Exceptional units and cyclic resultants

by
C. L. Stewart (Waterloo)

Dedicated to Professor A. Schinzel on the occasion of his 75th birthday

1. Introduction. Let α be a non-zero algebraic integer of degree d over \mathbb{Q}. Put $K=\mathbb{Q}(\alpha)$ and let \mathcal{O}_{K} denote the ring of algebraic integers of K. Let $E(\alpha)$ be the number of positive integers n for which $\alpha^{n}-1$ is a unit in \mathcal{O}_{K}. If $\alpha-1$ is not a unit define $E_{0}(\alpha)$ to be 0 and otherwise define $E_{0}(\alpha)$ to be the largest integer n such that $\alpha^{j}-1$ is a unit for $1 \leq j \leq n$. Next put $\zeta_{n}=e^{2 \pi i / n}$ for each positive integer n and denote by $\Phi_{n}(x)$ the nth cyclotomic polynomial in x, so

$$
\begin{equation*}
\Phi_{n}(x)=\prod_{\substack{j=1 \\(j, n)=1}}^{n}\left(x-\zeta_{n}^{j}\right) \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
x^{n}-1=\prod_{m \mid n} \Phi_{m}(x) \tag{2}
\end{equation*}
$$

We define $U(\alpha)$ to be the number of positive integers n for which $\Phi_{n}(\alpha)$ is a unit.

We proved in [16], following an approach introduced by Schinzel [14] in his study of primitive divisors of expressions of the form $A^{n}-B^{n}$ with A and B algebraic integers, that $\Phi_{n}(\alpha)$ is not a unit for n larger than $e^{452} d^{67}$ provided that α is not a root of unity. In 1995 Silverman [15] proved that there is an effectively computable positive number c such that if α is an algebraic unit of degree $d \geq 2$ that is not a root of unity then

$$
\begin{equation*}
U(\alpha) \leq c d^{1+0.7 / \log \log d} \tag{3}
\end{equation*}
$$

[^0]Note that

$$
\begin{equation*}
E_{0}(\alpha) \leq E(\alpha) \leq U(\alpha) \tag{4}
\end{equation*}
$$

and by (2) and [16, $\alpha^{n}-1$ is not a unit for n larger than $e^{452} d^{67}$. A construction of Mossinghoff, Pinner and Vaaler [12] shows that there are α, not roots of unity, of arbitrarily large degree for which

$$
\begin{equation*}
E_{0}(\alpha) \geq \pi \sqrt{\frac{d}{3}}+O(\log d) \tag{5}
\end{equation*}
$$

In this article we shall strengthen the upper bound for integers n for which $\Phi_{n}(\alpha)$ is a unit and the upper bound for $E_{0}(\alpha)$ given from (3) and (4). For any β in $\mathbb{Q}(\alpha)$ we denote the norm of β from $\mathbb{Q}(\alpha)$ to \mathbb{Q} by $N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \beta$.

Theorem 1. Let ε be a positive real number. There is a positive number $c=c(\varepsilon)$, which is effectively computable in terms of ε, such that if α is a non-zero algebraic integer of degree d over the rationals which is not a root of unity and n is a positive integer for which

$$
\begin{equation*}
\left|N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \Phi_{n}(\alpha)\right| \leq n^{d} \tag{6}
\end{equation*}
$$

then

$$
n<c d^{3+(\log 2+\varepsilon) / \log \log (d+2)}
$$

We now turn our attention to the number of integers n for which (6) holds. We shall modify Silverman's proof of (3) in order to establish the following result.

ThEOREM 2. Let k be a positive integer. There is a positive number $c_{0}=c_{0}(k)$, which is effectively computable in terms of k, such that if α is a non-zero algebraic integer of degree d over the rationals which is not a root of unity then the number of positive integers n with at most k distinct prime factors for which

$$
\begin{equation*}
\left|N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \Phi_{n}(\alpha)\right| \leq n^{d} \tag{7}
\end{equation*}
$$

is at most

$$
c_{0} d(\log (d+1))^{3}(\log \log (d+2))^{k-4}
$$

If $\alpha^{n}-1$ is a unit then so is $\Phi_{n}(\alpha)$ and as a consequence $\left|N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \Phi_{n}(\alpha)\right|$ $=1$. We may then deduce from the proof of Theorem 2 our next result.

