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1. Introduction. For any set X let |X| denote its cardinality and for
any integer n, larger than one, let ω(n) denote the number of distinct prime
factors of n and let P (n) denote the greatest prime factor of n. Denote the
set of positive integers by N. In 1934 Erdős and Turán [5] proved that there
exists a positive number c1 such that for any non-empty finite subset A
of N,

(1.1) ω
( ∏

a,a′∈A

(a+ a′)
)
> c1 log |A|.

In 1986, Győry, Stewart and Tijdeman [12] proved that this result can
be extended to the case when the summands are taken from different sets.
They proved that there is a positive number c2 such that for any finite
subsets A and B of N with |A| ≥ |B| ≥ 2 we have

(1.2) ω
( ∏

a∈A, b∈B

(a+ b)
)
> c2 log |A|.

Moreover, in 1988, Erdős, Stewart and Tijdeman [4] showed that (1.2) is
not far from best possible. They proved that there is a positive number c3
such that for each integer k, with k ≥ 3, there exist sets of positive integers
A and B with k = |A| ≥ |B| ≥ 2 satisfying

(1.3) ω
( ∏

a∈A, b∈B

(a+ b)
)
< c3(log |A|)2 log log |A|.
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If A and B are dense subsets of N then estimates (1.1) and (1.2) may be
strengthened. Let ε and δ be positive real numbers and let N be a positive
integer. Let A and B be subsets of {1, . . . , N} of cardinality at least δN.
In [3], Erdős, Pomerance, Sárközy and Stewart proved that there exists a
positive number N0, which is effectively computable in terms of ε and δ,
such that if N exceeds N0 then there exists an integer a from A and an
integer b from B for which

(1.4) ω(a+ b) > (1− ε)(logN)/ log logN.

Sárközy and Stewart [17] were able to show that a lower bound of the same
order of magnitude holds even under a much weaker density condition. Let
θ be a real number with 1/2 < θ ≤ 1 and let N be a positive integer. They
proved that there exists a positive number c4, which is effectively computable
in terms of θ, such that if A and B are subsets of {1, . . . , N}, N exceeds c4
and

(|A| · |B|)1/2 ≥ Nθ,

then there exists an integer a from A and an integer b from B for which

(1.5) ω(a+ b) >
1
6

(
θ − 1

2

)2

(logN)/ log logN.

In the same article [17], they estimated the average value of ω(a+ b). They
showed that if A and B are subsets of {1, . . . , N} with (|A| · |B|)1/2 =
N exp(−(logN)o(1)) then

(1.6)
1

|A| · |B|
∑
a∈A

∑
b∈B

ω(a+ b) > (1 + o(1)) log logN.

For further results of this type we refer to [15], [22] and [23].
In 1992, Sárközy [16] commenced the study of the multiplicative ana-

logues of the above results, where in place of terms a + b one considers
terms ab + 1. In particular, he proved the multiplicative analogue of (1.4).
Let ε and δ be positive real numbers and let N be a positive integer. Let
A be a subset of {1, . . . , N} of cardinality at least δN. He proved that there
exists a positive number N1, which is effectively computable in terms of ε
and δ, such that if N exceeds N1 then there exist integers a and a′ from A
such that

(1.7) ω(aa′ + 1) > (1− ε)(logN)/ log logN.

We remark that this is slightly weaker than (1.4) since only the special case
A = B is covered and since while one cannot replace the factor 1−ε in (1.4)
by 1 + ε one expects (1.7) to hold with 2− ε in place of 1− ε.

Our goal in this paper is to study the multiplicative analogues of
(1.1)–(1.3), (1.5) and (1.6).
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2. Lower bounds. We will prove the following multiplicative analogue
of (1.2).

Theorem 1. Let A and B be finite subsets of N with |A| ≥ |B| ≥ 2.
Then

ω
( ∏

a∈A, b∈B

(ab+ 1)
)
> c5 log |A|,

where c5 is an effectively computable positive constant.

Both (1.2) and Theorem 1 are special cases of Theorem 2 below.

Theorem 2. Let n ≥ 2 be an integer , and let A and B be finite subsets
of Nn with |A| ≥ |B| ≥ 2(n − 1) and with the following properties: the
n-th coordinate of each vector in A is equal to 1 and any n vectors in B ∪
(0, . . . , 0, 1) are linearly independent. Then

(2.1) ω
( ∏

(a1,...,an)∈A
(b1,...,bn)∈B

(a1b1 + . . .+ anbn)
)
> c6 log |A|

with an effectively computable positive number c6.

Note that (1.2) follows from Theorem 2 by taking n = 2 and b1 = 1 for
all (b1, b2) in B. Further, for n = 2, Theorem 2 gives Theorem 1 if b2 = 1
for each (b1, b2) in B.

The next theorem is a slightly modified version of Theorem 2. A vector
a = (a1, . . . , an) in Nn is called primitive if a1, . . . , an are relatively prime.

Theorem 3. Let n ≥ 2 be an integer , and let A and B be finite subsets
of Nn with |A| ≥ |B| ≥ 2n− 1 and with the following properties: A consists
of primitive vectors and any n vectors in B are linearly independent. Then
the lower estimate (2.1) holds.

