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1. Introduction. Among other things we show that for each n-tuple
of positive rational numbers (a1, . . . , an) there are sets of primes S of arbi-
trarily large cardinality s such that the solutions of the equation a1x1 + . . .
. . . + anxn = 1 with x1, . . . , xn S-units are not contained in fewer than
exp((4 + o(1))s1/2(log s)−1/2) proper linear subspaces of Cn. This general-
izes a result of Erdős, Stewart and Tijdeman [6] for S-unit equations in two
variables.

Further, we prove that for any algebraic number field K of degree n, any
integer m with 1 ≤ m < n, and any sufficiently large s there are integers
α0, . . . , αm in K which are linearly independent over Q, and prime numbers
p1, . . . , ps, such that the norm polynomial equation

|NK/Q(α0 + α1x1 + . . .+ αmxm)| = pz11 . . . pzss

has at least exp{(1+o(1))(n/m)sm/n(log s)−1+m/n} solutions in x1, . . . , xm,
z1, . . . , zs ∈ Z. This generalizes a result of Moree and Stewart [18] for m = 1.

Our main tool, also established in this paper, is an effective lower bound
for the number ψK,T (X,Y ) of ideals in a number field K of norm ≤ X
composed of prime ideals which lie outside a given finite set of prime ideals
T and which have norm ≤ Y . This generalizes results of Canfield, Erdős and
Pomerance [5] and of Moree and Stewart [18].

2. Results. Let S = {p1, . . . , ps} be a set of prime numbers. We call a
rational number an S-unit if both the denominator and the numerator of its
simplified representation are composed of primes from S. Evertse [7] proved
that for any non-zero rational numbers a, b, the equation ax + by = 1 in
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S-units x, y has at most exp(4s + 6) solutions. On the other hand, Erdős,
Stewart and Tijdeman [6] showed that equations of this type can have as
many as exp{(4 + o(1))(s/log s)1/2} such solutions as s → ∞. Thus the
dependence on s cannot be polynomial. In the present paper we generalize
this result to S-unit equations in an arbitrary number n of variables. Here
n is considered to be given.

In [8] Evertse proved that for given non-zero rational numbers a1, . . . , an,
the equation

a1x1 + a2x2 + . . .+ anxn = 1 in S-units x1, . . . , xn(2.1)

has at most (235n2)n
3(s+1) non-degenerate solutions. We call a solution de-

generate if there is some non-empty proper subset {i1, . . . , ik} of {1, . . . , n}
such that ai1xi1 + . . . + aikxik = 0, and otherwise non-degenerate. In [9],
Evertse, Győry, Stewart and Tijdeman showed that there are equations
(2.1) which have as many as exp{(4 + o(1))(s/log s)1/2} non-degenerate
solutions as s → ∞, and subsequently Granville [10] improved this to
exp(c0s

1−1/n(log s)−1/n) for a positive number c0. For our first result we
shall establish a version of Granville’s theorem with c0 given explicitly.

Theorem 1. Let ε be a positive real number and let a1, . . . , an be non-
zero rational numbers. There exists a positive number s0, which is effectively
computable in terms of ε and a1, . . . , an, with the property that for every
integer s ≥ s0 there is a set of primes S of cardinality s such that equation
(2.1) has at least

exp
{

(1− ε) n2

n− 1
s1−1/n(log s)−1/n

}

non-degenerate solutions in S-units x1, . . . , xn.

Theorem 1 does not exclude the possibility that the sets of solutions of
the equations (2.1) under consideration are of a special shape, for instance
that they are contained in the union of a small number of proper linear
subspaces of Qn or in some algebraic variety of small degree. We shall prove
in Theorem 2 that this is not the case.

Let again S be a set of primes and a = (a1, . . . , an) a tuple of non-zero
rational numbers. Recall that the total degree of a polynomial P is the
maximum of the sums k1 + . . . + kn taken over all monomials Xk1

1 . . .Xkn
n

occurring in P . Define g(a, S) to be the smallest integer g with the following
property: there exists a polynomial P ∈ C[X1, . . . ,Xn] of total degree g, not
divisible by a1X1 + . . .+ anXn − 1, such that

P (x1, . . . , xn) = 0 for every solution (x1, . . . , xn) of (2.1).(2.2)

For instance, suppose that the set of solutions of (2.1) is contained in the
union of t proper linear subspaces of Cn, given by equations ci1X1 + . . . +
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cinXn = 0 (i= 1, . . . , t), say. Then (2.2) is satisfied by P =
∏t
i=1(

∑n
j=1 cijXj),

which is not divisible by a1X1+. . .+anXn−1; hence t ≥ g(a, S). This means
that if g(a, S) is large, the set of solutions of (2.1) cannot be contained in
the union of a small number of proper linear subspaces of Cn. Likewise, the
set of solutions of (2.1) cannot be contained in a proper algebraic subvariety
of small degree of the variety given by (2.1). Our precise result is as follows.

Theorem 2. Let ε be a positive real number and let a = (a1, . . . , an) be
an n-tuple of non-zero rational numbers. There exists a positive number s1,
which is effectively computable in terms of ε and a, with the property that
for every integer s ≥ s1 there is a set of primes S of cardinality s such that

g(a, S) ≥ exp{(4− ε)s1/2(log s)−1/2}.
Note that for n = 2, both Theorems 1 and 2 imply the above-mentioned

result of Erdős, Stewart and Tijdeman.
We prove results analogous to Theorems 1 and 2 for “norm polynomial

equations”.
In what follows, K is an algebraic number field. We denote by OK the

ring of integers of K. Let α0, . . . , αm be elements of OK which are linearly
independent overQ and for whichQ(α0, . . . , αm) = K. Further, let p1, . . . , ps
be distinct prime numbers. From results of Schmidt [20] and Schlickewei [19],
it follows that the norm form equation

|NK/Q(α0x0 + . . .+ αmxm)| = pz11 . . . pzss(2.3)

has only finitely many solutions in integers x0, . . . , xm, z1, . . . , zs, with
gcd(x0, . . . , xm) = 1 if and only if the left-hand side satisfies some suitable
non-degeneracy condition. Instead of (2.3) we deal with norm polynomial
equations

(2.4) |NK/Q(α0 + α1x1 + . . .+ αmxm)| = pz11 . . . pzss
in x1, . . . , xm, z1, . . . , zs ∈ Z,

that is, norm form equations with x0 = 1. As it turns out, the number of
solutions of equation (2.4) is finite if α0, . . . , αm are linearly independent
over Q. Under this hypothesis, Bérczes and Győry ([2, Theorem 2, Corol-
lary 8] or [1, Chapter 1]) proved that equation (2.4) has at most

(217n)δ(m)(s+1)

solutions, where n = [K : Q] and δ(m) = 2
3(m + 1)(m + 2)(2m + 3) − 4.