Corollary 1. There is an effectively computable positive number c_{1} such that if α is a non-zero algebraic integer of degree d over the rationals then

$$
E_{0}(\alpha) \leq c_{1} d(\log (d+1))^{4} /(\log \log (d+2))^{3}
$$

By definition $\alpha^{j}-1$ is a unit for $1 \leq j \leq E_{0}(\alpha)$ and if α is a unit then, for $1 \leq j<k \leq E_{0}(\alpha)$,

$$
\left(\alpha^{k}-1\right)-\left(\alpha^{j}-1\right)=\alpha^{j}\left(\alpha^{k-j}-1\right)
$$

which is a unit of \mathcal{O}_{K}. Therefore if α is a unit then

$$
\begin{equation*}
E_{0}(\alpha)+2 \leq L(K) \tag{8}
\end{equation*}
$$

where $L(K)$ denotes the Lenstra constant of K. Recall that

$$
\begin{aligned}
& L(K)=\sup \left\{m \mid \text { there exist } w_{1}, \ldots, w_{m} \text { in } \mathcal{O}_{K}\right. \\
& \left.\quad \text { such that } w_{i}-w_{j} \text { is a unit for } 1 \leq i<j \leq m\right\} .
\end{aligned}
$$

Thus we may take w_{1}, \ldots, w_{m} to be $0,1, \alpha, \alpha^{2}, \ldots, \alpha^{E_{0}(\alpha)}$ respectively and (8) follows. Lenstra 11 has shown that if $L(K)$ is large enough with respect to the discriminant of K and an associated packing constant then \mathcal{O}_{K} is Euclidean with respect to the norm map.
2. Cyclic and cyclotomic resultants. For any pair of polynomials f and g from $\mathbb{C}[x]$, let $\operatorname{Res}(f, g)$ denote the resultant of f and g. For a non-constant polynomial f and for each positive integer n define the nth cyclic resultant of f, denoted $R_{n}(f)$, by

$$
R_{n}(f)=\operatorname{Res}\left(f, x^{n}-1\right)
$$

If f factors as $f(x)=a_{d}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right)$ over \mathbb{C} then

$$
\begin{equation*}
R_{n}(f)=a_{d}^{n} \prod_{i=1}^{d}\left(\alpha_{i}^{n}-1\right) \tag{9}
\end{equation*}
$$

The arithmetic character of the numbers $R_{n}(f)$ for $f \in \mathbb{Z}[x]$ has been investigated by Pierce [13] and Lehmer [10] (see also [9]). Further, Fried [5] studied the question of whether the sequence $\left(R_{1}(f), R_{2}(f), \ldots\right)$ characterizes f. He proved, in the case when f is reciprocal with real coefficients, a_{d} is positive and f has no roots which are roots of unity, that the sequence determines f. Hillar [7], and later Bézivin [2, 3], studied the general case and characterized polynomials f and g in $\mathbb{C}[x]$ which generate the same sequence of non-zero cyclic resultants. Hillar and Levine [8] proved that a generic monic polynomial f is determined by its first 2^{d+1} cyclic resultants and conjectured that the first $d+1$ cyclic resultants suffice to determine f. Lehmer [10], in the case where f has integer coefficients, proved that the sequence ($\left.R_{1}(f), R_{2}(f), \ldots\right)$ satisfies a linear recurrence of order at most 2^{d}.

