On the greatest prime factor of $(a b+1)(a c+1)(b c+1)$

by
C. L. Stewart (Waterloo, Ont.) and R. Tijdeman (Leiden)
Dedicated to Professor J. W. S. Cassels on the occasion of his seventy-fifth birthday

1. Introduction. For any integer n larger than one let $P(n)$ denote the greatest prime factor of n. In [3], Győry, Sárközy and Stewart conjectured that if a, b and c denote distinct positive integers then

$$
\begin{equation*}
P((a b+1)(a c+1)(b c+1)) \rightarrow \infty \tag{1}
\end{equation*}
$$

as the maximum of a, b and c tends to infinity. We shall show that (1) holds provided that

$$
\frac{\log a}{\log (c+1)} \rightarrow \infty
$$

This is a consequence of the following result.
Theorem 1. Let a, b and c be positive integers with $a \geq b>c$. There exists an effectively computable positive number C_{0} such that

$$
\begin{equation*}
P((a b+1)(a c+1)(b c+1))>C_{0} \log (\log a / \log (c+1)) \tag{2}
\end{equation*}
$$

Recently, Győry [2] has proved that (1) holds provided that at least one of $P(a), P(b), P(c), P(a / b), P(a / c)$ and $P(b / c)$ is bounded. While we have not been able to prove (1) we have been able to prove that if a, b, c and d are positive integers with $a \neq d$ and $b \neq c$ then

$$
P((a b+1)(a c+1)(b d+1)(c d+1)) \rightarrow \infty
$$

as the maximum of a, b, c and d tends to infinity. Notice, by symmetry, that there is no loss of generality in assuming that $a \geq b>c$ and that $a>d$.

[^0]In fact, we are able to give an effective lower bound for the greatest prime factor of $(a b+1)(a c+1)(b d+1)(c d+1)$ in terms of a.

Theorem 2. Let a, b, c and d denote positive integers with $a \geq b>c$ and $a>d$. There exists an effectively computable positive number C_{1} such that

$$
\begin{equation*}
P((a b+1)(a c+1)(b d+1)(c d+1))>C_{1} \log \log a . \tag{3}
\end{equation*}
$$

The proofs of Theorems 1 and 2 depend upon estimates for linear forms in the logarithms of algebraic numbers. We are able to estimate the greatest prime factor of more general polynomials than those considered in Theorems 1 and 2 . To this end we make the following definition.

Definition. Let n and t be positive integers with $t \geq 2$. $\{L, M\}$ is said to be a balanced pair of t-sets of a set $\left\{h_{1}, \ldots, h_{n}\right\}$ if L and M are disjoint sets of t-element subsets of $\left\{h_{1}, \ldots, h_{n}\right\}$ and each element h_{i}, with $1 \leq i \leq n$, occurs in some element of L and, further, occurs in elements of L the same number of times it occurs in elements of M.

Thus, for example, if $L=\{\{1,2\},\{3,4\}\}$ and $M=\{\{1,3\},\{2,4\}\}$ then $\{L, M\}$ is a balanced pair of 2 -sets of $\{1,2,3,4\}$.

Theorem 3. Let n and t be integers with $2 \leq t<n$. Suppose that $\{L, M\}$ is a balanced pair of t-sets of $\{1, \ldots, n\}$. Let a_{1}, \ldots, a_{n} denote positive integers for which

$$
\begin{equation*}
\prod_{\left\{i_{1}, \ldots, i_{t}\right\} \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) \neq \prod_{\left\{i_{1}, \ldots, i_{t}\right\} \in M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) . \tag{4}
\end{equation*}
$$

Put

$$
a^{+}=\max \left\{3, a_{1}, \ldots, a_{n}\right\} \quad \text { and } \quad a^{-}=\min _{\left\{i_{1}, \ldots, i_{t}\right\} \in L \cup M}\left\{a_{i_{1}} \ldots a_{i_{t}}\right\} .
$$

Then

$$
\begin{equation*}
P\left(\prod_{\left\{i_{1}, \ldots, i_{t}\right\} \in L \cup M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right) \rightarrow \infty \tag{5}
\end{equation*}
$$

as a^{-}tends to infinity. Further, there exists a positive number C_{2}, which is effectively computable in terms of t and the cardinality of L, such that

$$
\begin{equation*}
P\left(\prod_{\left\{i_{1}, \ldots, i_{t}\right\} \in L \cup M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right)>C_{2} \log \left(\frac{\log a^{-}}{\log \log a^{+}}\right) . \tag{6}
\end{equation*}
$$

To prove (5) we shall appeal to a theorem on S-unit equations due to van der Poorten and Schlickewei $[4,5]$ and independently to Evertse [1]. This result in turn depends upon a p-adic version of Schmidt's Subspace Theorem due to Schlickewei [6]. As a consequence we are not able to give an effective lower bound for the quantity on the left hand side of (5). To
prove (6) we shall appeal to a version of Baker's estimates for linear forms in logarithms due to Waldschmidt [7].