In fact, this is a consequence of a much more general result of theirs on
decomposable polynomial equations.

Note that for m = 1, equation (2.4) is just the generalized Ramanujan–
Nagell equation

|f(x)| = pz11 . . . pzss in x, z1, . . . , zs ∈ Z,(2.5)
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where f is an irreducible polynomial in Z[X] of degree at least 2. Erdős,
Stewart and Tijdeman [6] proved that for any n ≥ 2 and any sufficiently large
integer s there are a polynomial f ∈ Z[X] of degree n and primes p1, . . . , ps
such that (2.5) has more than exp{(1 + o(1))n2s1/n(log s)1/n−1} solutions.
The polynomial constructed by Erdős, Stewart and Tijdeman splits into
linear factors over Q.

Subsequently Moree and Stewart [18] proved a similar result in which
the constructed polynomial f is irreducible. More precisely, let K be a field
of degree n over Q and let f be a monic irreducible polynomial in Z[X] of
degree n such that a root of f generates K over Q. Let πf (x) denote the
number of primes p with p ≤ x for which f(x) ≡ 0 (mod p) has a solution.
It follows from the Chebotarev density theorem (see Theorems 1.3 and 1.4
of [13]) that

πf (x) =
1
cK

(1 + o(1))
x

log x
,

where cK is a positive number which depends on K only. Let L denote
the normal closure of K. Then cK equals [L : Q ] divided by the number
of field automorphisms of L/Q that fix at least one root of f , or in group
theoretic terms, cK = #G/#(

⋃
σ∈G σHσ

−1), where H = Gal(L/K) and
G = Gal(L/Q); see [3, Theorem 2]. Thus 1 ≤ cK ≤ n is a rational number
and if K is normal then cK = n. Moree and Stewart [18] proved that for
each field K of degree n over Q there is a polynomial f , as above, such that
the number of solutions of (2.5) is exp{(1 + o(1))n(cKs)1/n(log s)1/n−1}.

We generalize the result of Moree and Stewart to norm polynomial equa-
tions as follows.

Theorem 3. Let K be an algebraic number field of degree n ≥ 2. Let
α1, . . . , αm be elements of OK which are linearly independent over Q where
1 ≤ m ≤ n − 1. Let ε > 0. There exists a positive number s2, which is
effectively computable in terms of ε, K and α1, . . . , αm, with the property
that for every integer s ≥ s2 there are a set S = {p1, . . . , ps} of rational
prime numbers and a number α0 such that

(2.6) α0 ∈ OK , Q(α0) = K,

α0 is Q-linearly independent of α1, . . . , αm,

and such that equation (2.4) has more than

exp
{

(1− ε) n
m

(cKs)m/n(log s)m/n−1
}

solutions.

Given a set of primes S = {p1, . . . , ps} and a tuple α = (α0, . . . , αn)
of elements of OK , we define g(α, S) to be the smallest integer g with
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the following property: there exists a non-identically zero polynomial P ∈
C[X1, . . . ,Xm] of total degree g such that

(2.7) P (x1, . . . , xm) = 0

for every solution (x1, . . . , xm, z1, . . . , zs) of (2.4).

We prove the following result.

Theorem 4. Let K,n,m, α1, . . . , αm and ε > 0 be as in Theorem 3.
There exists a positive number s3, which is effectively computable in terms
of ε, K and α1, . . . , αm, with the property that for every integer s ≥ s3
there are a set S = {p1, . . . , ps} of rational prime numbers and a number
α0 with (2.6) such that

g(α, S) ≥ exp{(1− ε)n(cKs)1/n(log s)1/n−1}.
Here α = (α0, α1, . . . , αm).

It should be noted that both Theorems 3 and 4 with m = 1 imply the
result of Moree and Stewart mentioned above.

The main tool in the proofs of Theorems 1–4 is a lower bound for the
number of ideals in a given number field which have norm≤ X, are composed
of prime ideals ≤ Y , and are composed of prime ideals outside a given finite
set of prime ideals T . We have stated this result below since it is not in the
literature and since it may have some independent interest. We first recall
some history.

Let ψ(X,Y ) be the number of positive rational integers not exceeding X
which are free of prime divisors larger than Y . Canfield, Erdős and Pomer-
ance [5] proved that there exists an absolute constant C such that if X,Y
are positive reals with Y ≥ 3 and with u := logX

logY ≥ 3, then

(2.8) ψ(X,Y ) ≥ X exp
{
−u
{

log(u log u)− 1

+
log2 u− 1

log u
+ C

(
log2 u

log u

)2}}
,

where log2 u = log log u. Further, Hildebrand [11] showed that for arbitrary
fixed ε> 0, one has uniformly under the conditionX ≥ 2, exp{(log2X)5/3+ε}
≤ Y ≤ X,

ψ(X,Y ) = X%(u)
{

1 +O

(
log(u+ 1)

log Y

)}
,(2.9)

where %(u) denotes the Dickman–de Bruijn function.
More generally, letK be a number field. By an ideal of the ring of integers

OK we shall mean a non-zero ideal. Denote by ψK(X,Y ) the number of ideals
of OK with norm at most X composed of prime ideals of OK of norm at
most Y . Here the norm of an ideal a is the cardinality of the residue class
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ring OK/a. By Moree and Stewart [18, Theorem 2] there exists a constant
CK > 0, depending only on K, such that with X, Y and u as above we have

(2.10) ψK,T (X,Y ) ≥ X exp
{
−u
{

log(u log u)− 1

+
log2 u− 1

log u
+ CK

(
log2 u

log u

)2}}
.

This result has been proved by extending the method of Canfield, Erdős and
Pomerance.

Now let T be a finite set of prime ideals of OK , and denote by ψK,T (X,Y )
the number of ideals of OK which have norm≤ X and are composed of prime
ideals which have norm ≤ Y and lie outside T . We prove the following:

Theorem 5. There exists a positive effectively computable number CK,T
depending only on K and T such that for X,Y ≥ 1 with u := logX

logY ≥ 3 we
have

(2.11) ψK,T (X,Y ) ≥ X exp
{
−u
{

log(u log u)− 1

+
log2 u− 1

log u
+ CK,T

(
log2 u

log u

)2}}
.

In the proof of Theorem 5 we did not use the ideas of Canfield, Erdős
and Pomerance, but instead extended the arguments from Hildebrand’s pa-
per [11] mentioned above. Another more straightforward method to obtain a
lower bound for ψK,T such as (2.11) is by combining the estimate (2.10) for
ψK(X,Y ) with an interval result for ψK(X,Y ) due to Moree [16]. Unfortu-
nately, the result obtained by this approach is valid only for a much smaller
X,Y -range, and it is not at all transparent whether the constant CK,T aris-
ing from this approach is effective. In [4] Buchmann and Hollinger, assuming
the Generalized Riemann Hypothesis, established a non-trivial lower bound
for ψK(X,Y ), uniform in K, involving the degree of the normal closure and
the discriminant DK of K. They did so by using the method of Canfield,
Erdős and Pomerance. Our method to prove Theorem 5 can be used to ob-
tain a variant of the result of Buchmann and Hollinger with much smaller
error term. As a starting point in our approach one may take equation
(11.RH) of Lang [14].

