logn) < n3pP¢ exp(3nlogn)

< pg2nexpBnlogn) oy ( exp(4nlog n)) <N

for N large enough.
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6. Proof of Theorem 4

We will prove by contradiction: assume that, contrary to the assertion, there
is an infinite set A = {ay,az,...} € N satisfying (1.6). Write each a; in the
form

(6.1) a; =2%(2v; +1) (fori=1,2,...)

where u;, v; are non-negative integers. We have to distinguish two cases.

Case 1: the sequence {uj,us,...} is bounded. Then there is an integer
u which occurs infinitely many times in this sequence

(6.2) U =u

for infinitely many i € N. The set of the a;’s satisfying (6.2) contains an
infinite subset so the v;’s in the representation (6.1) are of the same parity.
Denote this subset of A by B = {b1, b, ...} so that

bi =2"(4w; +e) (fori=1,2,...)

where e € {—1,+1}. Then for all 1 ¢ < j, the sum b; + b; can be written
in the form

b; + bj = 2(u+1)(22 +1).

By B C A and (1.6) this sum must be a power; clearly, the exponent %k in
this power must satisfy & | (u + 1) so that k£ may assume only finitely many
values. Thus by the infinite Ramsey theorem [11], we may select an infinite
subset D = {di,do,...} & B (with d; <dy <...) so that each sum d; + d;
is a k-th power with the same exponent k. Write d; + d; = xf, di +dy = yf
(for i = 3,4,...). Then we have y¥ — 2% = dy — d, so that the equation

(6.3) yF—ab=dy—d; (>0)

has infinitely many solutions. But this is clearly impossible (since the differ-
ence between the consecutive powers tends to infinity), and this contradiction
completes the proof in Case 1.

Case 2: the sequence {u1,us,...} (defined by (6.1)) is not bounded.
Then we can select an infinite subset {a;,,a;,,...} of A so that u;, < u;, <
-+, Write a;; = bj, {b1,b2,...} =B (£ A), uj; = ¢; so that we have

(6.4) by =2%(2r;+1) (forj=1,2,...)
and
(6.5) G <q<--.
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Consider now the sums b; 4+ by and bj + by with j =3,4,... . By B £ A and
(1.6), these sums must be powers; by (6.4) and (6.5) the exponent of 2 in
the canonical form of these sums is g1, resp. ¢o, so that the exponent in both
powers b; + by and b; + by is at most go. Since these exponents are bounded,
by the pigeon hole principle there is a pair k, ¢ (with k,¢ = 2) and a subset
D ={di,dg,...} S {b3,ba,...} sothat d; + by and d; + by can be written in
the form d; + b = :1:5“, resp. d; + by = yf whence yf — wf = by — by, so that
the equation

(6.6) yr—zF =by—b (>0)
has infinitely many solutions. But this is impossible for ¢ = k trivially (as in
the case of (6.3)). For £ # k, since (6.4) is an irreducible Thue equation with

a degree max {k,¢} = 3, thus by a well-known theorem [15], (6.6) has only
finitely many solutions. This contradiction completes the proof of theorem.

7. Proof of Theorem 5

Write P, = [] p. Let = denote the greatest positive integer with

p=w
(7.1) %mP:;? <N,
and let
(7.2) A:{ipj:igg}.

Then A C {1,2,...N}. Moreover, by the prime number theorem P, =
exp ((1 + o(1)) :1:), and thus it follows that exp ((2 + o(1)) w) = N whence

(73) = (% + 0(1)) log .

By (7.2) we have

(7.4) A = (% + 0(1)> ..

(1.8) follows from (7.3) and (7.4). Finally, ifa € A, ¢’ € A, then a +a’ = (P>
for an integer £ with 1 £ ¢ < x. Thus if p is a prime divisor of a + d’, it is at
most = and thus p? divides a + a, which proves (1.9).
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8. Proof of Theorem 6

The lower bound can be proved by a construction similar to the one em-
ployed in the proof of Theorem 5. Define P, as in Section 7, let z denote the
greatest positive integer with zt/ 2p2 < N, so that
(8.1) z=(1/240(1)) log N,

and let A = {iP2: i < z'/?}. Then we have

Al = ((% + 0(1)) log N) " (2712 + o(1)) (log N)/?

and every element of P(A) is powerful which proves the lower bound in
(1.10).
In order to prove the upper bound in (1.10) we need two lemmas.

LEMMA 6. If N is a positive integer, A C {1,2,...,N} and
(8.2) |A| > a1 (N log N)'/2,
then there are positive integers d, y, z such that
d<cnNA ™, 2> enlAP, y<cuNzAl 2

and
{yd,(y+1)d,...,zd} CP(A).
PROOF. This is a theorem of Sarkozy [13]. (Note that in [13] the numer-

ical values of the constants ca1, ¢99, co3 and co7 are computed. However, we
do not need these values here.)

