Exceptional units and cyclic resultants

by

C. L. STEWART (Waterloo)

Dedicated to Professor A. Schinzel on the occasion of his 75th birthday

1. Introduction. Let α be a non-zero algebraic integer of degree d over \mathbb{Q} . Put $K = \mathbb{Q}(\alpha)$ and let \mathcal{O}_K denote the ring of algebraic integers of K. Let $E(\alpha)$ be the number of positive integers n for which $\alpha^n - 1$ is a unit in \mathcal{O}_K . If $\alpha - 1$ is not a unit define $E_0(\alpha)$ to be 0 and otherwise define $E_0(\alpha)$ to be the largest integer n such that $\alpha^j - 1$ is a unit for $1 \leq j \leq n$. Next put $\zeta_n = e^{2\pi i/n}$ for each positive integer n and denote by $\Phi_n(x)$ the nth cyclotomic polynomial in x, so

(1)
$$\Phi_n(x) = \prod_{\substack{j=1\\(j,n)=1}}^n (x - \zeta_n^j).$$

Then

(2)
$$x^n - 1 = \prod_{m|n} \Phi_m(x).$$

We define $U(\alpha)$ to be the number of positive integers n for which $\Phi_n(\alpha)$ is a unit.

We proved in [16], following an approach introduced by Schinzel [14] in his study of primitive divisors of expressions of the form $A^n - B^n$ with Aand B algebraic integers, that $\Phi_n(\alpha)$ is not a unit for n larger than $e^{452}d^{67}$ provided that α is not a root of unity. In 1995 Silverman [15] proved that there is an effectively computable positive number c such that if α is an algebraic unit of degree $d \geq 2$ that is not a root of unity then

(3)
$$U(\alpha) \le cd^{1+0.7/\log\log d}$$

²⁰¹⁰ Mathematics Subject Classification: Primary 11R27; Secondary 11J68. Key words and phrases: units, resultants, Groebner basis.

Note that

(4)
$$E_0(\alpha) \le E(\alpha) \le U(\alpha),$$

and by (2) and [16], $\alpha^n - 1$ is not a unit for *n* larger than $e^{452}d^{67}$. A construction of Mossinghoff, Pinner and Vaaler [12] shows that there are α , not roots of unity, of arbitrarily large degree for which

(5)
$$E_0(\alpha) \ge \pi \sqrt{\frac{d}{3}} + O(\log d).$$

In this article we shall strengthen the upper bound for integers n for which $\Phi_n(\alpha)$ is a unit and the upper bound for $E_0(\alpha)$ given from (3) and (4). For any β in $\mathbb{Q}(\alpha)$ we denote the norm of β from $\mathbb{Q}(\alpha)$ to \mathbb{Q} by $N_{\mathbb{Q}(\alpha)/\mathbb{Q}}\beta$.

THEOREM 1. Let ε be a positive real number. There is a positive number $c = c(\varepsilon)$, which is effectively computable in terms of ε , such that if α is a non-zero algebraic integer of degree d over the rationals which is not a root of unity and n is a positive integer for which

(6) $|N_{\mathbb{Q}(\alpha)/\mathbb{Q}}\Phi_n(\alpha)| \le n^d$

then

$$n < cd^{3 + (\log 2 + \varepsilon)/\log\log(d+2)}$$

We now turn our attention to the number of integers n for which (6) holds. We shall modify Silverman's proof of (3) in order to establish the following result.

THEOREM 2. Let k be a positive integer. There is a positive number $c_0 = c_0(k)$, which is effectively computable in terms of k, such that if α is a non-zero algebraic integer of degree d over the rationals which is not a root of unity then the number of positive integers n with at most k distinct prime factors for which

(7)
$$|N_{\mathbb{Q}(\alpha)/\mathbb{Q}}\Phi_n(\alpha)| \le n^d$$

is at most

$$c_0 d(\log(d+1))^3 (\log\log(d+2))^{k-4}.$$

If $\alpha^n - 1$ is a unit then so is $\Phi_n(\alpha)$ and as a consequence $|N_{\mathbb{Q}(\alpha)/\mathbb{Q}}\Phi_n(\alpha)| = 1$. We may then deduce from the proof of Theorem 2 our next result.