3. Proof of Theorem 5. We recall some properties of the Dickman–de
Bruijn function %(u). This function is the unique continuous solution of the
differential-difference equation u%′(u) = −%(u − 1) for u > 1 with initial
condition %(u) = 1 in the interval [0, 1] (and, by convention, %(u) := 0 for
u < 0). Recall that according to Hildebrand’s estimate (2.9), %(u) is the
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density of the set of integers ≤ X composed of prime numbers ≤ X1/u as X
tends to infinity; therefore, 0 ≤ %(u) ≤ 1. In the following lemma we have
collected some further easily provable properties of the Dickman–de Bruijn
function that will be needed in what follows.

Lemma 1. (i) u%(u) =
� u
u−1 %(t) dt for u ≥ 1.

(ii) %(u) > 0 for u > 0.
(iii) %(u) is decreasing for u > 1.
(iv) −%′(u)/%(u) is increasing for u > 1.
(v) −%′(u) ≤ %(u) log(2u log2(u+ 3)) for u > 0, u 6= 1.
(vi) %(u− t) ≤ %(u)4(2u log2(u+ 3))t for u ≥ 0 and 0 ≤ t ≤ 1.

Proof. This is in essence [11, Lemma 6], see also [17, p. 30]. Parts (v)
and (vi) are, however, modified so as to obtain explicit estimates valid for
u > 0. They require some easy numerical verifications that are left to the
interested reader.

An important quantity in the study of the Dickman–de Bruijn function
is the function ξ(u). For any given u > 1, ξ(u) is defined as the unique
positive solution of the transcendental equation

eξ − 1
ξ

= u.(3.1)

The quantity ξ(u) exists and is unique, since limx↓0(ex− 1)/x = 1 and since
(ex − 1)/x is strictly increasing for x > 0. The Fourier transform %̂ of %
involves the function (es − 1)/s. By writing % as the Fourier transform of %̂
and applying the saddle point method one obtains [22, p. 374], for u ≥ 1,

%(u) =

√
ξ′(u)
2π

exp
{
γ −

u�
1

ξ(t) dt
}
{1 +O(1/u)}.(3.2)

(It is not difficult to show that ξ′(u) ∼ 1/u as u tends to infinity.) For our
purposes we need an effective lower bound of the quality of (3.2). The next
lemma fulfils our needs.

Lemma 2. For u ≥ 1 we have

exp
{
−
u+1�

2

ξ(t) dt
}
≤ %(u) ≤ exp

{
−
u�
1

ξ(t) dt
}
.

Proof. Let f(u) = −%′(u)/%(u) denote the logarithmic derivative of
1/%(u). Using parts (i) and (iv) of Lemma 1 we deduce that

u =
u�
u−1

%(t)
%(u)

dt =
u�
u−1

e � ut f(s) ds dt ≤
u�
u−1

e(u−t)f(u) dt =
ef(u) − 1
f(u)

,
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and thus, by the monotonicity of (ex− 1)/x, that f(u) ≥ ξ(u) for u > 1. By
a similar argument we find that f(u) ≤ ξ(u + 1) for u > 0 and u 6= 1. On
noting that

exp
(
−
u�
1

ξ(s+ 1) ds
)
≤ %(u) = exp

(
−
u�
1

f(s) ds
)

≤ exp
(
−
u�
1

ξ(s) ds
)
,

the proof is completed.

The method of bootstrapping allows one to obtain an asymptotic ex-
pression for ξ(u) with error O(log−k u) for arbitrarily large k. To illustrate
this we do the first few iterations. From (3.1) we deduce that

ξ = log ξ + log u+O

(
1
ξ · u

)
, ξ · u→∞.(3.3)

Notice that for u sufficiently large, 1 < ξ < 2 log u. It follows from (3.3)
that ξ = log u+O(log2 u). Substituting this into the right-hand side of (3.3)
then yields ξ = log u+ log2 u+ O(log2 u/log u). Note that the implied con-
stant is effective. By repeatedly substituting the lastly found asymptotic
expression for ξ(u) into the right-hand side of (3.3), one can calculate an
asymptotic expression for ξ(u) with error O(log−k u) for arbitrary k > 1,
with effective implied constant. This then implies, by Lemma 2, that for
arbitrary k > 1 we can find an elementary explicit function gk(u) such that
%(u) ≥ exp(gk(u) + Ok(u log−k u)), where the implied constant is effective.
For example, by substituting ξ = log u + log2 u + O(log2 u/log u) into the
right-hand side of (3.3) we obtain, for u ≥ 3,

ξ = log u+ log2 u+
log2 u

log u
+O

((
log2 u

log u

)2)
.

Using Lemma 2 we then find that, for u ≥ 3,

(3.4) %(u) ≥ exp
{
−u
{

log(u log u)− 1 +
log2 u− 1

log u
+O

((
log2 u

log u

)2)}}
,

where the implied constant is effective.
Alternatively gk(u) can be computed by using the convergent series ex-

pansion

ξ(u) = log u+ log2 u+
∞∑

m=0

∞∑

k=1

cmk

(
1

log u

)m(1 + u log2 u

u log u

)k
,

where the cmk are explicitly computable real numbers; cf. [12]. (This formula
corrects the one stated in [12] where there is a typo that, as Prof. Tenenbaum



Multivariate Diophantine equations 111

pointed out to us, was introduced by the printer after the proofcorrections
had taken place.)

Now let K be an algebraic number field. We put P (a) = max{Np : p | a}
for an ideal a 6= (1) of OK and P ((1)) = 1 (here and in what follows the
symbol p is exclusively used to indicate a prime ideal). We denote by NK(Y )
the number of ideals of OK of norm ≤ Y , and for a given finite set of prime
ideals T of OK , by NK,T (Y ) the number of ideals of OK of norm ≤ Y which
are coprime with each of the prime ideals from T . For instance from the
arguments in Lang [15, Chap. VI–VIII] it follows that

NK(Y ) = AKY +O(Y 1−1/[K:Q ]),

where
AK = Ress=1ζK(s)

is the residue of the Dedekind zeta-function at s = 1 (which as is well
known can be expressed in terms of invariants such as the class number and
regulator of the field K) and where the implied constant is effective and
depends only on K. By means of the principle of inclusion and exclusion it
then follows that

(3.5) NK,T (Y ) = AK,TY +O(Y 1−1/[K:Q ])

with AK,T = AK
∏

p∈T

(
1− 1

Np

)
,

where the implied constant is effective and depends only on K and T .
As before, we denote by ψK,T (X,Y ) the number of ideals of OK of norm

at most X which are composed of prime ideals which do not belong to
the finite set of prime ideals T and, moreover, have norm at most Y . The
ideals so counted form a free arithmetical semigroup satisfying the conditions
of Theorem 1 of [17, Chapter 4]. It then follows that, for arbitrary fixed
ε ∈ (0, 1), uniformly for 1 ≤ u ≤ (1− ε) log2X/log3X we have

ψK,T (X,Y ) ∼ AK,TX%(u) as X →∞,(3.6)

where log3X = log log logX. Thus we get a density interpretation of %(u)
similar to that for ψ(X,Y ).