In Theorems 2 and 3 all assumptions are necessary. For example, the
vectors a in A must be primitive, since otherwise the left-hand side of (2.1)
may assume the value

ω
( ∏

(b1,...,bn)∈B

(a1b1 + . . .+ anbn)
)

for each a = (a1, . . . , an) in A. This is the case if A consists of vectors of
the form pma, m = 1, 2, . . . , where p is a prime and a is in Nn. Further, it
is easy to see that the lower bounds 2(n − 1) and 2n − 1, respectively, for
|B| cannot be lowered and that the linear independence of the vectors in B,
respectively in B ∪ (0, . . . , 0, 1), is necessary.

Since the nth prime can be estimated from below by a constant times
n log n, Theorem 1 implies the following result.
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Corollary 1. Let A and B be finite subsets of N with |A| ≥ |B| ≥ 2.
Then there exist a in A and b in B such that

P (ab+ 1) > c7 log |A| log log |A|,

where c7 is an effectively computable positive constant.

Theorems 2 and 3 have similar consequences. An easy consequence of
Theorem 1 is as follows.

Corollary 2. Let A be a finite subset of N with |A| ≥ 2. Then

ω
( ∏

a,a′∈A
a6=a′

(aa′ + 1)
)
> c8 log |A|,

where c8 is an effectively computable positive constant.

We remark that a similar lower bound can be given for the total number
of distinct prime factors of the special numbers of the form aa′+1 with a′ = a
and a in A. For if p1, . . . , ps are the distinct prime factors of

∏
a∈A(a2 + 1),

then all x = a in A satisfy the equation x2 + 1 = pz1
1 . . . pzs

s in positive
integers x and non-negative integers z1, . . . , zs. Now Theorem 2 of Evertse
[6] gives |A| ≤ 3 · 76+4s, whence

ω
( ∏

a∈A

(a2 + 1)
)
> c9 log |A|

follows with an effectively computable positive constant c9. We note that
this result has no additive analogue.

By Corollary 2 there exist distinct a, a′ in A with P (aa′ + 1) → ∞ as
|A| → ∞. This suggests the following conjecture.

Conjecture. Let a, b and c denote distinct positive integers. If
max(a, b, c) →∞ then

P ((ab+ 1)(bc+ 1)(ca+ 1)) →∞.

To prove Theorems 2 and 3, we shall need two lemmas. Let

F (x) = F (x1, . . . , xn) ∈ Z[x1, . . . , xn]

be a decomposable form of degree r, that is a homogeneous polynomial
which factorizes into linear forms l1(x), . . . , lr(x) over a finite extension of
Q. Let R be a subring of Q which is finitely generated over Z, so that
R = Z

[
1

p1...ps

]
with s a non-negative integer and p1, . . . , ps distinct prime

numbers. Consider the decomposable form equation

(2.2) F (x) ∈ R∗ with x = (x1, . . . , xn) ∈ Rn,
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where R∗ denotes the multiplicative group of units of R. If x is a solution
of (2.2) then so is εx for every ε in R∗. A set of solutions of the form R∗x
is called an R∗-coset of solutions.

In [8], Evertse and Győry gave a finiteness criterion for equation (2.2).
In the special case when the splitting field of F is Q this criterion can be
formulated in the following form. Denote by L0 a maximal subset of pairwise
linearly independent linear forms in {l1, . . . , lr}. For any system L of linear
forms from Q[x1, . . . , xn], we denote by V (L) the Q-vector space generated
by the forms of L. Then we have the following lemma.

Lemma 1. Suppose that the linear factors l1, . . . , lr of F have rational
coefficients. Then the following two statements are equivalent :

(i) The forms in L0 have rank n over Q and for each proper non-empty
subset L1 of L0 there is a linear form in L0 which is contained both in V (L1)
and in V (L0\L1);

(ii) The number of R∗-cosets of solutions of (2.2) is finite for every
finitely generated subring R of Q.

P r o o f. This is an immediate consequence of Theorem 2 and the Propo-
sition in [8].

Using a result of Schlickewei [19] on S-unit equations, Győry [10] gave
an upper bound for the number of families of solutions of (2.2). This implies
an upper bound for the number of R∗-cosets of solutions of (2.2), provided
that condition (i) in Lemma 1 is fulfilled. Recently Evertse [7] has improved
this latter bound by proving the following result.

Lemma 2. If the finiteness condition (i) of Lemma 1 holds, then equation
(2.2) has at most (233r2)n3(s+1) R∗-cosets of solutions.

The proof depends on Evertse’s improvement of the quantitative sub-
space theorems of Schmidt [21] and Schlickewei [20].

P r o o f o f T h e o r e m 2. It suffices to prove the theorem for the case
when B has cardinality 2(n−1). Put r = 2n−1. Let bi = (bi1, . . . , bin) be the
elements of B for i = 1, . . . , r−1, and put br = (br1, . . . , brn) = (0, . . . , 0, 1).
Let li(x) = bi1x1 + . . . + binxn for i = 1, . . . , r. Then F (x) = l1(x) . . . lr(x)
is a decomposable form of degree r with coefficients in Z which factorizes
into linear factors over Q. Denote by p1, . . . , ps the distinct prime factors of
the product ∏

(a1,...,an)εA
i=1,...,r

(a1bi1 + . . .+ anbin),

and by R the ring Z
[

1
p1...ps

]
. Then we have s > 0. Since, by assumption,

an = 1 for all (a1, . . . , an) ∈ A, all the vectors a = (a1, . . . , an) in A are
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solutions of the decomposable form equation (2.2) and these solutions belong
to distinct R∗-cosets.