COROLLARY 1. There is an effectively computable positive number c_1 such that if α is a non-zero algebraic integer of degree d over the rationals then

 $E_0(\alpha) \le c_1 d(\log(d+1))^4 / (\log\log(d+2))^3.$

By definition $\alpha^j - 1$ is a unit for $1 \leq j \leq E_0(\alpha)$ and if α is a unit then, for $1 \leq j < k \leq E_0(\alpha)$,

$$(\alpha^{k} - 1) - (\alpha^{j} - 1) = \alpha^{j} (\alpha^{k-j} - 1),$$

which is a unit of \mathcal{O}_K . Therefore if α is a unit then

(8)
$$E_0(\alpha) + 2 \le L(K),$$

where L(K) denotes the Lenstra constant of K. Recall that

$$L(K) = \sup\{m \mid \text{there exist } w_1, \dots, w_m \text{ in } \mathcal{O}_K$$

such that $w_i - w_j$ is a unit for $1 \le i < j \le m\}$

Thus we may take w_1, \ldots, w_m to be $0, 1, \alpha, \alpha^2, \ldots, \alpha^{E_0(\alpha)}$ respectively and (8) follows. Lenstra [11] has shown that if L(K) is large enough with respect to the discriminant of K and an associated packing constant then \mathcal{O}_K is Euclidean with respect to the norm map.

2. Cyclic and cyclotomic resultants. For any pair of polynomials f and g from $\mathbb{C}[x]$, let $\operatorname{Res}(f,g)$ denote the resultant of f and g. For a non-constant polynomial f and for each positive integer n define the nth cyclic resultant of f, denoted $R_n(f)$, by

$$R_n(f) = \operatorname{Res}(f, x^n - 1).$$

If f factors as $f(x) = a_d(x - \alpha_1) \cdots (x - \alpha_d)$ over \mathbb{C} then

(9)
$$R_n(f) = a_d^n \prod_{i=1}^d (\alpha_i^n - 1).$$

The arithmetic character of the numbers $R_n(f)$ for $f \in \mathbb{Z}[x]$ has been investigated by Pierce [13] and Lehmer [10] (see also [9]). Further, Fried [5] studied the question of whether the sequence $(R_1(f), R_2(f), \ldots)$ characterizes f. He proved, in the case when f is reciprocal with real coefficients, a_d is positive and f has no roots which are roots of unity, that the sequence determines f. Hillar [7], and later Bézivin [2, 3], studied the general case and characterized polynomials f and g in $\mathbb{C}[x]$ which generate the same sequence of non-zero cyclic resultants. Hillar and Levine [8] proved that a generic monic polynomial f is determined by its first 2^{d+1} cyclic resultants and conjectured that the first d + 1 cyclic resultants suffice to determine f. Lehmer [10], in the case where f has integer coefficients, proved that the sequence $(R_1(f), R_2(f), \ldots)$ satisfies a linear recurrence of order at most 2^d . As a consequence of the proof of Theorem 2 we deduce the following.

As a consequence of the proof of Theorem 2 we deduce the following.

COROLLARY 2. There exists an effectively computable positive number c_2 such that if f is a non-constant monic polynomial with integer coefficients of degree d, different from x^d , with $f(1) \neq 0$ and

(10)
$$|R_1(f)| = \dots = |R_k(f)|$$

then

(11)
$$k < c_2 d(\log(d+1))^4 / (\log\log(d+2))^3$$

Let f be a non-constant polynomial with coefficients in \mathbb{C} . For each positive integer n define the nth cyclotomic resultant of f, denoted $C_n(f)$, by

$$C_n(f) = \operatorname{Res}(f, \Phi_n(x)).$$

If f factors as $f(x) = a_d(x - \alpha_1) \cdots (x - \alpha_d)$ over \mathbb{C} then