The proof of (3.6) is based on the Buchstab functional equation for free
arithmetical semigroups. In order to obtain Theorem 5, which gives a lower
bound for ψK,T (X,Y ) valid for a much larger X,Y -region, a different func-
tional equation will be used. This equation along with several other ideas
that go into the proof of Theorem 5 are due to Hildebrand [11] (cf. also
[22, pp. 388–389]), who worked in the case where K = Q and T is the
empty set. Put q =

∏
p∈T p. Define

ΛK,T (a) =
{

logNp if a = pm for some p 6∈ T and m ≥ 1,

0 otherwise.



112 J.-H. Evertse et al.

Then for X ≥ Y we have

(3.7) ψK,T (X,Y ) logX =
X�
1

ψK,T (t, Y )
t

dt+
∑

Na≤X
P (a)≤Y

ΛK,T (a)ψK,T

(
X

Na
, Y

)
.

In order to establish the validity of this equation we express the sum of
all terms logNa with a satisfying Na ≤ X, P (a) ≤ Y and a coprime with q
in two different ways. On the one hand we find by integration by parts that
this sum can be expressed as

ψK,T (X,Y ) logX −
X�
1

ψK,T (t, Y )
t

dt;

on the other hand we notice that the sum can be rewritten as follows:∑

Na≤X, a+q=(1)
P (a)≤Y

∑

b|a
ΛK,T (b) =

∑

Nb≤X
P (b)≤Y

ΛK,T (b)
∑

Na≤X, a+q=(1)
b|a, P (a)≤Y

1

=
∑

Nb≤X
P (b)≤Y

ΛK,T (b)ψK,T

(
X

Nb
, Y

)
,

where we used the fact that logNa =
∑

b|a ΛK,T (b) for any ideal a coprime
with q.

Using functional equation (3.7) and Lemmata 3 and 4 below, we will
deduce the crucial Lemma 5, and from that, Theorem 5.

Lemma 3. Let K be a number field and T a finite set of prime ideals
in OK . Put log+ Y = max{1, log Y }. Then

∑

Na≤Y

ΛK,T (a)
Na

= log Y + c1,K,T + E(Y ) for Y ≥ 1,

where c1,K,T is a constant depending on K and T and where for every
m ≥ 1 we have |E(Y )| ≤ c′m(log+ Y )−m, with c′m an effectively computable
constant depending on m, K and T .

Proof. Let πK(Y ) denote the number of prime ideals of K of norm ≤ Y .
Theorems 1.3, 1.4 of Lagarias and Odlyzko [13] imply an effective version
of the Prime Ideal Theorem of the shape πK(Y ) = Li(Y ) + E0(Y ), where
Li(Y ) =

� Y
2 (log t)−1 dt and |E0(Y )| ≤ c′′mY (log+ Y )−m for every m ≥ 2, with

c′′m an effectively computable constant depending on m and K. From this
and the standard Stieltjes integration and partial summation arguments one
obtains Lemma 3.

Lemma 4. Let 0 < θ ≤ 1, m ≥ 4, 1 ≤ u ≤ Y 2, Y ≥ em3m
and let c′m be

as in Lemma 3. Put
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Sθ =
∑

Na≤Y θ

ΛK,T (a)
Na

%

(
u− logNa

log Y

)
.

Then

Sθ = log Y
θ�
0

%(u− v) dv +E1(θ),

with

|E1(θ)| ≤ 17c′m%(u)
{

2 +
u log2(u+ 3)

logm−1 Y
θ−m

}
.

Proof. Using Lemma 3 we find by Stieltjes integration that

Sθ =
θ�
0

%(u− v) d
( ∑

Na≤Y v

ΛK,T (a)
Na

)
= log Y

θ�
0

%(u− v) dv + I1(θ) + I2(θ),

where I1(θ) = E(Y θ)%(u− θ)− E(1)%(u) and I2(θ) =
� θ
0 %
′(u− v)E(Y v) dv.

Using Lemma 1(vi) we deduce that

|I1(θ)| ≤ c′m%(u)
{

1 +
8u log2(u+ 3)

logm Y
θ−m

}
.

For notational convenience let us put g(u) := log(2u log2(u+3)). Then using
Lemma 1(v), (vi) we obtain

|I2(θ)| ≤ 4%(u)g(u)
{
c′m

log−1 Y�
0

evg(u) dv +
θ�

log−1 Y

evg(u)|E(Y v)| dv
}
.

The conditions on u and Y ensure that the first integral in the latter es-
timate is bounded above by g(u)−1 exp(g(u)/logY ) ≤ 8/g(u). We split up
the integration range of the second integral at θ log−1/m Y and denote the
corresponding integrals by I3(θ) and I4(θ), respectively. We have

|I3(θ)| ≤ c′m
eθg(u) log−1/m Y

logm Y

θ log−1/m Y�

log−1 Y

dv

vm
≤ c′m

log Y
eθg(u)/log1/m Y(3.8)

and

|I4(θ)| ≤ c′mθ
−m

logm−1 Y

θ�

θ log−1/m Y

evg(u) dv ≤ c′mθ
−m

logm−1 Y

2u log2(u+ 3)
g(u)

.(3.9)

Note that if g(u) ≤ log1/m Y , then g(u)|I3(θ)| ≤ c′m/4. If g(u) > log1/m Y ,
then thanks to our assumption Y ≥ em

3m
, the right-hand side of (3.8) is

smaller than the right-hand side of (3.9), therefore both |I3(θ)| and |I4(θ)|
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are bounded above by

c′mθ
−m

logm−1 Y

2u log2(u+ 3)
g(u)

.

On adding the various estimates, our lemma follows.

Lemma 5. Let m ≥ 4 be arbitrary and 1 ≤ u ≤ Y 2. Suppose that
Y ≥ max{em3m

, e1500c′m}. Then

ψK,T (X,Y ) ≥ X%(u)∆ exp
(
−1224c′m

{
log(6(u+ 1))

log Y
+

5 · 2m−1(u+ 1)
logm−3 Y

})
,

where ∆ := infY≥1NK,T (Y )/Y .