We use now an idea from the proof of Theorem 3 of [11]. Put L0 =
{l1, . . . , lr}. By assumption, the forms in L0 have rank n and are pairwise
linearly independent over Q. Consider an arbitrary proper non-empty subset
L1 of L0. Since r = 2n− 1, at least one of L1 and L0\L1 has cardinality at
least n. If |L1| ≥ n then L1 has rank n. In this case we have L0\L1 ⊆ V (L1)
and so L0\L1 is contained both in V (L1) and in V (L0\L1). If |L0\L1| ≥ n,
we get in the same way that L1 is contained in V (L1) and V (L0\L1). We
can now apply Lemmas 1 and 2 to equation (2.2). We get

|A| ≤ (233(2n− 1)2)n3(s+1).

Our result now follows by taking logarithms.

P r o o f o f T h e o r e m 3. Theorem 3 can be proved in a similar way
as Theorem 2 above.

3. An upper bound. In this section we will prove the multiplicative
analogue of (1.3). Erdős, Stewart and Tijdeman [4] proved a result which
includes (1.3) as a special case. Let ε > 0. For instance, it follows from
Theorem 1 of [4] that there is a positive number c10 which is effectively
computable in terms of ε, such that if k is an integer larger than c10 and l
is an integer with 2 ≤ l ≤ (log k)/ log log k then there exists a set of positive
integers A of cardinality k and a set of non-negative integers of cardinality
l such that

(3.1) P
( ∏

a∈A

∏
b∈B

(a+ b)
)
<

(
(1 + ε)

log k
l

log
(

log k
l

))l

.

In this section we shall prove the following result.

Theorem 4. Let ε be a positive real number and let k and l be positive
integers with

k ≥ 16 and 2 ≤ l ≤
(

log log k
log log log k

)1/2

.

There exists a positive number c11(ε), which is effectively computable in
terms of ε, such that if k exceeds c11(ε) then there are sets of positive integers
A and B with |A| = k and |B| = l for which

(3.2) P
( ∏

a∈A

∏
b∈B

(ab+ 1)
)
< (log k)l+1+ε.

Of course estimate (3.2) also applies with ω in place of P . While the
estimate (3.2) is weaker than (3.1) it is worth noting that we have allowed
B to include 0 in the additive case and not in the multiplicative case. In the
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latter case we may certainly add 0 to B and so increase the cardinality of B
by 1 without affecting the upper bound. On the other hand, (3.1) applies
over a wider range for l. Indeed, Erdős, Stewart and Tijdeman were able
to obtain significant improvements on the trivial estimate k + l for l in the
range 2 ≤ l ≤ θ log k for any real number θ less than 1 (see Theorem 2 of
[4]). We are able to extend the range for l in the statement of Theorem 4
and bound the largest elements of A and B at the cost of some precision in
our upper bound in (3.2).

Theorem 5. Let k and l be positive integers with k ≥ 3. There exist
effectively computable positive numbers c12 and c13 such that if k exceeds
c12 and

2 ≤ l ≤ c13(log k)/ log log k,
then there are subsets A and B of {1, . . . , k3} with |A| = k and |B| = l for
which

(3.3) P
( ∏

a∈A

∏
b∈B

(ab+ 1)
)
< (log k)5l.

One reason that the upper bounds (3.2) and (3.3) are not as sharp as
(3.1) is that we must replace Lemma 1 of [4] by Lemma 4 below.

Lemma 3. Let N,L, t and l be positive integers with

(3.4) 4lL ≤ t.

Let S be a set of N elements and let A1, . . . , At be subsets of S with at least
N/L elements. Then there exist distinct integers i1, . . . , il such that

|Ai1 ∩ . . . ∩Ail
| ≥ N/(4L)l.

P r o o f. Let a1, . . . , aN be the elements of A and put

M = max
1≤i1<...<il≤t

|Ai1 ∩ . . . ∩Ail
|

and
Z =

∑
1≤i1<...<il≤t

|Ai1 ∩ . . . ∩Ail
|.

We have

(3.5) Z ≤M

(
t

l

)
≤Mtl/l!.

Further, on putting Nj = |{i : 1 ≤ i ≤ t, aj ∈ Ai}| for j = 1, . . . , N, we see
that

Z =
∑

1≤i1<...<il≤t

∑
1≤j≤N

aj∈Ai1∩...∩Ail

1(3.6)



372 K. Győry et al.

=
N∑

j=1

∑
1≤i1<...<il≤t

aj∈Ai1∩...∩Ail

1 =
N∑

j=1

(
Nj

l

)
.

We shall now estimate
∑N

j=1

(
Nj

l

)
from below. To this end we note that

N∑
j=1

Nj =
N∑

j=1

∑
1≤i≤t
aj∈Ai

1 =
t∑

i=1

∑
1≤j≤N
aj∈Ai

1 =
t∑

j=1

|Ai|,

hence that

(3.7)
N∑

j=1

Nj ≥ Nt/L.