LEMMA 7. There is an absolute constant cos such that if p is a prime,
Bc{l2,...,p° -1}
and
(8.3) |B| > casp(log p)/?,

then there is a subset sum

(8.4) s=Y &b e P(B)
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with
(8.5) pls, p°ts.
PROOF. If cg5 in (8.3) is large enough, then (8.2) holds with p? and B

in place of N and A, respectively, so that we may use Lemma 6. We obtain
that there are d, y and z with

(8.6) d < cpp?®|B) ! < czgp(logp)fl/z,
(8.7) z > c23|B|* > cyrp® log p,
(8.8) y < coap?z|B] 7 < eagz(logp) !
and

(8.9) {yd, (y + 1)d,...,zd} CP(B).

If p is large enough (which, clearly, can be assumed), then it follows from
(8.6) that

(8.10) (d,p) = 1.

Consider the first two multiples of p in the arithmetic progression yd,
(y+1)d, (y + 2)d,... . By (8.10) one of them, say, ud satisfies

(8.11) plud, p*fud,
and we also have
(8.12) ySu<y+2p.

By (8.7) and (8.8) for large enough p we have

(8.13) z—y >z — cogz(logp) b > g > coop? log p.

It follows from (8.12) and (8.13) that y < u < z so that, by (8.9),
(8.14) ud € P(A).

By (8.11) and (8.14), (8.4) and (8.5) hold with s = ud and this completes
the proof of the lemma.
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By using Lemma 7, we may complete the proof of the upper bound in
(8.15) in the following way. It suffices to show that if

(8.15) Ac{1,2,...,N}
and
(8.16) every element of P(A) is powerful,

then we must have

(8.17) |A| < es(log N)?(loglog N) /2.

Again we write P, = Hpga; p, and let z denote the smallest positive in-
teger with N
(8.18) P:> N

so that, by the prime number theorem,

(8.19) = (% + 0(1)) log N.

For all p < x, write

(8.20) A, ={a:a€ A p*ta}.
If there is an @ with
(8.21) ac A\ J 4,

pSz

then @ € A, for all p < z, whence p? | @ for all p < z so that
(8.22) P?|a.

However, by (8.15), (8.18) and (8.21) this is not possible. Thus there is no @
satisfying (8.21) so that

(8.23) A=A

pz

Thus in order to prove (8.17), we have to give an upper bound for |A,| for
all p < z.
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Fix a prime p < z, and for n € N let 7(n) denote the least non-negative
residue of n modulo p?, so that
r(n)=n (mod p?), 0<r(n)<p’

Write
B={b:3awithae A, r(a) =b}.

By (8.20) we have
(8.24) 0¢B.

Assume now that there is an
(8.25) s=by+---+b €P(B) (whereby,....,by € B, by <---<by)
with
(8.26) pls, p*ts.
Then by the definition of B, there are
(8.27) at,...,a; € A
with r(a1) = by,...,7(a;) = by whence

ap+--+a=b +---+b=s (modp?),

so that, by (8.26), p | a1 + -+ +ay, p>t a1 + -+ + ay, and thus

(8.28) ay + - -+ + a; is not powerful.
Moreover, the numbers ay, ..., a; are distinct and so by (8.27) we have
(8.29) ay+---+a € P(A).

But (8.28) and (8.29) contradict (8.16), and this shows that there is no s
satisfying (8.25) and (8.26). In particular

(8.30) if s€P(B) then p|s, p*fs cannot hold.

By Lemma 7, it follows that

(8.31) 1B < easp(log p)'/2.
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Now we will show that for all b € B we have
(8.32) |{a: ac€ A, a=b (modp2)}|<p.
By (8.24) and (8.30), and since clearly B C P(B), we have
(8.33) (b,p) =1 forallbeB.

Assume now that, contrary to (8.32), for some b € B there are a1,...,a, € A
with a1 <--- < ap and

(8.34) @m=--=a,=b (modp?).
Then we have
(8.35) ai+---+ap€P(A)

and, by (8.34), a1 +--- + ap = pb (mod p?). By (8.33), it follows that p | a
+ -+ ap and p*f a1 + -+ + a, and thus

(8.36) a1 + -+ + ap is not powerful.

(8.35) and (8.36) contradict (8.16), and this completes the proof of (8.32).
It follows from (8.31) and (8.32) that

Al =Y [{a: a €Ay a=b(mod p*)}| < D p=|Blp < czsp(logp) /%
beB beB

Thus, by (8.19) and (8.23), we have

A A S ea0 Y pP(logp) ' < es0(log N)? (loglog N) ™'/
plx plx

which proves (8.17) and completes the proof of Theorem 6.
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