Let n be an even integer with $n \geq 4$. Let $L=\{(2 i, 2 i-1) \mid i=1, \ldots, n / 2\}$ and $M=\{(1, n)\} \cup\{(2 i, 2 i+1) \mid i=1, \ldots, n / 2-1\}$. Notice that $\{L, M\}$ is a balanced pair of 2 -sets of $\{1, \ldots, n\}$ and so the following result is a direct consequence of Theorem 3 .

Corollary 1. Let n be an even integer with $n \geq 4$. Let a_{1}, \ldots, a_{n} be positive integers for which

$$
\prod_{i=1}^{n / 2}\left(a_{2 i} a_{2 i-1}+1\right) \neq \prod_{i=1}^{n / 2}\left(a_{2 i} a_{2 i+1}+1\right)
$$

with the convention that $a_{n+1}=a_{1}$. Then

$$
P\left(\prod_{i=1}^{n}\left(a_{i} a_{i+1}+1\right)\right) \rightarrow \infty \quad \text { as } \quad \min _{i}\left(a_{i} a_{i+1}\right) \rightarrow \infty
$$

Another consequence of Theorem 3 is the following.
Corollary 2. Let a, b, c, d and e be positive integers with

$$
(a b+1)(a c+1)(d e+1) \neq(a d+1)(a e+1)(b c+1)
$$

Then

$$
P((a b+1)(a c+1)(a d+1)(a e+1)(b c+1)(d e+1)) \rightarrow \infty
$$

as $\min (b, c, d, e) \rightarrow \infty$.
Finally we mention a result which comes from applying Theorem 3 with a certain balanced pair of 3 -sets of $\{1, \ldots, 6\}$.

Corollary 3. Let a, b, c, d, e and f be positive integers with

$$
(a b c+1)(c d e+1)(a e f+1) \neq(a d f+1)(a c e+1)(b c e+1)
$$

Then

$$
P((a b c+1)(a c e+1)(a d f+1)(a e f+1)(b c e+1)(c d e+1)) \rightarrow \infty
$$

as $\min (a, e) \rightarrow \infty$.
2. Preliminary lemmas. For any rational number x we may write $x=p / q$ with p and q coprime integers. We define the height of x to be the maximum of $|p|$ and $|q|$. Let a_{1}, \ldots, a_{n} be rational numbers with heights at most A_{1}, \ldots, A_{n} respectively. We shall suppose that $A_{i} \geq 4$ for $i=1, \ldots, n$. Next let b_{1}, \ldots, b_{n} be rational integers. Suppose that B and B_{n} are positive real numbers with

$$
B \geq \max _{1 \leq j \leq n-1}\left|b_{j}\right| \quad \text { and } \quad B_{n} \geq \max \left(3,\left|b_{n}\right|\right)
$$

Put

$$
\Lambda=b_{1} \log a_{1}+\ldots+b_{n} \log a_{n},
$$

where \log denotes the principal branch of the logarithm.
Lemma 1. There exists an effectively computable positive number C_{3} such that if $\Lambda \neq 0$ then

$$
|\Lambda|>\exp \left(-C_{3} n^{4 n} \log A_{1} \ldots \log A_{n} \log \left(B_{n}+\frac{B}{\log A_{n}}\right)\right) .
$$

Proof. This follows from Corollaire 10.1 of Waldschmidt [7]. Waldschmidt proved this result under the assumption that $b_{n} \neq 0$. If $b_{n}=0$ then we apply the same theorem with b_{n} replaced by b_{j} where j is the largest integer for which $b_{j} \neq 0$. Notice that $j \geq 1$ since $\Lambda \neq 0$. Since $\log A_{n} \log \left(3+B /\left(\log A_{n}\right)\right)$ is larger than $\frac{1}{2} \log B$ the result follows.

We shall employ Lemma 1 in the following manner. Let r be a positive integer and let p_{1}, \ldots, p_{r} be distinct prime numbers with p_{r} the largest. Let h_{1}, \ldots, h_{r} be integers of absolute value at most H. Let α be a rational number with height at most $A(\geq 4)$ and let h_{0} be an integer of absolute value at most $H_{0}(\geq 2)$. We consider

$$
\log T=h_{1} \log p_{1}+\ldots+h_{r} \log p_{r}+h_{0} \log \alpha .
$$

Lemma 2. Let U be a positive real number and suppose that

$$
\begin{equation*}
0<|\log T|<U^{-1} . \tag{7}
\end{equation*}
$$

Then there exists an effectively computable number C_{4} such that

$$
p_{r}>C_{4} \log \left(\frac{\log U}{\log A \log \left(H_{0}+H /(\log A)\right)}\right) .
$$

Proof. Let C_{5}, C_{6}, \ldots denote effectively computable positive numbers. By Lemma 1,

$$
\begin{align*}
& |\log T| \tag{8}\\
& \quad>\exp \left(-C_{5}(r+1)^{4(r+1)} \log p_{1} \ldots \log p_{r} \log A \log \left(H_{0}+\frac{H}{\log A}\right)\right) .
\end{align*}
$$