Put
J = {j : 1 ≤ j ≤ N, Nj > t/(2L)}.

We have, by (3.7),

(3.8)
∑
j∈J

Nj =
N∑

j=1

Nj −
∑

1≤j≤N
j 6∈J

Nj ≥
N∑

j=1

Nj −
Nt

2L
≥ Nt

2L
.

Further, by (3.4), for all j in J ,

(3.9)
(
Nj

l

)
=
Nj(Nj − 1) . . . (Nj − l + 1)

l!
≥ (Nj/2)l

l!
.

Since, for any positive real numbers x1, . . . , xu,
u∑

i=1

xl
i ≥

( u∑
i=1

xi

)l

/ul−1,

we have, from (3.8) and (3.9),

(3.10)
∑
j∈J

(
Nj

l

)
≥ 1

2ll!

(
Nt

2L

)l

N−l+1 =
N

(4L)l
· t

l

l!
.

Our result now follows from (3.5), (3.6) and (3.10).

Lemma 4. Let N,L and l be positive integers with l ≤ L ≤ N and let X
and Y be non-empty sets of positive integers such that

(3.11) 4lL ≤ |X|,
and for each x in X there are at least N/L integers j with 1 ≤ j ≤ N for
which jx is in Y . Then there is a subset A of {1, . . . , N} and a subset B of
X with

(3.12) |B| = l and |A| ≥ N/(4L)l,

for which A ·B ⊂ Y.
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P r o o f. We apply Lemma 3 with S = {1, . . . , N}, t = |X|, X = {x1, . . .
. . . , xt} and Ai = {j : 1 ≤ j ≤ N and jxi ∈ Y } for i = 1, . . . , t. Note
that |Ai| ≥ N/L for i = 1, . . . , t. Then there exist distinct integers i1, . . . , il
such that |Ai1 ∩ . . . ∩ Ail

| ≥ N/(4L)l. Put A = Ai1 ∩ . . . ∩ Ail
and B =

{xi1 , . . . , xil
}. Our result now follows.

Lemma 5. Let M be an integer , N a positive integer and aM+1, . . . , aM+N

complex numbers. For each character χ put

T (χ) =
M+N∑

n=M+1

anχ(n).

Then for any Q ≥ 1, we have∑
q≤Q

q

ϕ(q)

∑
χ (mod q)

∗ |T (χ)|2 ≤ (Q2 + πN)
M+N∑

n=M+1

|an|2,

where
∑∗

χ (mod q) denotes a sum over all primitive characters modulo q.

P r o o f. This character version of the large sieve is due to Gallagher [9].

Lemma 6. Let R be a positive integer , J a subset of {1, . . . , R} and Q a
real number with Q ≥ 1. For each prime p, denote the number of solutions
of the congruence

rr′ ≡ 1 (mod p),

with r and r′ in J , by F (J, p) and denote the number of the integers in J
divisible by p by G(J, p). Then∑

p≤Q

p

∣∣∣∣F (J, p)− 1
p− 1

(|J | −G(J, p))2
∣∣∣∣ ≤ (Q2 + πR)|J |.

P r o o f. Let χ0 denote the principal character modulo p. We have

F (J, p) =
∑
r∈J

∑
r′∈J

1
ϕ(p)

∑
χ (mod p)

χ(rr′)

=
1

p− 1

∑
χ (mod p)

( ∑
r∈J

χ(r)
)2

=
1

p− 1

(( ∑
r∈J
p - r

1
)2

+
∑

χ6=χ0 (mod p)

( ∑
r∈J

χ(r)
)2)

=
1

p− 1

(
(|J | −G(J, p))2 +

∑
χ (mod p)

∗ ( ∑
r∈J

χ(r)
)2)
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whence∣∣∣∣F (J, p)− 1
p− 1

(|J | −G(J, p))2
∣∣∣∣ ≤ 1

p− 1

∑
χ (mod p)

∗ ∣∣∣ ∑
r∈J

χ(r)
∣∣∣2.

By Lemma 5, it follows that∑
p≤Q

p

∣∣∣∣F (J, p)− 1
p− 1

(|J | −G(J, p))2
∣∣∣∣ ≤ (Q2 + πR)|J |.

Let ψ(x, y) be the number of positive integers not exceeding x which are
free of prime divisors larger than y.

Lemma 7. Let x be a positive integer and u a real number with u ≥ 3.
There exists an effectively computable constant c14 such that

ψ(x, x1/u) ≥ x exp
(
− u

(
log u+ log log u− 1 + c14

(
log log u

log u

)))
.

P r o o f. See Theorem 3.1 of Canfield, Erdős and Pomerance [1].

For any positive integer n let τ(n) denote the number of positive divisors
of n.

Lemma 8. There is an effectively computable number c15 such that if N
is a positive integer larger than c15 and A is a subset of {1, . . . , N} then the
set A′ = {a : a ∈ A and τ(a) < (4N logN)/|A|} satisfies

(3.13) |A′| > |A|/2.

P r o o f. There is an effectively computable number N0 such that for
N > N0,

(3.14)
∑
a∈A

τ(a) ≤
N∑

n=1

τ(n) < 2N logN

(see, for instance, Theorem 320 of [13]). On the other hand, we have∑
a∈A

τ(a) ≥
∑

a∈(A\A′)

τ(a) ≥
∑

a∈(A\A′)

(4N logN)/|A|

so

(3.15)
∑
a∈A

τ(a) ≥ 2N logN(2− 2|A′|/|A|).