As a consequence of the proof of Theorem 2 we deduce the following.
Corollary 2. There exists an effectively computable positive number c_{2} such that if f is a non-constant monic polynomial with integer coefficients of degree d, different from x^{d}, with $f(1) \neq 0$ and

$$
\begin{equation*}
\left|R_{1}(f)\right|=\cdots=\left|R_{k}(f)\right| \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
k<c_{2} d(\log (d+1))^{4} /(\log \log (d+2))^{3} \tag{11}
\end{equation*}
$$

Let f be a non-constant polynomial with coefficients in \mathbb{C}. For each positive integer n define the nth cyclotomic resultant of f, denoted $C_{n}(f)$, by

$$
C_{n}(f)=\operatorname{Res}\left(f, \Phi_{n}(x)\right)
$$

If f factors as $f(x)=a_{d}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right)$ over \mathbb{C} then

$$
\begin{equation*}
C_{n}(f)=a_{d}^{\varphi(n)} \prod_{i=1}^{d} \Phi_{n}\left(\alpha_{i}\right) \tag{12}
\end{equation*}
$$

where $\varphi(n)$ denotes Euler's φ-function. Thus, by (2),

$$
\begin{equation*}
R_{n}(f)=\prod_{m \mid n} C_{m}(f) \tag{13}
\end{equation*}
$$

It follows, therefore, that if 10 holds and $f(1) \neq 0$, or equivalently $C_{1}(f) \neq 0$, then

$$
\begin{equation*}
\left|C_{2}(f)\right|=\left|C_{3}(f)\right|=\cdots=\left|C_{k}(f)\right|=1 \tag{14}
\end{equation*}
$$

Of course if (14) holds then 10 follows from (13) and we deduce 11 once again.
3. Preliminary lemmas. Let α be an algebraic number of degree d over the rationals and let

$$
f(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}
$$

be the minimal polynomial of α over the rationals. Suppose that f factors over \mathbb{C} as

$$
f(x)=a_{d} \prod_{i=1}^{d}\left(x-\alpha_{i}\right)
$$

The Mahler measure, $M(\alpha)$ of α, is defined by

$$
M(\alpha)=\left|a_{d}\right| \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)
$$

Lemma 1. Let α be a non-zero algebraic integer of degree d and let ε be a positive real number. There is a positive number $d_{0}=d_{0}(\varepsilon)$, which is effectively computable in terms of ε, such that if d exceeds d_{0} and

$$
M(\alpha) \leq 1+(1-\varepsilon)\left(\frac{\log \log d}{\log d}\right)^{3}
$$

then α is a root of unity.
Proof. This is Theorem 1 of Dobrowolski [4].
The Mahler measure is a height function and we may state our next result in terms of it. Let α_{1} and α_{2} be algebraic numbers different from 0
and 1 and let $\log \alpha_{1}, \log \alpha_{2}$ denote the principal values of the logarithms of α_{1} and α_{2} respectively. Let b_{1} and b_{2} be integers, not both zero, of absolute value at most B with $B \geq 3$. Put

$$
\Lambda=b_{1} \log \alpha_{1}+b_{2} \log \alpha_{2} \quad \text { and } \quad d=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]
$$

LEMMA 2. There exists an effectively computable positive number c such that if $\Lambda \neq 0$ then

$$
|\Lambda|>\exp \left(-c d^{2} \log (d+1) \log \left(2 M\left(\alpha_{1}\right)\right) \log \left(2 M\left(\alpha_{2}\right)\right) \log B\right)
$$

Proof. This follows from the main theorem of Baker and Wüstholz [1].
We shall use Lemma 2 in the proof of our next result.
Lemma 3. Let α be a non-zero algebraic integer of degree d over the rationals which is not a root of unity. Let n be a positive integer. There exists an effectively computable positive number c such that

$$
\begin{align*}
\log 2+n & \log \left(\max (|\alpha|, 1) \geq \log \left|\alpha^{n}-1\right|\right. \tag{15}\\
& \geq n \log (\max (|\alpha|, 1))-c d^{2} \log (d+1) \log (2 M(\alpha)) \log 3 n
\end{align*}
$$