(12)
$$C_n(f) = a_d^{\varphi(n)} \prod_{i=1}^d \Phi_n(\alpha_i),$$

where $\varphi(n)$ denotes Euler's φ -function. Thus, by (2),

(13)
$$R_n(f) = \prod_{m|n} C_m(f).$$

It follows, therefore, that if (10) holds and $f(1) \neq 0$, or equivalently $C_1(f) \neq 0$, then

(14)
$$|C_2(f)| = |C_3(f)| = \dots = |C_k(f)| = 1.$$

Of course if (14) holds then (10) follows from (13) and we deduce (11) once again.

3. Preliminary lemmas. Let α be an algebraic number of degree d over the rationals and let

$$f(x) = a_d x^d + \dots + a_1 x + a_0$$

be the minimal polynomial of α over the rationals. Suppose that f factors over \mathbb{C} as

$$f(x) = a_d \prod_{i=1}^d (x - \alpha_i).$$

The Mahler measure, $M(\alpha)$ of α , is defined by

$$M(\alpha) = |a_d| \prod_{i=1}^d \max(1, |\alpha_i|).$$

LEMMA 1. Let α be a non-zero algebraic integer of degree d and let ε be a positive real number. There is a positive number $d_0 = d_0(\varepsilon)$, which is effectively computable in terms of ε , such that if d exceeds d_0 and

$$M(\alpha) \le 1 + (1 - \varepsilon) \left(\frac{\log \log d}{\log d}\right)^3,$$

then α is a root of unity.

Proof. This is Theorem 1 of Dobrowolski [4].

The Mahler measure is a height function and we may state our next result in terms of it. Let α_1 and α_2 be algebraic numbers different from 0 and 1 and let $\log \alpha_1$, $\log \alpha_2$ denote the principal values of the logarithms of α_1 and α_2 respectively. Let b_1 and b_2 be integers, not both zero, of absolute value at most B with $B \geq 3$. Put

$$\Lambda = b_1 \log \alpha_1 + b_2 \log \alpha_2 \quad \text{and} \quad d = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}].$$

LEMMA 2. There exists an effectively computable positive number c such that if $\Lambda \neq 0$ then

 $|\Lambda| > \exp(-cd^2\log(d+1)\log(2M(\alpha_1))\log(2M(\alpha_2))\log B).$

Proof. This follows from the main theorem of Baker and Wüstholz [1].

We shall use Lemma 2 in the proof of our next result.

LEMMA 3. Let α be a non-zero algebraic integer of degree d over the rationals which is not a root of unity. Let n be a positive integer. There exists an effectively computable positive number c such that

(15)
$$\log 2 + n \log(\max(|\alpha|, 1) \ge \log |\alpha^n - 1|$$
$$\ge n \log(\max(|\alpha|, 1)) - cd^2 \log(d+1) \log(2M(\alpha)) \log 3n.$$

Proof. Note that

$$\log |\alpha^{n} - 1| = n \log |\alpha| + \log |\alpha^{-n} - 1|,$$

and so the left hand inequality of (15) follows directly. For any complex number z, either $1/2 < |e^z - 1|$ or

$$\frac{1}{2}|z - ik\pi| \le |e^z - 1|$$

for some integer k. Put $z = n \log(\alpha)$ where the logarithm takes its principal value and put

$$\Lambda = n \log(\alpha) - ik\pi$$

where k is chosen to minimize |A|. Observe that k is at most 2n, $\log(-1) = i\pi$ and that

$$\Lambda = n\log(\alpha) - k\log(-1)$$

is non-zero since α is not a root of unity. Thus, by Lemma 2,

 $|\Lambda| > \exp(-cd^2\log(d+1)\log 3n\log(2M(\alpha))),$

and (15) now follows.