It follows from (3.14) and (3.15) that 2 − 2|A′|/|A| < 1 and this implies
(3.13).

P r o o f o f T h e o r e m 4. We may assume, without loss of generality,
that 0 < ε < 1. Let C1, C2, . . . denote positive numbers which are effectively
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computable in terms of ε. Let N be a positive integer larger than 30 and let
l be a positive integer with

(3.16) 2 ≤ l ≤ ((log logN)/ log log logN)1/2.

For any real number x let [x] denote the greatest integer less than or
equal to x. Put R = [N (l+1)/(2l)], Q = 2N1/l and y = (logR)l+1+ε. Let J
denote the set of positive integers n with n ≤ R and P (n) ≤ y. Put

u =
logR

(l + 1 + ε) log logR
,

and notice that for N > C1 we have u ≥ 3, hence, by Lemma 7,

(3.17) |J | ≥ ψ(R, y) ≥ R exp
(
−u

(
log u+log log u−1+c14

(
log log u

log u

)))
.

Thus, for N > C2,

|J | ≥ R1−1/(l+1+ε) = Rl/(l+1)+ε/((l+1)(l+1+ε)),

whence

(3.18) |J | ≥ N1/2Nε/(3l(l+1))

for N > C3.

Let F be the set of integers of the form rr′ − 1 with r, r′ in J . Define
F (J, p) to be the number of pairs (r, r′) with rr′ − 1 divisible by p and let
G(J, p) be the number of integers in J divisible by p.

Let E be the set of primes p with Q/2 < p ≤ Q for which

(3.19) F (J, p) > |J |2/(2Q),

and let E be the other primes in this range. Observe that for N > C4,
y < Q/2, so G(J, p) = 0 whenever p exceeds Q/2. Thus for p ∈ E we have

(3.20)
1

p− 1
(|J | −G(J, p))2 =

|J |2

p− 1
≥ |J |2

Q
.

From Lemma 6, we deduce that∑
p∈E

p

∣∣∣∣F (J, p)− 1
p− 1

(|J | −G(J, p))2
∣∣∣∣ ≤ (Q2 + πR)|J |.

Since for p in E we have, by (3.18) and (3.19),∣∣∣∣F (J, p)− 1
p− 1

(|J | −G(J, p))2
∣∣∣∣ > |J |2/(2Q),

it follows that

(3.21) |E| · |J |2/4 ≤ (Q2 + πR)|J |,
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hence that |E| ≤ 32 max(N2/l/|J |, R/|J |) . Thus, by (3.18),

|E| ≤
{
N1/2N−ε/20 for l = 2,
N1/(2l) for l 6= 2,

for N > C5. However, for N > C6, there are at least Q/(3 logQ) primes p
with Q/2 < p ≤ Q. Further, for N > C7, |E| < Q/(6 logQ), whence

(3.22) |E| > Q/(6 logQ).

For each prime p in E there are more than |J |2/(2Q) pairs (r, r′) with
r and r′ in R for which p divides rr′ − 1. Put D = maxn≤R τ(n). By, for
instance, Theorem 317 of [13],

D < exp(logN/ log logN)

for N > C8. Moreover, if an integer n can be represented in the form rr′

with r and r′ in R then it can be represented in at most D2 ways in this
form. Thus, for each prime p in E there are at least |J |2/(2D2Q) distinct
integers f with f = rr′ − 1 and for which p divides f. Let j = f/p and
notice that

1 ≤ j ≤ R2/(Q/2) < N.

For N > C9, we have
|J |2/(2D2Q) ≥ N/L,

where

(3.23) L = 1
4N

1/l−ε/(4l(l+1)).

We may now apply Lemma 4 with X = E and Y = F . We remark that
condition (3.11) applies for N > C10 by virtue of (3.22) and (3.23). We find
that there is a subset A1 of {1, . . . , N} and a subset B of E with |B| = l
and

|A1| ≥ N/(4l)l = Nε/(4(l+1)),

for which A1 ·B is contained in F .
Let k be an integer larger than 15 and let l be an integer with

2 ≤ l ≤
(

log log k
log log log k

)1/2

.

Choose N so that
k = [Nε/(4(l+1))].

Since k ≤ N , (3.16) holds and provided that k exceeds C11, we may find A1

and B as above. Let A be a subset of A1 with |A| = k. Notice that

(ε/(5(l + 1))) logN < log k

for N > C12 and that

logR ≤ ((l + 1)/(2l)) logN.
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Thus, for k > C13, we have

y ≤ ((5(l + 1)2/(2εl)) log k)l+1+ε ≤ (log k)l+1+2ε.

Since P (ab + 1) is at most y whenever a is in A and b is in B, our result
follows.

P r o o f o f T h e o r e m 5. Our proof of Theorem 5 is a modification
of the proof of Theorem 4. Let C1, C2, . . . denote effectively computable
positive numbers. Let k be a positive integer, θ be a positive real number
and l be an integer with

(3.24) 2 ≤ l ≤ (θ log k)/ log log k.