Proof. Note that

$$
\log \left|\alpha^{n}-1\right|=n \log |\alpha|+\log \left|\alpha^{-n}-1\right|
$$

and so the left hand inequality of 15 follows directly. For any complex number z, either $1 / 2<\left|e^{z}-1\right|$ or

$$
\frac{1}{2}|z-i k \pi| \leq\left|e^{z}-1\right|
$$

for some integer k. Put $z=n \log (\alpha)$ where the logarithm takes its principal value and put

$$
\Lambda=n \log (\alpha)-i k \pi
$$

where k is chosen to minimize $|\Lambda|$. Observe that k is at most $2 n, \log (-1)=i \pi$ and that

$$
\Lambda=n \log (\alpha)-k \log (-1)
$$

is non-zero since α is not a root of unity. Thus, by Lemma 2,

$$
|\Lambda|>\exp \left(-c d^{2} \log (d+1) \log 3 n \log (2 M(\alpha))\right)
$$

and (15) now follows.
4. Proof of Theorem 1. Let ε be a positive real number and let c_{1}, c_{2}, \ldots be positive numbers which are effectively computable in terms of ε. Let $\alpha=\alpha_{1}, \ldots, \alpha_{d}$ be the conjugates of α over \mathbb{Q}. The inequality

$$
\operatorname{Res}\left(f(x), \Phi_{n}(x)\right)=\prod_{m \mid n} \operatorname{Res}\left(f(x), x^{n}-1\right)^{\mu(n / m)}
$$

implies

$$
\log \left|N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \Phi_{n}(\alpha)\right|=\sum_{i=1}^{d} \sum_{m \mid n} \mu\left(\frac{n}{m}\right) \log \left|\alpha_{i}^{m}-1\right|
$$

and by Lemma 3 this is bounded below by

$$
\varphi(n) \log M(\alpha)-q(n) c_{1} d^{3} \log (d+1) \log (2 M(\alpha)) \log 3 n
$$

where $q(n)=2^{\omega(n)}$ denotes the number of squarefree divisors of n. If n is a positive integer for which (6) holds then

$$
d \log n+q(n) c_{1} d^{3} \log (d+1) \log (2 M(\alpha)) \log 3 n>\varphi(n) \log M(\alpha)
$$

But, by Lemma $1, \log M(\alpha)>c_{2} /(\log (d+1))^{3}$ say, so

$$
\log (2 M(\alpha))<c_{3} \log (M(\alpha))(\log (d+1))^{3}
$$

It then follows that

$$
q(n) c_{4} d^{3}(\log (d+1))^{4} \log (M(\alpha)) \log 3 n>\varphi(n) \log M(\alpha)
$$

hence

$$
\begin{equation*}
\varphi(n) /(q(n) \log 3 n)<c_{4} d^{3}(\log (d+1))^{4} \tag{16}
\end{equation*}
$$

By Theorem 328 of [6],

$$
\varphi(n)>c_{5} n / \log \log 3 n
$$

and by the prime number theorem, for $n>c_{6}$,

$$
q(n)<2^{(1+\varepsilon) \log n / \log \log n}
$$

Thus, by (16),

$$
n<c_{7} d^{3+(\log 2+\varepsilon) / \log \log (d+2)}
$$

as required.
5. Further preliminaries. We shall require an estimate for the nth cyclotomic polynomial on the unit disc in terms of its roots due to Silverman [15].

Lemma 4. If α is a complex number of absolute value at most 1 which is not a root of unity and n is a positive integer then

$$
\left|\Phi_{n}(\alpha)\right| \geq(118 n)^{-(3 / 2) q(n)} \min _{\substack{1 \leq j \leq n \\(j, n)=1}}\left|\alpha-\zeta_{n}^{j}\right|
$$

Proof. This is Proposition 3.3 of [15] provided that one notes that the proof of that proposition remains valid if we replace $\sigma_{0}(m)$, the number of divisors of m, by $q(m)$, the number of squarefree divisors of m.