4. Proof of Theorem 1. Let ε be a positive real number and let c_1, c_2, \ldots be positive numbers which are effectively computable in terms of ε . Let $\alpha = \alpha_1, \ldots, \alpha_d$ be the conjugates of α over \mathbb{Q} . The inequality

$$\operatorname{Res}(f(x), \Phi_n(x)) = \prod_{m|n} \operatorname{Res}(f(x), x^n - 1)^{\mu(n/m)}$$

implies

$$\log |N_{\mathbb{Q}(\alpha)/\mathbb{Q}} \Phi_n(\alpha)| = \sum_{i=1}^d \sum_{m|n} \mu\left(\frac{n}{m}\right) \log |\alpha_i^m - 1|,$$

and by Lemma 3 this is bounded below by

 $\varphi(n)\log M(\alpha) - q(n)c_1d^3\log(d+1)\log(2M(\alpha))\log 3n,$

where $q(n) = 2^{\omega(n)}$ denotes the number of squarefree divisors of n. If n is a positive integer for which (6) holds then

$$d\log n + q(n)c_1d^3\log(d+1)\log(2M(\alpha))\log 3n > \varphi(n)\log M(\alpha).$$

But, by Lemma 1, $\log M(\alpha) > c_2/(\log(d+1))^3$ say, so

$$\log(2M(\alpha)) < c_3 \log(M(\alpha))(\log(d+1))^3.$$

It then follows that

$$q(n)c_4d^3(\log(d+1))^4\log(M(\alpha))\log 3n > \varphi(n)\log M(\alpha),$$

hence

(16)
$$\varphi(n)/(q(n)\log 3n) < c_4 d^3 (\log(d+1))^4$$

By Theorem 328 of [6],

 $\varphi(n) > c_5 n / \log \log 3n,$

and by the prime number theorem, for $n > c_6$,

$$q(n) < 2^{(1+\varepsilon)\log n/\log\log n}.$$

Thus, by (16),

 $n < c_7 d^{3 + (\log 2 + \varepsilon) / \log \log(d + 2)}$

as required.

5. Further preliminaries. We shall require an estimate for the nth cyclotomic polynomial on the unit disc in terms of its roots due to Silverman [15].

LEMMA 4. If α is a complex number of absolute value at most 1 which is not a root of unity and n is a positive integer then

$$|\Phi_n(\alpha)| \ge (118n)^{-(3/2)q(n)} \min_{\substack{1 \le j \le n \\ (j,n)=1}} |\alpha - \zeta_n^j|.$$

Proof. This is Proposition 3.3 of [15] provided that one notes that the proof of that proposition remains valid if we replace $\sigma_0(m)$, the number of divisors of m, by q(m), the number of squarefree divisors of m.

LEMMA 5. Let α be a non-zero algebraic integer of degree d over the rationals which is not a root of unity and let k be a positive integer. There

is a positive number c(k), which is effectively computable in terms of k, such that there are at most d integers n for which (7) holds with n larger than

$$c(k)d(\log(d+1))^4/(\log\log(d+2))^3$$

and composed of at most k distinct prime factors.

Proof. Let c_1, c_2, \ldots denote positive numbers which are effectively computable in terms of k. Suppose that n is at least 2. Let $\alpha = \alpha_1, \ldots, \alpha_d$ be the conjugates of α and define β_1, \ldots, β_d by

$$\beta_i = \begin{cases} \alpha_i & \text{if } |\alpha_i| \le 1, \\ \alpha_i^{-1} & \text{if } |\alpha_i| > 1. \end{cases}$$

Then

(17)
$$|N_{\mathbb{Q}(\alpha)/\mathbb{Q}}\Phi_n(\alpha)| = M(\alpha)^{\varphi(n)} \prod_{i=1}^d |\Phi_n(\beta_i)|$$

By Lemma 4,

(18)
$$\prod_{i=1}^{d} |\Phi_n(\beta_i)| \ge n^{-c_1 d} \left(\min_{\substack{1 \le i \le d \\ (j,n)=1}} \min_{\substack{1 \le j \le n \\ (j,n)=1}} |\beta_i - \zeta_n^j| \right)^d.$$