Put N = k3, Q = 2N1/2 and R = [N3/4]. Let

(3.25) y = (logR)14l/3

and put

u = (14 logR)/(3l log logR).

Let J ′ denote the set of positive integers n with n ≤ R and P (n) ≤ y. If
θ < C1 we have u ≥ 3 and so (3.17) holds with J ′ in place of J . Further if
θ < C2 we have

−1 + c14((log log u)/ log u) < 0,

and so, for k > C3,

|J ′| ≥ 2N (3/4)(1−3/(14l)).

We may now apply Lemma 7 to find a subset J of J ′ with |J | ≥ |J ′|/2,
hence for which

(3.26) |J | ≥ N (3/4)(1−3/(14l)),

and for which D, the maximum of τ(n) for n in J, satisfies

D < 4R logR/|J ′|.

Thus, for k > C4,

(3.27) D < 2N9/(56l) logN.

We now define F,E and E, as in the proof of Theorem 4. We again
apply Lemma 6 to deduce that (3.21) holds. Consequently, for k > C5, we
find that |E| ≤ 20N/|J |, and, from (3.26), we see that |E| < Q/(6 logQ),
whence (3.22) holds.

Therefore, as in the proof of Theorem 4, we find that there are at least
|J |2/(2D2Q) distinct integers f with f = rr′−1, r and r′ in J, and for which
p divides f. Let j = f/p and notice that 1 ≤ j ≤ N . Further, we have

|J |2/(2D2Q) ≥ N/(16N36/(56l)(logN)2).



378 K. Győry et al.

Thus, for θ < C6 and k > C7, we have

|J |2/(2D2Q) ≥ N/L,

where

(3.28) L = 1
4N

2/(3l).

We may now apply Lemma 4 with X = E and Y = F . For θ < C8,
(3.11) holds by virtue of (3.24) and (3.28). We find that there is a subset
A1 of {1, . . . , N} and a subset B of E with |B| = l and

|A1| ≥ N/(4l)l = N1/3,

for which A1 · B is contained in F. We now let A be a subset of A1 with
|A| = k. Take θ = 1

2 min(C1, C2, C6, C8). Then for k > C9, (3.24) holds and

P
( ∏

a∈A

∏
b∈B

(ab+ 1)
)
<

(
9
4

log k
)14l/3

< (log k)5l,

as required.

4. Terms with many prime factors. In this section we shall establish
the multiplicative analogue of (1.5). For the proof we shall require the
following result which was derived with the aid of the large sieve inequality.

Lemma 9. Let N be a positive integer and let A and B be non-empty
subsets of {1, . . . , N}. Let α and β be real numbers with α > 1. Let T be
the set of primes p which satisfy β < p ≤ (logN)α and let S be a subset
of T consisting of all but at most 2 logN elements of T . There is a real
number c16, which is effectively computable in terms of α and β, such that
if N exceeds c16 and

(|A| · |B|)1/2 ≥ N (1+1/α)/2/10

then there is a prime p from S and elements a from A and b from B such
that p divides ab+ 1.

P r o o f. This is Lemma 3 of [18].

We shall use Lemma 9 to prove the next result.

Theorem 6. Let θ be a real number with 1/2 < θ ≤ 1 and let N be
a positive integer. There exists a positive number c17, which is effectively
computable in terms of θ, such that if A and B are subsets of {1, . . . , N}
with N greater than c17 and

(4.1) (|A| · |B|)1/2 ≥ Nθ,

then there exists an integer a from A and an integer b from B for which

(4.2) ω(ab+ 1) > 1
6 (θ − 1/2)2 logN/ log logN.
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P r o o f. Our proof is very similar to the proof of Theorem 1 of [17]. We
have repeated parts of that argument here for the convenience of the reader.

Let θ1 = (θ + 1/2)/2 and define G and v by

G = (logN)1/(2θ1−1),

and

(4.3) v =
[
1
6
(θ − 1/2)2

logN
log logN

]
+ 1,

respectively.
Put A0 = A,B0 = B and W0 = ∅. We shall construct inductively sets

A1, . . . , Av, B1, . . . , Bv and W1, . . . ,Wv with the following properties. First,
Wi is a set of i primes q satisfying 10 < q ≤ G,Ai ⊆ Ai−1 and Bi ⊆ Bi−1

for i = 1, . . . , v. Secondly, every element of the set AiBi + 1 is divisible by
each prime in Wi for i = 1, . . . , v. Finally,

(4.4) |Ai| ≥ |A|/G3i and |Bi| ≥ |B|/G3i

for i = 1, . . . , v. Note that this suffices to prove our result since Av and Bv

are both non-empty and on taking a from Av and b from Bv we find that
ab+ 1 is divisible by the v primes from Wv and so (4.2) follows from (4.3).