Lemma 5. Let α be a non-zero algebraic integer of degree d over the rationals which is not a root of unity and let k be a positive integer. There
is a positive number $c(k)$, which is effectively computable in terms of k, such that there are at most d integers n for which (7) holds with n larger than

$$
c(k) d(\log (d+1))^{4} /(\log \log (d+2))^{3}
$$

and composed of at most k distinct prime factors.
Proof. Let c_{1}, c_{2}, \ldots denote positive numbers which are effectively computable in terms of k. Suppose that n is at least 2. Let $\alpha=\alpha_{1}, \ldots, \alpha_{d}$ be the conjugates of α and define $\beta_{1}, \ldots, \beta_{d}$ by

$$
\beta_{i}= \begin{cases}\alpha_{i} & \text { if }\left|\alpha_{i}\right| \leq 1 \\ \alpha_{i}^{-1} & \text { if }\left|\alpha_{i}\right|>1\end{cases}
$$

Then

$$
\begin{equation*}
\left|N_{\mathbb{Q}(\alpha) / \mathbb{Q}} \Phi_{n}(\alpha)\right|=M(\alpha)^{\varphi(n)} \prod_{i=1}^{d}\left|\Phi_{n}\left(\beta_{i}\right)\right| . \tag{17}
\end{equation*}
$$

By Lemma 4,

$$
\begin{equation*}
\prod_{i=1}^{d}\left|\Phi_{n}\left(\beta_{i}\right)\right| \geq n^{-c_{1} d}\left(\min _{\substack{1 \leq i \leq d}}^{\left.\min _{\substack{1 \leq j \leq n \\(j, n)=1}}\left|\beta_{i}-\zeta_{n}^{j}\right|\right)^{d}}\right. \tag{18}
\end{equation*}
$$

Thus, by (7), 17) and (18),

$$
\begin{equation*}
\min _{1 \leq i \leq d} \min _{\substack{1 \leq j \leq n \\(j, n)=1}}\left|\beta_{i}-\zeta_{n}^{j}\right| \leq n^{c_{2}} M(\alpha)^{-\varphi(n) / d} \tag{19}
\end{equation*}
$$

But since n has at most k distinct prime factors, we find that $\varphi(n)>c_{3} n$, and so, by Lemma 1,

$$
\begin{equation*}
M(\alpha)^{-\varphi(n) / d}<e^{-c_{4} n d^{-1}\left(\frac{\log \log (d+2)}{\log (d+1)}\right)^{3}} \tag{20}
\end{equation*}
$$

Thus, by (19) and (20),

$$
\begin{equation*}
\min _{1 \leq i \leq d} \min _{\substack{1 \leq j \leq n \\(j, n)=1}}\left|\beta_{i}-\zeta_{n}^{j}\right|<e^{c_{2} \log n-c_{5} n d^{-1}\left(\frac{\log \log (d+2)}{\log (d+1)}\right)^{3}} \tag{21}
\end{equation*}
$$

Therefore for

$$
\begin{equation*}
n>c_{6} d(\log (d+1))^{4} /(\log \log (d+2))^{3} \tag{22}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\min _{1 \leq i \leq d} \min _{\substack{1 \leq j \leq n \\(j, n)=1}}\left|\beta_{i}-\zeta_{n}^{j}\right|<(d+1)^{-c_{7}} \tag{23}
\end{equation*}
$$

Suppose now that there are $d+1$ integers n satisfying (7) and (22) with at most k distinct prime factors. Then two of the integers, n_{1} and n_{2} say, take the minimum over i in (23) at the same integer i_{0}. In particular there
are integers j_{1} and j_{2} with $1 \leq j_{1} \leq n_{1},\left(j_{1}, n_{1}\right)=1$ and $1 \leq j_{2} \leq n_{2}$, $\left(j_{2}, n_{2}\right)=1$ such that

$$
\left|\beta_{i_{0}}-\zeta_{n_{1}}^{j_{1}}\right|<(d+1)^{-c_{7}} \quad \text { and } \quad\left|\beta_{i_{0}}-\zeta_{n_{2}}^{j_{2}}\right|<(d+1)^{-c_{7}} .
$$