Proof. We set δ(u) := inf0≤v≤u ψK,T (Y v, Y )/(Y v%(v)). Note that δ(u) ≥
∆ for 0 ≤ u ≤ 1. Let u > 1. Functional equation (3.7) gives rise to the
estimate

ψK,T (X,Y ) logX ≥
∑

Na≤Y
ΛK,T (a)ψK,T

(
X

Na
, Y

)

≥ Xδ(u)S1/2 +Xδ(u− 1/2)(S1 − S1/2).

By dividing this inequality by X%(u) logX = Xu%(u) log Y and then using
Lemma 4, Lemma 1(i) and the fact that δ is decreasing, we obtain

ψK,T (X,Y )
X%(u)

≥ δ(u)r(u) + δ(u− 1/2){1− r(u)− 2|E1(1/2)| − |E1(1)|},

where

r(u) =
1

u%(u)

1/2�
0

%(u− v) dv.

Since by Lemma 1(iii), % is decreasing it follows that r(u) ≤ 1/2. Further,

2|E1(1/2)|+ |E1(1)| ≤ fm(u) :=
51c′m
log Y

{
2
u

+
5 · 2m

logm−3 Y

}
.

Hence
ψK,T (X,Y )
X%(u)

≥ δ(u)/2 + (1/2− fm(u))δ(u− 1/2).(3.10)

We want to establish that

δ(u) ≥ min(∆, δ(u− 1/2))e−6fm(u−1/2).(3.11)

If δ(u) = δ(u − 1/2), this inequality is trivially true. If δ(u) = δ(1)
the inequality is true as well, since δ(1) ≥ ∆. So assume that δ(u) <
δ(u−1/2) and δ(u) < δ(1). Choose ε with 0 < ε < 1. Then there exists u′ ∈
(max(1, u − 1/2), u] such that ψK,T (X ′, Y )/(X ′%(u′)) ≤ δ(u)(1 + ε), with
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X ′ = Y u′ . Using (3.10) with u′ replacing u we then infer that

δ(u)(1 + ε) ≥ δ(u′)/2 + (1/2− fm(u′))δ(u′ − 1/2)

≥ δ(u)/2 + (1/2− fm(u− 1/2))δ(u− 1/2).

Since ε may be chosen arbitrarily small, the latter inequality implies that
δ(u) ≥ δ(u − 1/2)(1 − 2fm(u − 1/2)). The lower bound Y ≥ exp(1500c′m)
ensures that fm(u− 1/2) < 1/6 and hence the validity of (3.11).

We now iterate (3.11), the last step being with an argument u0 > 1
such that δ(u0 − 1/2) ≥ ∆. Since fm is decreasing, this yields δ(u) ≥
∆ exp{−6

∑2[u]
k=0 fm((k + 1)/2)}. Then Lemma 5 follows after an easy com-

putation.

Proof of Theorem 5. By (3.5) (which is effective), there is an effective
constant ∆0 such that ∆ ≥ ∆0 > 0. Now from this fact, Lemma 5 with m =
6 and (3.4) (where the implied constant can be made effective) we obtain
(2.11) with some effective constant CK,T > 0, provided that 1 ≤ u ≤ Y 2

and Y ≥ Y0, where Y0 is some effectively computable number depending on
K and T . Note that if u > Y 2 and Y ≥ Y1 (with Y1 ≥ Y0 effective and
depending on K, T and CK,T ) then the right-hand side of (2.11) is < 1 so
that (2.11) is trivially true (as ψK,T (X,Y ) ≥ 1). Further, if Y ≤ Y1 then for
X exceeding some effectively computable number X0 depending on K, T ,
Y1 and CK,T we again see that the right-hand side of (2.11) is < 1, so that
(2.11) holds. We can achieve (2.11) for the remaining values of X,Y , i.e.,
Y ≤ Y1 and X ≤ X0, by enlarging the constant CK,T if necessary.

Remark. Given any k > 0, a refinement of Theorem 5 with error term
exp{O(u log−k u)} and effective implied constant can be given by carrying
out the bootstrap process for ξ(u) far enough.

4. Preparations for the proofs of Theorems 1–4. We start with a
simple result on polynomial equations.

Lemma 6. Let Q ∈ C[X1, . . . ,Xm] be a non-trivial polynomial of to-
tal degree g. Let A,B ∈ Z with A < B. Then the set of vectors x =
(x1, . . . , xm) ∈ Zm with

Q(x) = 0, A ≤ xi ≤ B for i = 1, . . . ,m(4.1)

has cardinality at most g(B − A+ 1)m−1.

Proof. We proceed by induction on m. For m = 1 the lemma is obvious.
Suppose m > 1. Assume the lemma holds true for polynomials in fewer than
m variables. We may write

Q(X1, . . . ,Xm) =
h∑

i=0

Qi(X1, . . . ,Xm−1)Xi
m
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with h ≤ g, Qi ∈ C[X1, . . . ,Xm−1] of total degree ≤ g − i for i = 0, . . . , h
and with Qh not identically zero. Let V be the set of tuples x with (4.1).
Given x = (x1, . . . , xm) ∈ V we write x′ = (x1, . . . , xm−1).

First consider those x ∈ V for which Qh(x′) 6= 0. There are at most
(B − A + 1)m−1 possibilities for x′. Fix one of those x′. Substituting xi
for Xi (i = 1, . . . ,m − 1) in Q gives a non-zero polynomial of degree h
in Xm. Hence for given x′ there are at most h possibilities for xm such that
Q(x) = 0. So altogether, there are at most h(B −A+ 1)m−1 vectors x ∈ V
with Qh(x′) 6= 0.

Now consider those x ∈ V for which Qh(x′) = 0. Recall that Qh has
total degree at most g − h. So by the induction hypothesis, there are at
most (g − h)(B − A+ 1)m−2 possibilities for x′. For a fixed x′, there are at
most B−A+ 1 possibilities for xm. Therefore, the number of vectors x ∈ V
with Qh(x′) = 0 is at most (g − h)(B − A+ 1)m−1.

Combining this with the upper bound h(B −A+ 1)m−1 for the number
of vectors in V with Qh(x′) 6= 0, we conclude that V has cardinality at most
g(B − A+ 1)m−1.

Let K be a number field. We denote by ξ 7→ ξ(i) (i = 1, . . . , [K : Q])
the isomorphic embeddings of K into C. The prime ideal decomposition
of α ∈ OK is by definition the prime ideal decomposition of the principal
ideal (α) generated by α. We say that α ∈ OK is coprime with the ideal a
if (α) + a = (1).

Lemma 7. Let [K : Q] = n. Let a be an ideal of OK and let α ∈ OK
be coprime to a. Further , let T be the set of prime ideals dividing a. Then
there are effectively computable constants C1, C2, C3 > 1, depending only on
K, a, such that for X,Y with X > Y ≥ C1, the number of non-zero ξ ∈ OK
with

(4.2)





|ξ(i)| ≤ C2X
1/n for i = 1, . . . , n,

ξ ≡ α (moda),

(ξ) is composed of prime ideals of norm ≤ Y ,

is at least C−1
3 ψK,T (X,Y ).