Suppose that i is an integer with 0 ≤ i < v and that Ai, Bi and Wi

have been constructed with the above properties. We shall now show how
to construct Ai+1, Bi+1 and Wi+1. First, for each prime p with 10 < p ≤ G
let a1, . . . , aj(p) be representatives for those residue classes modulo p which
are occupied by fewer than |Ai|/p3 terms of Ai. For each prime p with
10 < p ≤ G we remove from Ai those terms of Ai which are congruent to
one of a1, . . . , aj(p) modulo p. We are left with a subset A′

i of Ai with

(4.5) |A′
i| ≥ |Ai|

(
1−

∑
10<p≤G

j(p)
p3

)
≥ |Ai|

(
1−

∑
10<p

1
p3

)
≥ |Ai|

10

and such that for each prime p with 10 < p ≤ G and each a′ in A′
i, the

number of terms of Ai which are congruent to a′ modulo p is at least |Ai|/p3.
Similarly, we produce a subset B′

i of Bi with

(4.6) |B′
i| ≥ |Bi|/10

and such that for each prime p with 10 < p ≤ G and each residue class
modulo p which contains an element of B′

i the number of terms of Bi in the
residue class is at least |Bi|/p3.

The number of terms in Wi is i which is less than v and, by (4.3), is at
most logN. Further by (4.4), we find that

(4.7) (|Ai| · |Bi|)1/2 = (|A| · |B|)1/2G−3i ≥ Nθ1 .
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Therefore, by (4.5)–(4.7),

(|A′
i| · |B′

i|)1/2 ≥ Nθ1/10.

We now apply Lemma 9 with A = A′
i, B = B′

i, β = 10, α = 1/(θ−1/2) and
S the set of primes p with 10 < p ≤ G for which p is not in Wi. We find
that provided that N exceeds a number which is effectively computable in
terms of θ, there is a prime qi+1 in S, an element a′ in A′

i and an element
b′ in B′

i such that qi+1 divides a′b′ + 1. We put

Ai+1 = {a ∈ Ai : a ≡ a′ (mod qi+1)},
Bi+1 = {b ∈ Bi : b ≡ b′ (mod qi+1)},

and
Wi+1 = Wi ∪ {qi+1}.

By our construction every element of Ai+1Bi+1+1 is divisible by each prime
in Wi+1. Further, we have, by (4.4),

|Ai+1| ≥
|Ai|
q3i+1

≥ |Ai|
G3

≥ |A|
G3(i+1)

,

and

|Bi+1| ≥
|B|

G3(i+1)
,

as required. Our result now follows.

5. Terms with few prime factors. Let N and l be positive integers
with l < logN. Pomerance, Sárközy and Stewart [14] proved that there
exists an effectively computable positive number C18 such that if N exceeds
C18 then there exist subsets A and B of {1, . . . , N} with |B| = l and

|A| > N

l(logN)l
,

such that every element of A + B is prime. We shall prove the following
result.

Theorem 7. Let N and l be positive integers with

(5.1) l ≤ logN
2 log logN

.

For N sufficiently large, there exists a set B of l prime numbers from
{1, . . . , [(logN)3]} and a subset A of {1, . . . , N} with

|A| ≥ N

(8 logN)l
,

such that ab+ 1 is a prime whenever a is from A and b is from B.
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The proof depends on the Siegel–Walfisz theorem for primes in arithmeti-
cal progressions and as a consequence is ineffective in nature. In particular,
we are not able to replace the requirement that N be sufficiently large with
the requirement that N be larger than an effectively computable positive
number.

Let ε be a positive real number. It follows from Theorem 6 that if A and
B are subsets of {1, . . . , N} with |A| · |B| > N1+ε then

(5.2) max
a∈A, b∈B

ω(ab+ 1) →∞

as N → ∞. Taking l = 2 in the statement of Theorem 7 we see that there
are subsets A and B of {1, . . . , N} with |B| = 2 and

|A| ≥ N

64(logN)2

for which

(5.3) max
a∈A, b∈B

ω(ab+ 1) = 1.

Thus if we measure the size of A and B in terms of the geometric mean of
the cardinalities of A and B, we have determined, up to a factor of ε, when
(5.2) holds. On the other hand, if we measure the size of A and B in terms
of the minimum of |A| and |B|, a different situation applies. Certainly, (5.2)
holds if

(5.4) min(|A|, |B|) > N1/2+ε

by Theorem 6. Further, by Theorem 7 we see that there are subsets A and
B of {1, . . . , N} with

(5.5) min(|A|, |B|) ≥
[

logN
2 log logN

]
for which (5.3) holds. There is a large gap between (5.4) and (5.5). We
suspect that (5.5) is closer to the truth.

P r o o f o f T h e o r e m 7. Let X denote the set of prime numbers less
than (logN)3. By the prime number theorem we have

|X| > (logN)3

4 log logN
for N sufficiently large. Let Y denote the set of integers of the form p− 1,
where p is a prime. By the Siegel–Walfisz theorem (see for example [2],
p. 133) if q is in X then the number of integers j with 1 ≤ j ≤ N for which
qj is in Y , or equivalently for which qj+1 is prime, is (1+o(1)) qN

(q−1) log N and
so for N sufficiently large exceeds N/L, where L = 2[logN ]. We may now
apply Lemma 4 with l satisfying (5.1). Then (3.11) holds for N sufficiently
large and our result follows directly.
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6. The average value of ω(ab + 1). Finally, we shall prove the
multiplicative analogue of (1.6).

Theorem 8. There exists an effectively computable positive number c19
such that if T and N are positive integers with T ≤ N1/2 and A and B are
non-empty subsets of {1, . . . , N} then∣∣∣∣ 1

|A| · |B|
∑
T<p

∑
a∈A, b∈B, p|ab+1

1− (log logN − log log 3T )
∣∣∣∣

< c19

(
1 +

N

T min(|A|, |B|)

)
.