Therefore

$$
\begin{equation*}
\left|\zeta_{n_{1}}^{j_{1}}-\zeta_{n_{2}}^{j_{2}}\right| \leq\left|\beta_{i_{0}}-\zeta_{n_{1}}^{j_{1}}\right|+\left|\beta_{i_{0}}-\zeta_{n_{2}}^{j_{2}}\right|<2(d+1)^{-c_{7}} \tag{24}
\end{equation*}
$$

On the other hand

$$
\left|\zeta_{n_{1}}^{j_{1}}-\zeta_{n_{2}}^{j_{2}}\right|=\left|e^{2 \pi i\left(j_{1} n_{2}-j_{2} n_{1}\right) / n_{1} n_{2}}-1\right|
$$

and since $j_{1} n_{2}-j_{2} n_{1}$ is non-zero,

$$
\begin{equation*}
\left|\zeta_{n}^{j_{1}}-\zeta_{n_{2}}^{j_{2}}\right| \geq\left|e^{2 \pi i / n_{1} n_{2}}-1\right| \geq 1 / n_{1} n_{2} \tag{25}
\end{equation*}
$$

Now, by (24) and (25),

$$
2 n_{1} n_{2}>(d+1)^{c_{7}}
$$

and if we suppose that $n_{1}<n_{2}$ we see that

$$
\begin{equation*}
n_{2}>\left((d+1)^{c_{7}} / 2\right)^{1 / 2} \tag{26}
\end{equation*}
$$

On the other hand, by Theorem 1 with $\varepsilon=1 / 4$,

$$
n_{2}<c_{8}(d+1)^{4}
$$

and this is incompatible with (26) provided c_{7} is sufficiently large. Note that we can ensure that c_{7} is as large as required by choosing c_{6} appropriately. The result now follows.
6. Proof of Theorem 2. By Lemma 5 there are at most d integers n, composed of at most k prime factors, for which (7) holds with n larger than $c(k) d \log (d+1)^{4} /(\log \log (d+2))^{3}$. Our result now follows from estimates for the number of integers up to a given bound having at most k prime factors, see Theorem 437 of [6].
7. Proof of Corollary 1. Let c_{1}, c_{2}, \ldots denote positive effectively computable numbers.

On taking $k=1$ in Lemma 5 we see that provided that α is a non-zero algebraic integer of degree d which is not a root of unity, there are at most d terms $\Phi_{p}(\alpha)$ which are units for p a prime greater than $c(1) d(\log (d+1))^{4} /$ $(\log \log (d+2))^{3}$. Thus there is, by the prime number theorem, a prime p_{1} with

$$
p_{1}<c_{2} d(\log (d+1))^{4} /(\log \log (d+2))^{3}
$$

for which $\Phi_{p_{1}}(\alpha)$ is not a unit, hence for which $\alpha^{p_{1}}-1$ is not a unit. Furthermore, if α is a root of unity of degree d then $\alpha^{n}-1$ is zero for some positive integer n with

$$
n<c_{3} d \log \log (d+2)
$$

since for any positive integer m,

$$
\varphi(m)>c_{4} m / \log \log (m+2)
$$

The result now follows.
8. Proof of Corollary 2. As we remarked in $\S 2$, if 10 holds and $f(1) \neq 0$ then (14) holds. Since f is different from x^{d} there is a non-zero root α of f. Let f_{1} be the irreducible polynomial of α over \mathbb{Q}. Then

$$
1=\left|C_{2}\left(f_{1}\right)\right|=\left|C_{3}\left(f_{1}\right)\right|=\cdots=\left|C_{k}\left(f_{1}\right)\right|
$$