Proof. Below, constants implied by �,� depend only on K, a and are
all effective. For ξ ∈ OK let ‖ξ‖ denote the maximum of the absolute values
of the conjugates of ξ. Denote by h the class number of K. By the effective
version of the Chebotarev density theorem from [13] (Theorems 1.3, 1.4)
each ideal class of K contains a prime ideal outside T with norm bounded
above effectively in terms of K, a. Let H consist of one such prime ideal from
each ideal class.

Assume that Y exceeds the norms of the prime ideals from H. Let b

be an ideal of norm at most X composed of prime ideals of norm at most
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Y lying outside T . Choose p from H such that b · p is a principal ideal,
(β), say. Then (β) has norm � X and is composed of prime ideals of norm
≤ Y lying outside T . Further, there are at most h ways of obtaining a
given principal ideal (β) by multiplying an ideal of norm at most X with a
prime ideal from H. Therefore, the number of principal ideals of norm� X,
composed of prime ideals of norm at most Y and lying outside T , is at least
h−1ψK,T (X,Y ).

We choose from each residue class in (OK/a)∗ a representative γ for
which ‖γ‖ is minimal. Denote the set of these representatives by R. Suppose
R has cardinality m. Clearly, each element from R is composed of prime
ideals outside T . Furthermore, for each element of R the absolute value of
the norm can be bounded above effectively in terms of K, a.

Assume that Y exceeds the absolute values of the norms of the elements
from R. Then the elements of R are composed of prime ideals outside T
of norm at most Y . Take a principal ideal (β) of norm � X composed of
prime ideals of norm at most Y lying outside T . According to, for instance,
[21, Lemma A.15], there is a β ′ with (β′) = (β) and ‖β′‖ � X1/n. Clearly, β′

is coprime with a, so there is a γ ∈ R with ξ := β ′γ ≡ α (moda). Note that
‖ξ‖ � X1/n, and that (ξ) is composed of prime ideals of norm at most Y
lying outside T . There are at most m ways of getting a given element ξ with
(4.2) by multiplying an element β ′ coprime with a with an element from R.
In other words, there are at most m principal ideals of norm� X composed
of prime ideals of norm at most Y outside T which give rise to the same
ξ with (4.2). Together with our lower bound ψK,T (X,Y )/h for the number
of principal ideals this implies that the number of ξ with (4.2) is at least
(hm)−1ψK,T (X,Y ).

For functions f(y), g(y) we say that f(y) = o(g(y)) as y →∞ effectively
in terms of parameters z1, . . . , zt if for every δ > 0 there is an effectively
computable constant y0 depending on δ, z1, . . . , zt such that |f(y)| ≤ δ|g(y)|
for every y ≥ y0. Then we have:

Lemma 8. Let 0 < α < 1. Further , let K be a number field and T a
finite set of prime ideals of OK . Then for Y →∞ there is an X such that

logX ≤ 2
1− α Y

1−α,(4.3)

ψK,T (X,Y )
Xα

≥ exp
{

1 + o(1)
1− α Y 1−α(logY )−1

}
(4.4)

where the o-symbol is effective in terms of α,K, T .

Proof. Below all o-symbols are with respect to Y → ∞ and effective in
terms of α,K, T . Let X = Y u with u log u = Y 1−α. Thus,

u = (1 + o(1))(1− α)−1Y 1−α(log Y )−1
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and
logX = u log Y = (1 + o(1))(1− α)−1Y 1−α.

Note that for Y sufficiently large, X satisfies (4.3). Further, u ≥ 3. Now by
our choice of u and by Theorem 5 we have

ψK,T (X,Y )
Xα

≥ Y u(1−α) exp{−u(log(u log u)− 1 + o(1))}

≥ exp{(1 + o(1))u} = exp
{

1 + o(1)
1− α Y 1−α(log Y )−1

}
,

which is (4.4).

5. Proofs of Theorems 1 and 2

Proof of Theorem 1. Constants implied by � and � are effective and
depend only on n, a1, . . . , an, and the o-symbols are always with respect to
s → ∞ and effective in terms of n, a1, . . . , an. By “sufficiently large” we
mean that the quantity under consideration exceeds some constant effec-
tively computable in terms of n, a1, . . . , an. We denote the cardinality of a
set A by |A|.

Let s be a positive integer and let ε be a positive real number. Put

t = [(1− ε/2)s ], Y = pt, T = {p1, . . . , pt}(5.1)

where pi denotes the ith prime. Note that, by an effective version of the
Prime Number Theorem,

Y = (1 + o(1))t log t.(5.2)

We choose X according to Lemma 8 with α = 1/n, K = Q, T = ∅.
Let εi = ai/|ai| for i = 1, . . . , n. The number of n-tuples (x1, . . . , xn) with

each εixi a positive integer of size at mostX and composed of primes at most
Y equals ψ(X,Y )n. Since the sum a1x1 + . . .+anxn is� X and is a positive
rational number with denominator � 1, there exists a positive rational
a0 � X with denominator� 1 such that the set of tuples (x1, . . . , xn) ∈ Zn
with {

a1x1 + . . .+ anxn = a0,

1 ≤ εixi ≤ X, xi is composed of primes ≤ Y for i = 1, . . . , n,
(5.3)

has cardinality � ψ(X,Y )n/X. Let R be the set of primes p dividing the
numerator or denominator of a0. By the (effective) Prime Number Theorem,
|R| is at most

(1 + o(1)) logX/log2X.

From (4.3) with α = 1/n, (5.2), (5.1) we infer that |R| = o(s) and then
from (5.1) that |R∪ T | < s provided s is sufficiently large. Let S be a set of
primes of cardinality s containing R ∪ T .
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Clearly the numbers xi/a0 for i = 1, . . . , n are S-units. Further, since
ai(xi/a0) is positive for i = 1, . . . , n, the subsums of a1x1 + . . .+anxn are all
non-zero. Thus equation (2.1) has � ψ(X,Y )n/X non-degenerate solutions
in S-units. By (4.4) with α = 1/n and (5.2) we have for Y sufficiently large

ψ(X,Y )n/X ≥ exp
(

(1 + o(1))
n2

n− 1
Y 1−1/n(log Y )−1

)

≥ exp
(

(1 + o(1))
n2

n− 1
t1−1/n(log t)−1/n

)
.

By (5.1) it follows at once that for s sufficiently large, equation (2.1) has
more than

exp
(

(1− ε) n2

n− 1
s1−1/n(log s)−1/n

)

non-degenerate solutions in S-units.