Taking T = [N/min(|A|, |B|)] in Theorem 8 we obtain the following
result.

Corollary 3. There exists an effectively computable positive number
c20 such that if N is a positive integer and A and B are non-empty subsets
of {1, . . . , N} then∣∣∣∣ 1

|A| · |B|
∑

p>N/ min(|A|,|B|)

∑
a∈A, b∈B, p|ab+1

1

− (log logN − log log(3N/min(|A|, |B|)))
∣∣∣∣ < c20.

Therefore
1

|A| · |B|
∑
a∈A

∑
b∈B

ω(ab+ 1) > (1 + o(1)) log logN,

provided that A and B are subsets of {1, . . . , N} with

min(|A|, |B|) = N exp(−(logN)o(1)).

P r o o f o f T h e o r e m 8. The proof will be similar to the proof of
Theorem 3 of [17]. However, while in [17] the crucial tool in the proof is the
standard analytical form of the large sieve, here, due to the multiplicative
structure of the numbers studied, we employ Lemma 5. Let C1, C2, . . .
denote effectively computable positive numbers.

Put R = [(N2 + 1)1/4]. We have

(6.1)
∣∣∣ ∑

a∈A

∑
b∈B

∑
T<p, p|ab+1

1−
∑
a∈A

∑
b∈B

∑
T<p≤R, p|ab+1

1
∣∣∣

=
∣∣∣ ∑

a∈A

∑
b∈B

∑
R<p≤N2+1, p|ab+1

1
∣∣∣ ≤ ∣∣∣ ∑

a∈A

∑
b∈B

3
∣∣∣ = 3|A| · |B|.



Prime factors of integers 383

We define, for each character χ,

F (χ) =
∑
a∈A

χ(a), G(χ) =
∑
b∈B

χ(b).

Then∑
a∈A

∑
b∈B

∑
T<p≤R, p|ab+1

1 =
∑

T<p≤R

1
p− 1

∑
χ (mod p)

χ(−1)
∑
a∈A

∑
b∈B

χ(ab)

=
∑

T<p≤R

1
p− 1

( ∑
p - a, a∈A

∑
p - b, b∈B

1 +
∑

χ6=χ0 (mod p)

χ(−1)F (χ)G(χ)
)

whence∣∣∣∣ ∑
a∈A

∑
b∈B

∑
T<p≤R, p|ab+1

1− |A| · |B|
∑

T<p≤R

1
p− 1

∣∣∣∣
≤

∑
T<p≤R

1
p− 1

( ∑
p|a, a∈A

∑
b∈B

1 +
∑
a∈A

∑
p|b, b∈B

1 +
∑

χ6=χ0 (mod p)

|F (χ)| · |G(χ)|
)

≤
∑

T<p≤R

1
p− 1

(( ∑
p|n, n≤N

1
)
(|A|+ |B|) + 1

2

∑
χ6=χ0 (mod p)

(|F (χ)|2 + |G(χ)|2)
)

≤ 2(|A|+ |B|)
∑

T<p≤R

N

p2
+

∑
T<p≤R

1
ϕ(p)

∑
χ6=χ0 (mod p)

(|F (χ)|2 + |G(χ)|2).

Further, we have∣∣∣∣ ∑
T<p≤R

1
p− 1

− (log logR− log log 3T )
∣∣∣∣ < C1.

Thus it follows that

(6.2)
∣∣∣ ∑

a∈A

∑
b∈B

∑
T<p≤R, p|ab+1

1− |A| · |B|(log logR− log log 3T )
∣∣∣

< C1|A| · |B|+ C2
N

T log T
(|A|+ |B|)

+
∑

T<p≤R

1
ϕ(p)

∑
χ6=χ0 (mod p)

(|F (χ)|2 + |G(χ)|2).

Put
S(n) =

∑
p≤n

p

ϕ(p)

∑
χ6=χ0 (mod p)

|F (χ)|2.

Then, by Lemma 5, for n ≤ R we have

S(n) ≤ (n2 + πN)|A| ≤ 6N |A|.
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Thus we obtain by partial summation that

(6.3)
∑

T<p≤R

1
ϕ(p)

∑
χ6=χ0 (mod p)

|F (χ)|2

=
R∑

n=T+1

S(n)− S(n− 1)
n

=
R∑

n=T+1

S(n)
(

1
n
− 1
n+ 1

)
− S(T )
T + 1

+
S(R)
R+ 1

≤
R∑

n=T+1

6N(A)
(

1
n
− 1
n+ 1

)
+

6N |A|
R+ 1

=
6N |A|
T + 1

,

and similarly,

(6.4)
∑

T<p≤R

1
ϕ(p)

∑
χ6=χ0 (mod p)

|G(χ)|2 ≤ 6N |B|
T + 1

.

It follows from (6.1)–(6.4) that∣∣∣∣ 1
|A| · |B|

∑
T<p

∑
a∈A, b∈B, p|ab+1

1− (log logR− log log 3T )
∣∣∣∣

< c3

(
1 +

N

T

(
1
|A|

+
1
|B|

))
,

whence the result follows.
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