Thus, by (7), (17) and (18),

(19)
$$\min_{\substack{1 \le i \le d \\ (j,n)=1}} \lim_{|\beta_i - \zeta_n^j| \le n^{c_2} M(\alpha)^{-\varphi(n)/d}.$$

But since n has at most k distinct prime factors, we find that $\varphi(n) > c_3 n$, and so, by Lemma 1,

(20)
$$M(\alpha)^{-\varphi(n)/d} < e^{-c_4 n d^{-1} (\frac{\log \log(d+2)}{\log(d+1)})^3}$$

Thus, by (19) and (20),

(21)
$$\min_{\substack{1 \le i \le d \ 1 \le j \le n \\ (j,n)=1}} |\beta_i - \zeta_n^j| < e^{c_2 \log n - c_5 n d^{-1} (\frac{\log \log(d+2)}{\log(d+1)})^3}.$$

Therefore for

(22)
$$n > c_6 d(\log(d+1))^4 / (\log\log(d+2))^3$$

we find that

(23)
$$\min_{\substack{1 \le i \le d \\ (j,n)=1}} \min_{\substack{1 \le j \le n \\ (j,n)=1}} |\beta_i - \zeta_n^j| < (d+1)^{-c_7}.$$

Suppose now that there are d+1 integers n satisfying (7) and (22) with at most k distinct prime factors. Then two of the integers, n_1 and n_2 say, take the minimum over i in (23) at the same integer i_0 . In particular there are integers j_1 and j_2 with $1 \le j_1 \le n_1$, $(j_1, n_1) = 1$ and $1 \le j_2 \le n_2$, $(j_2, n_2) = 1$ such that

$$|\beta_{i_0} - \zeta_{n_1}^{j_1}| < (d+1)^{-c_7}$$
 and $|\beta_{i_0} - \zeta_{n_2}^{j_2}| < (d+1)^{-c_7}$.

Therefore

(24)
$$|\zeta_{n_1}^{j_1} - \zeta_{n_2}^{j_2}| \le |\beta_{i_0} - \zeta_{n_1}^{j_1}| + |\beta_{i_0} - \zeta_{n_2}^{j_2}| < 2(d+1)^{-c_7}.$$

On the other hand

$$|\zeta_{n_1}^{j_1} - \zeta_{n_2}^{j_2}| = |e^{2\pi i (j_1 n_2 - j_2 n_1)/n_1 n_2} - 1|,$$

and since $j_1n_2 - j_2n_1$ is non-zero,

(25)
$$|\zeta_n^{j_1} - \zeta_{n_2}^{j_2}| \ge |e^{2\pi i/n_1 n_2} - 1| \ge 1/n_1 n_2.$$

Now, by (24) and (25),

$$2n_1n_2 > (d+1)^{c_7},$$

and if we suppose that $n_1 < n_2$ we see that

(26) $n_2 > ((d+1)^{c_7}/2)^{1/2}.$

On the other hand, by Theorem 1 with $\varepsilon = 1/4$,

 $n_2 < c_8(d+1)^4$

and this is incompatible with (26) provided c_7 is sufficiently large. Note that we can ensure that c_7 is as large as required by choosing c_6 appropriately. The result now follows.

6. Proof of Theorem 2. By Lemma 5 there are at most d integers n, composed of at most k prime factors, for which (7) holds with n larger than $c(k)d\log(d+1)^4/(\log\log(d+2))^3$. Our result now follows from estimates for the number of integers up to a given bound having at most k prime factors, see Theorem 437 of [6].