Before proving Theorem 2 we observe that g(a, S) is the smallest integer
g for which there exists a non-zero polynomial P ∗ ∈ C[X1, . . . ,Xn−1] of
total degree g with

(5.4) P ∗(x1, . . . , xn−1) = 0 for every solution (x1, . . . , xn) of (2.1).

Indeed, let P ∈ C[X1, . . . ,Xn] be a polynomial of total degree g(a, S) with
(2.2) which is not divisible by a1X1 + . . . + anXn − 1. Substituting Xn =
a−1
n (1−a1X1− . . .−an−1Xn−1) in P we get a polynomial P ∗ which satisfies

(5.4), has total degree at most g(a, S), and is not identically zero. On the
other hand, any non-zero polynomial P ∗ with (5.4) must have total degree
at least g(a, S) since it is not divisible by a1X1 + . . .+ anXn − 1.

Proof of Theorem 2. Let ε > 0. By Theorem 1 with n = 2 we know
that there is an effectively computable positive number t1, which depends
only on ε, such that for every integer t ≥ t1 there is a set of primes T of
cardinality t for which the equation x+ y = 1 in T -units x, y has at least

A(t) := exp{(4− ε/2)t1/2(log t)−1/2}(5.5)

solutions. Fix such t and T . We first show by induction that for every n ≥ 2
the n-tuple 1n = (1, . . . , 1) satisfies g(1n, T ) ≥ A(t).

We are done for n = 2. Suppose n ≥ 3, and that our assertion holds with
n− 1 in place of n. Thus g(1n−1, T ) ≥ A(t). Let U be the set of tuples

(x1, . . . , xn) = (y1, . . . , yn−2, yn−1z1, yn−1z2)(5.6)

where (y1, . . . , yn−1) runs through the solutions of

y1 + . . .+ yn−1 = 1 in T -units y1, . . . , yn−1(5.7)

and where (z1, z2) runs through the solutions of

z1 + z2 = 1 in T -units z1, z2.(5.8)
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Then from

y1 + . . .+ yn−2 + yn−1(z1 + z2) = 1

it follows that the tuples in U satisfy

x1 + . . .+ xn = 1.(5.9)

Let P ∈ C[X1, . . . ,Xn−1] be a non-zero polynomial of total degree g(1n, T )
such that P (x1, . . . , xn−1) = 0 for every solution (x1, . . . , xn) in T -units of
(5.9). Since the tuples in U consist of T -units, we have

(5.10) P (y1, . . . , yn−2, yn−1z1) = 0

for every solution (y1, . . . , yn−1) of (5.7) and every solution (z1, z2) of (5.8).
Define the polynomial in n− 1 variables

(5.11) P ∗(Y1, . . . , Yn−2, Z1) = P (Y1, . . . , Yn−2, Z1(1− Y1 − . . .− Yn−2)).

Then P ∗ is not identically zero since P is not identically zero and since the
change of variables

(X1, . . . ,Xn−1) 7→ (Y1, . . . , Yn−2, Z1(1− Y1 − . . .− Yn−2))

is invertible. Now from (5.10), (5.7) it follows that

P ∗(y1, . . . , yn−2, z1) = 0(5.12)

for every solution (y1, . . . , yn−1) of (5.7) and every solution (z1, z2) of (5.8).
We distinguish two cases.

Case 1: There is a solution (z1, z2) of (5.8) such that the polynomial
P ∗z1(Y1, . . . , Yn−2) := P ∗(Y1, . . . , Yn−2, z1) is not identically zero.

Then by (5.12), P ∗z1 is a non-zero polynomial with P ∗z1(y1, . . . , yn−2)
= 0 for every solution (y1, . . . , yn−1) of (5.7). Hence P ∗z1 has total degree
≥ g(1n−1, T ) ≥ A(t). Now by (5.11) this implies that the total degree
g(1n, T ) of P is at least A(t).

Case 2: The polynomial P ∗z1(Y1, . . . , Yn−2) = P ∗(Y1, . . . , Yn−2, z1) is
identically zero for every solution (z1, z2) of (5.8).

Then since (5.8) has at least A(t) solutions, the polynomial P ∗ must
have degree at least A(t) in the variable Z1. By (5.11) this implies that P
has degree at least A(t) in the variable Xn−1. So again we conclude that
the total degree g(1n, T ) of P is at least A(t). This completes our induction
step.

Now let a = (a1, . . . , an) be an arbitrary tuple of non-zero rational num-
bers and let R be the set of primes dividing the product of the numerators
and denominators of a1, . . . , an. Then |R| � 1.
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Let s1 be a positive number such that if s is an integer with s ≥ s1 then
for

t :=
[(

4− ε
4− ε/2

)2

· s
]

+ 1(5.13)

we have
t ≥ t1, t+ |R| < s.

Clearly, s1 is effectively computable in terms of n, a1, . . . , an, ε. Choose s ≥
s1 and let T be a set of t primes with g(1n, T ) ≥ A(t). Choose any set of
primes S of cardinality s containing T ∪R. Then since a1, . . . , an are S-units
and by (5.5), (5.13) we have

g(a, S) = g(1n, S) ≥ g(1n, T ) ≥ A(t) ≥ exp((4− ε)s1/2(log s)−1/2).

6. Proofs of Theorems 3 and 4. We keep the notation from the
previous sections. In particular, K is a number field of degree n ≥ 2 and
α1, . . . , αm are Q-linearly independent elements of OK , where 1 ≤ m ≤
n−1. Constants implied by�,� are effectively computable in terms of K,
α1, . . . , αm and the o-symbols will be with respect to s → ∞ and effective
in terms of K,α1, . . . , αn. By “sufficiently large” we mean that the quantity
under consideration exceeds some constant effectively computable in terms
of K,α1, . . . , αn.

We order the rational primes p by the size of the smallest norm pkp of a
prime ideal dividing (p). Let p1, . . . , ps be the first s primes in this ordering
and put Y = p

kps
s . By the effective version of the Chebotarev density theorem

from [13, Theorems 1.3, 1.4] we have

Y = (1 + o(1))cKs log s.(6.1)

We have to make some further preparations. Choose γ ∈ OK with
Q(γ) = K; then the conjugates γ(1), . . . , γ(n) are distinct. Further, choose
δ ∈ OK which is Q-linearly independent of α1, . . . , αm. Then there are in-
dices i0, i1, . . . , im ∈ {1, . . . , n} such that

∆ :=

∣∣∣∣∣∣∣

α
(i0)
1 . . . α

(i0)
m δ(i0)

...
...

...
α

(im)
1 . . . α

(im)
m δ(im)

∣∣∣∣∣∣∣
6= 0.