Our result follows from Lemma 5 as in the proof of Corollary 1.
9. Computations for small degrees. Let

$$
\begin{equation*}
f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0} \tag{27}
\end{equation*}
$$

with $a_{0}, a_{1}, \ldots, a_{d-1}$ integers. For d small we shall determine the polynomials f, different from x^{d}, with

$$
\begin{equation*}
1=\left|R_{1}(f)\right|=\cdots=\left|R_{k}(f)\right| \tag{28}
\end{equation*}
$$

and k as large as possible. By 13 this is equivalent to finding f so that

$$
\begin{equation*}
1=\left|C_{1}(f)\right|=\cdots=\left|C_{k}(f)\right| \tag{29}
\end{equation*}
$$

with k as large as possible. Observe that if α is a non-zero algebraic integer of degree d then $E_{0}(\alpha) \leq k$.

In addition to $\sqrt{12}$) we have

$$
C_{n}(f)=\prod_{\substack{j=1 \\(j, n)=1}}^{n} f\left(\zeta_{n}^{j}\right)
$$

or equivalently

$$
C_{n}(f)=\prod_{\substack{j=1 \\(j, n)=1}}^{n}\left(\zeta_{n}^{j d}+a_{d-1} \zeta^{j(d-1)}+\cdots+a_{0}\right)
$$

Let ε_{n} be from $\{1,-1\}$ and put

$$
g_{n, \varepsilon_{n}}\left[y_{0}, \ldots, y_{d-1}\right]=\left(\prod_{\substack{j=1 \\(j, n)=1}}^{n}\left(\zeta_{n}^{j d}+y_{d-1} \zeta^{j(d-1)}+\cdots+y_{0}\right)\right)-\varepsilon_{n}
$$

Note that $g_{n, \varepsilon_{n}}$ is a polynomial with integer coefficients.
Let $V_{n}\left(\varepsilon_{n}\right)$ be the affine variety over \mathbb{C} defined by

$$
V_{n}\left(\varepsilon_{n}\right)=\left\{\left(t_{0}, \ldots, t_{d-1}\right) \in \mathbb{C}^{d} \mid g_{n, \varepsilon_{n}}\left(t_{0}, \ldots, t_{d-1}\right)=0\right\}
$$

There is a monic polynomial f with integer coefficients satisfying (29) and different from x^{d} provided that for some sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)$ with ε_{i} in
$\{1,-1\}$ for $i=1, \ldots, k$ there is an integer point $\left(a_{0}, \ldots, a_{d-1}\right)$, different from $(0,0, \ldots, 0)$, on the variety

$$
\begin{equation*}
V_{1}\left(\varepsilon_{1}\right) \cap \cdots \cap V_{k}\left(\varepsilon_{k}\right) \tag{30}
\end{equation*}
$$

We have used Groebner basis techniques to study varieties of the form (30) for small degrees d. In particular, we call on the program Basis in the Groebner package in the symbolic computation system Maple. By taking k to be d and considering each possible sequence $\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$ in turn we are able to find all polynomials f of degree d satisfying 28 and 29 for $k=d$ and $d=1, \ldots, 6$. On calling on Basis in reverse lexicographic order we find, as the first term in the Groebner basis, a polynomial in t_{0} which we then test for integer roots. Once t_{0} is determined we then proceed to t_{1}, \ldots, t_{d-1}. In this manner we have found that the largest integer k for which (28) holds is d for $d=1, \ldots, 6$ and that for $d=7$ we have $k=6$. We give below the complete list of polynomials of degree d, different from x^{d}, for which (28) holds with $k=d$ and $d=1, \ldots, 6$:

d	$f(x)$	d	$f(x)$
1	$x-2$	4	$x^{4}+x^{3}-1$
			$x^{4}-x-1$
2	$x^{2}+x-1$	5	$x^{5}+x^{4}+x^{3}-x-1$
	$x^{2}-x-1$		
	$x^{2}-2$		$x^{5}+x^{4}-x^{2}-x-1$
3	$x^{3}+x^{2}-1$	6	$x^{6}+x^{4}-1$
	$x^{3}-x-1$		$x^{6}-x^{2}-1$