7. Proof of Corollary 1. Let c_1, c_2, \ldots denote positive effectively computable numbers.

On taking k = 1 in Lemma 5 we see that provided that α is a non-zero algebraic integer of degree d which is not a root of unity, there are at most d terms $\Phi_p(\alpha)$ which are units for p a prime greater than $c(1)d(\log(d+1))^4/(\log\log(d+2))^3$. Thus there is, by the prime number theorem, a prime p_1 with

$$p_1 < c_2 d(\log(d+1))^4 / (\log\log(d+2))^3$$

for which $\Phi_{p_1}(\alpha)$ is not a unit, hence for which $\alpha^{p_1} - 1$ is not a unit. Furthermore, if α is a root of unity of degree d then $\alpha^n - 1$ is zero for some positive integer n with

$$n < c_3 d \log \log(d+2)$$

since for any positive integer m,

$$\varphi(m) > c_4 m / \log \log(m+2).$$

The result now follows.

8. Proof of Corollary 2. As we remarked in §2, if (10) holds and $f(1) \neq 0$ then (14) holds. Since f is different from x^d there is a non-zero root α of f. Let f_1 be the irreducible polynomial of α over \mathbb{Q} . Then

$$1 = |C_2(f_1)| = |C_3(f_1)| = \dots = |C_k(f_1)|$$

Our result follows from Lemma 5 as in the proof of Corollary 1.

9. Computations for small degrees. Let

(27)
$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_0$$

with $a_0, a_1, \ldots, a_{d-1}$ integers. For d small we shall determine the polynomials f, different from x^d , with

(28)
$$1 = |R_1(f)| = \dots = |R_k(f)|$$

and k as large as possible. By (13) this is equivalent to finding f so that

(29)
$$1 = |C_1(f)| = \dots = |C_k(f)|$$

with k as large as possible. Observe that if α is a non-zero algebraic integer of degree d then $E_0(\alpha) \leq k$.

In addition to (12) we have

$$C_n(f) = \prod_{\substack{j=1\\(j,n)=1}}^n f(\zeta_n^j),$$

or equivalently

$$C_n(f) = \prod_{\substack{j=1\\(j,n)=1}}^n (\zeta_n^{jd} + a_{d-1}\zeta^{j(d-1)} + \dots + a_0).$$

Let ε_n be from $\{1, -1\}$ and put

$$g_{n,\varepsilon_n}[y_0,\ldots,y_{d-1}] = \left(\prod_{\substack{j=1\\(j,n)=1}}^n (\zeta_n^{jd} + y_{d-1}\zeta^{j(d-1)} + \cdots + y_0)\right) - \varepsilon_n.$$

Note that g_{n,ε_n} is a polynomial with integer coefficients.

Let $V_n(\varepsilon_n)$ be the affine variety over \mathbb{C} defined by

$$V_n(\varepsilon_n) = \{(t_0, \ldots, t_{d-1}) \in \mathbb{C}^d \mid g_{n,\varepsilon_n}(t_0, \ldots, t_{d-1}) = 0\}.$$

There is a monic polynomial f with integer coefficients satisfying (29) and different from x^d provided that for some sequence $(\varepsilon_1, \ldots, \varepsilon_k)$ with ε_i in

 $\{1,-1\}$ for $i = 1, \ldots, k$ there is an integer point (a_0, \ldots, a_{d-1}) , different from $(0, 0, \ldots, 0)$, on the variety

(30)
$$V_1(\varepsilon_1) \cap \cdots \cap V_k(\varepsilon_k).$$

We have used Groebner basis techniques to study varieties of the form (30) for small degrees d. In particular, we call on the program **Basis** in the Groebner package in the symbolic computation system **Maple**. By taking k to be d and considering each possible sequence $(\varepsilon_1, \ldots, \varepsilon_d)$ in turn we are able to find all polynomials f of degree d satisfying (28) and (29) for k = d and $d = 1, \ldots, 6$. On calling on **Basis** in reverse lexicographic order we find, as the first term in the Groebner basis, a polynomial in t_0 which we then test for integer roots. Once t_0 is determined we then proceed to t_1, \ldots, t_{d-1} . In this manner we have found that the largest integer k for which (28) holds is d for $d = 1, \ldots, 6$ and that for d = 7 we have k = 6. We give below the complete list of polynomials of degree d, different from x^d , for which (28) holds with k = d and $d = 1, \ldots, 6$:

d	f(x)	d	f(x)
1	x-2	4	$x^4 + x^3 - 1$
			$x^4 - x - 1$
2	$x^2 + x - 1$	5	$x^5 + x^4 + x^3 - x - 1$
	$x^2 - x - 1$		$x^5 + x^4 - x^2 - x - 1$
	$x^2 - 2$		
3	$x^3 + x^2 - 1$	6	$x^6 + x^4 - 1$
	$x^3 - x - 1$		$x^6 - x^2 - 1$

For none of these polynomials does (28) hold with k = d + 1.