Choose a rational prime number p such that p is coprime with γ and with
the differences γ(i) − γ(j) (1 ≤ i < j ≤ n). Further, choose another rational
prime number q such that q is coprime with δ and with ∆. Then by the
Chinese Remainder Theorem, there is a β ∈ OK such that β ≡ γ (modp),
β ≡ δ (mod q) and β is coprime with pq. It is clear that p, q, β can be
determined effectively.
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Lemma 9. For every ξ ∈ OK with ξ ≡ β (mod pq) we have Q(ξ) = K
and ξ is Q-linearly independent of α1, . . . , αm.

Proof. Take ξ ∈ OK with ξ ≡ β (mod pq). Then ξ(i) ≡ β(i) ≡ γ(i) (mod p)
for i = 1, . . . , n, so

ξ(i) − ξ(j) ≡ γ(i) − γ(j) 6≡ 0 (modp)

for 1 ≤ i < j ≤ n, which implies that the conjugates of ξ are distinct. Hence
Q(ξ) = K. Likewise, we have ξ(i) ≡ β(i) ≡ δ(i) (mod q) for i = 1, . . . , n, so

∣∣∣∣∣∣∣

α
(i0)
1 . . . α

(i0)
m ξ(i0)

...
...

...
α

(im)
1 . . . α

(im)
m ξ(im)

∣∣∣∣∣∣∣
≡ ∆ 6≡ 0 (mod q).

Hence the determinant on the left-hand side is 6= 0, and therefore, ξ is
Q-linearly independent of α1, . . . , αm.

Proof of Theorem 3. Let V be the Q-vector space generated by the el-
ements α1, . . . , αm. Choose an integral basis {ω1, . . . , ωn} of OK such that
ω1, . . . , ωm span V ; this can be done effectively. Thus, every ξ ∈ OK can be
expressed uniquely as ξ =

∑n
j=1 xjωj with xj ∈ Z. By applying Cramer’s

rule to ξ(i) =
∑n

j=1 xjω
(i)
j (i = 1, . . . , n) and using the fact that det (ω(i)

j ) 6= 0
we get

max
j=1,...,n

|xj | � max
i=1,...,n

|ξ(i)|.

We combine this with Lemma 7. Choose X > Y . Since by our construction,
β is coprime with pq, it follows that the set of ξ ∈ OK with





ξ =
∑n

j=1 xjωj , xj ∈ Z, |xj| � X1/n for j = 1, . . . , n,

ξ ≡ β (mod pq),

(ξ) composed of prime ideals of norm ≤ Y
has cardinality � ψK,T (X,Y ), where T is the set of prime ideals divid-
ing (pq). Consequently, there is a number

κ =
n∑

j=m+1

yjωj with yj ∈ Z, |yj | � X1/n for j = m+ 1, . . . , n

such that the set of ξ ∈ OK with




ξ = κ+
∑m

j=1 xjωj , xj ∈ Z, |xj| � X1/n for j = 1, . . . ,m,

ξ ≡ β (mod pq),

(ξ) composed of prime ideals of norm ≤ Y

(6.2)

has cardinality � ψK,T (X,Y )/X1−m/n.
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Pick ξ0 satisfying (6.2). Then by Lemma 9, ξ0 is an algebraic integer
such that Q(ξ0) = K and ξ0 is Q-linearly independent of α1, . . . , αm. Since
ω1, . . . , ωm span the same Q-vector space as α1, . . . , αm, there is a positive
rational integer d such that the Z-module generated by dω1, . . . , dωm is
contained in the Z-module generated by α1, . . . , αm. Put α0 := dξ0; then α0
satisfies (2.6).

We have ξ0 = κ+
∑m

j=1 yjωj with yj ∈ Z, |yj | � X1/n for j = 1, . . . ,m.
If for ξ as in (6.2) we write x′j = xj − yj (j = 1, . . . ,m), we get

ξ = ξ0 +
m∑

j=1

x′jωj with x′j ∈ Z, |x′j | � X1/n for j = 1, . . . ,m

(with a larger constant implied by�). By expressing dω1, . . . , dωm as linear
combinations of α1, . . . , αm with coefficients in Z we may express dξ with ξ
satisfying (6.2) as

(6.3) dξ = α0 +
m∑

j=1

x′′jαj with x′′j ∈ Z, |x′′j | � X1/n for j = 1, . . . ,m

(again after enlarging the constant implied by �). Assuming, as we may,
that d is composed of prime ideals of norm at most Y , we deduce for ξ
with (6.2) that (dξ) is composed of prime ideals of norm at most Y . Hence
|NK/Q(dξ)| is composed of p1, . . . , ps. To simplify notation we write xj in-
stead of x′′j . Recalling that the set of elements with (6.2) has cardinality
� ψK,T (X,Y )/X1−m/n and that dξ with ξ as in (6.2) can be expressed
as (6.3), we conclude that the set of tuples (x1, . . . , xm) ∈ Zm with

(6.4)





|NK/Q(α0 + x1α1 + . . .+ xmαm)| = pz11 . . . pzss

for certain z1, . . . , zs ∈ Z,

|xj | � X1/n for j = 1, . . . ,m

has cardinality � ψK,T (X,Y )/X1−m/n.
We have already observed that Y → ∞ as s → ∞. Further, from

Lemma 8 with α = 1 − m/n and from (6.1) it follows that for arbitrar-
ily large Y there is an X with

ψK,T (X,Y )/X1−m/n ≥ exp
{

(1 + o(1))
n

m
Y m/n(log Y )−1

}

≥ exp
{

(1 + o(1))
n

m
(cKs)m/n(log s)m/n−1

}
.

Theorem 3 now follows directly.

Proof of Theorem 4. In the proof of Theorem 3 we have shown that for
every sufficiently large Y and every X > Y there is an α0 with (2.6) and



124 J.-H. Evertse et al.

such that the set of tuples x = (x1, . . . , xm) ∈ Zm with (6.4) has cardinality
� ψK,T (X,Y )/X1−m/n.

Let S = {p1, . . . , ps}. Let P ∈ C[X1, . . . ,Xm] be a non-trivial polynomial
of total degree g= g(α, S) such that for each solution (x1, . . . , xm, z1, . . . , zs)
of (2.4) we have P (x1, . . . , xm) = 0. This implies in particular that P (x) = 0
for each tuple x with (6.4). Now since the tuples (x1, . . . , xm) with (6.4) have
|xj | � X1/n for j = 1, . . . ,m, by Lemma 6 the number of these tuples is
� g(X1/n)m−1. Together with our lower bound � ψK,T (X,Y )/X1−m/n for
the number of tuples with (6.4), this gives

gX(m−1)/n � ψK,T (X,Y )/X1−m/n

or equivalently
g � ψK,T (X,Y )/X1−1/n.

Again Y goes to infinity with s. Further, by Lemma 8 with α = 1−1/n and
(6.1) we see that for Y →∞ there is an X with

ψK,T (X,Y )/X1−1/n ≥ exp{(1 + o(1))nY 1/n(log Y )−1}
≥ exp{(1 + o(1))n(cKs)1/n(log s)1/n−1}.
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