For none of these polynomials does 28 hold with $k=d+1$.
For $d=7$ there are no monic polynomials with integer coefficients, different from x^{7}, for which (28) holds with $k=7$. Note that $x\left(x^{6}+x^{4}-1\right)$ and $x\left(x^{6}-x^{2}-1\right)$ are monic polynomials of degree 7 with integer coefficients, different from x^{7}, for which (28) holds with $k=6$. However there are no polynomials f of degree 7 as in (27) with $\left|a_{0}\right|=1$ for which 28 holds with $k=6$. By contrast there are exactly two polynomials f as in (27) of degree 8 with $\left|a_{0}\right|=1$ for which (28) holds with $k=7$, and they are

$$
x^{8}+x^{7}+x^{6}+x^{5}-x^{2}-x-1 \quad \text { and } \quad x^{8}+x^{7}+x^{6}-x^{3}-x^{2}-x-1
$$

The computations for the results in this paragraph required 38.7 CPU days and they were done on the cluster Gamay at the University of Waterloo and supported by a CFI/OIT grant. I would like to thank Kevin G. Hare for providing access to this cluster and for helping me to adapt my computer program to this setting.

For any positive integer d let us define $e(d)$ by

$$
e(d)=\max \left\{E_{0}(\alpha) \mid \alpha \text { an algebraic integer of degree } d\right\} .
$$

Our results show that

$$
e(d)=d \quad \text { for } d=1, \ldots, 6
$$

and that

$$
e(7)<7 \quad \text { and } \quad e(8) \geq 7 .
$$

We suspect that $e(d)<d$ for $d \geq 7$.
Acknowledgments. This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

References

[1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[2] J.-P. Bézivin, Sur les résultants cycliques, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 157-160.
[3] J.-P. Bézivin, Résultants cycliques et polynômes cyclotomiques, Acta Arith. 131 (2008), 171-181.
[4] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
[5] D. Fried, Cyclic resultants of reciprocal polynomials, in: Holomorphic Dynamics (Mexico, 1986), Lecture Notes in Math. 1345, Springer, 1988, 124-128.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
[7] C. J. Hillar, Cyclic resultants, J. Symbolic Comput. 39 (2005), 653-669; Erratum, ibid. 40 (2005), 1126-1127.
[8] C. J. Hillar and L. Levine, Polynomial recurrences and cyclic resultants, Proc. Amer. Math. Soc. 135 (2007), 1607-1618.
[9] J. C. Lagarias and A. M. Odlyzko, Divisibility properties of some cyclotomic sequences, Amer. Math. Monthly 87 (1980), 561-564.
[10] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
[11] H. W. Lenstra, Jr., Euclidean number fields of large degree, Invent. Math. 38 (1977), 237-254.
[12] M. J. Mossinghoff, C. G. Pinner and J. D. Vaaler, Perturbing polynomials with all their roots on the unit circle, Math. Comp. 67 (1998), 1707-1726.
[13] T. A. Pierce, The numerical factors of the arithmetic forms $\prod_{i=1}^{n}\left(1 \pm \alpha_{i}^{m}\right)$, Ann. of Math. 18 (1916), 53-64.
[14] A. Schinzel, Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27-33.
[15] J. H. Silverman, Exceptional units and numbers of small Mahler measure, Experiment. Math. 4 (1995), 69-83.
[16] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977, 79-92.
C. L. Stewart

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario, Canada
E-mail: cstewart@uwaterloo.ca

Received on 9.11.2011
and in revised form on 22.2.2012
(6885)

[^0]: 2010 Mathematics Subject Classification: Primary 11R27; Secondary 11J68. Key words and phrases: units, resultants, Groebner basis.