For d = 7 there are no monic polynomials with integer coefficients, different from x^7 , for which (28) holds with k = 7. Note that $x(x^6 + x^4 - 1)$ and $x(x^6 - x^2 - 1)$ are monic polynomials of degree 7 with integer coefficients, different from x^7 , for which (28) holds with k = 6. However there are no polynomials f of degree 7 as in (27) with $|a_0| = 1$ for which (28) holds with k = 6. By contrast there are exactly two polynomials f as in (27) of degree 8 with $|a_0| = 1$ for which (28) holds with k = 7, and they are

$$x^{8} + x^{7} + x^{6} + x^{5} - x^{2} - x - 1$$
 and $x^{8} + x^{7} + x^{6} - x^{3} - x^{2} - x - 1$.

The computations for the results in this paragraph required 38.7 CPU days and they were done on the cluster Gamay at the University of Waterloo and supported by a CFI/OIT grant. I would like to thank Kevin G. Hare for providing access to this cluster and for helping me to adapt my computer program to this setting. For any positive integer d let us define e(d) by

 $e(d) = \max\{E_0(\alpha) \mid \alpha \text{ an algebraic integer of degree } d\}.$

Our results show that

$$e(d) = d \quad \text{for } d = 1, \dots, 6$$

and that

$$e(7) < 7$$
 and $e(8) \ge 7$.

We suspect that e(d) < d for $d \ge 7$.

Acknowledgments. This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

References

- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62.
- [2] J.-P. Bézivin, Sur les résultants cycliques, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 157–160.
- [3] J.-P. Bézivin, Résultants cycliques et polynômes cyclotomiques, Acta Arith. 131 (2008), 171–181.
- [4] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391–401.
- [5] D. Fried, Cyclic resultants of reciprocal polynomials, in: Holomorphic Dynamics (Mexico, 1986), Lecture Notes in Math. 1345, Springer, 1988, 124–128.
- [6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- C. J. Hillar, Cyclic resultants, J. Symbolic Comput. 39 (2005), 653–669; Erratum, ibid. 40 (2005), 1126–1127.
- C. J. Hillar and L. Levine, *Polynomial recurrences and cyclic resultants*, Proc. Amer. Math. Soc. 135 (2007), 1607–1618.
- J. C. Lagarias and A. M. Odlyzko, Divisibility properties of some cyclotomic sequences, Amer. Math. Monthly 87 (1980), 561–564.
- [10] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461–479.
- H. W. Lenstra, Jr., Euclidean number fields of large degree, Invent. Math. 38 (1977), 237–254.
- [12] M. J. Mossinghoff, C. G. Pinner and J. D. Vaaler, *Perturbing polynomials with all their roots on the unit circle*, Math. Comp. 67 (1998), 1707–1726.
- [13] T. A. Pierce, The numerical factors of the arithmetic forms $\prod_{i=1}^{n} (1 \pm \alpha_i^m)$, Ann. of Math. 18 (1916), 53–64.
- [14] A. Schinzel, Primitive divisors of the expression Aⁿ Bⁿ in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27–33.
- J. H. Silverman, Exceptional units and numbers of small Mahler measure, Experiment. Math. 4 (1995), 69–83.

C. L. Stewart

[16] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977, 79–92.

C. L. Stewart Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada E-mail: cstewart@uwaterloo.ca

> Received on 9.11.2011 and in revised form on 22.2.2012

(6885)