Observe that
(9) $(r+1)^{4(r+1)} \log p_{1} \ldots \log p_{r}<e^{4(r+1) \log (r+1)+r \log \log p_{r}}<e^{C_{6} p_{r}}$,
by the prime number theorem. Therefore by (7)-(9),

$$
C_{5} e^{C_{6} p_{r}} \log A \log \left(H_{0}+\frac{H}{\log A}\right)>\log U,
$$

hence

$$
p_{r}>C_{7} \log \left(\frac{\log U}{\log A \log \left(H_{0}+H /(\log A)\right)}\right) .
$$

We shall also require the following theorem on S-unit equations.

Lemma 3. Let $S=\left\{p_{1}, \ldots, p_{s}\right\}$ be a set of prime numbers and let n be a positive integer. There are only finitely many n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of integers, all whose prime factors are from S, satisfying:
(i) $\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)=1$,
(ii) $x_{1}+\ldots+x_{n}=0$, and
(iii) $x_{i_{1}}+\ldots+x_{i_{k}} \neq 0$ for each proper, non-empty subset $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1, \ldots, n\}$.

Proof. See van der Poorten and Schlickewei [4, 5] and Evertse [1].
3. Proof of Theorem 1. Let C_{8}, C_{9}, \ldots denote effectively computable positive numbers. The proof proceeds by a comparison of estimates for T_{1} and T_{2} where

$$
\begin{equation*}
T_{1}=\frac{b}{c} \cdot \frac{a c+1}{a b+1} \tag{10}
\end{equation*}
$$

and

$$
T_{2}=\frac{(a c+1)(b c+1)}{(a b+1) c^{2}}
$$

Let p_{1}, \ldots, p_{r} be the distinct prime factors of $(a b+1)(a c+1)(b c+1)$ and suppose that p_{r} is the largest of them.

We may assume $a \geq 16$. Then

$$
\log T_{1}=\log \left(1+\frac{b-c}{a b c+c}\right)<\log \left(1+\frac{1}{a c}\right) \leq \log \left(1+\frac{1}{a}\right)<a^{-1 / 2}
$$

Further,

$$
\log T_{1}=h_{1} \log p_{1}+\ldots+h_{r} \log p_{r}+\log (b / c)
$$

where h_{1}, \ldots, h_{r} are integers of absolute value at most $6 \log a$. Since $b>c$, we find that $\log T_{1}>0$ and thus, by Lemma 2 ,

$$
\begin{equation*}
p_{r}>C_{8} \log \left(\frac{\log a}{\log b \log \left(\frac{2 \log a}{\log b}\right)}\right) \tag{11}
\end{equation*}
$$

Observe that we may assume $b \geq 16$ since otherwise our result follows from (11). Next notice that

$$
\begin{align*}
\log T_{2} & =\log \left(1+\frac{a c+b c+1-c^{2}}{a b c^{2}+c^{2}}\right)<\log \left(1+\frac{a c+b c}{a b c^{2}}\right) \tag{12}\\
& =\log \left(1+\frac{1}{b c}+\frac{1}{a c}\right)<\log \left(1+\frac{2}{b}\right)<\frac{4}{b}<b^{-1 / 2}
\end{align*}
$$

We have

$$
\log T_{2}=l_{1} \log p_{1}+\ldots+l_{r} \log p_{r}-2 \log c
$$

where l_{1}, \ldots, l_{r} are integers of absolute value at most $6 \log a$. Since $\log T_{2}>0$ it follows from Lemma 2 with $U=b^{1 / 2}$ that

$$
\begin{equation*}
p_{r}>C_{9} \log \left(\frac{\log b}{\log (c+1) \log \left(\frac{2 \log a}{\log (c+1)}\right)}\right) . \tag{13}
\end{equation*}
$$

Our result now follows from (11) and (13) on noting that if x, y and z are positive real numbers then

$$
\frac{1}{2} \log x y \leq \max (\log x, \log y)
$$

and, for $z>9, \log \left(z /(\log z)^{2}\right)>\frac{1}{5} \log z$.
4. Proof of Theorem 2. Let C_{10} and C_{11} denote effectively computable positive numbers. The proof depends on a comparison of estimates for T_{1}, T_{3} and T_{4} where T_{1} is given by (10),

$$
T_{3}=\frac{(a c+1)(b d+1)}{(a b+1) c d} \quad \text { and } \quad T_{4}=\frac{(a b+1)(c d+1)}{(a c+1)(b d+1)} .
$$

We suppose that p_{1}, \ldots, p_{r} are the distinct prime factors of $(a b+1)(a c+$ 1) $(b d+1)(c d+1)$ and that p_{r} is the largest of them.

We have (11), just as in the proof of Theorem 1. Since (11) holds we may assume $b \geq 16$. Then

$$
\begin{equation*}
\log T_{3}=\log \left(1+\frac{a c+b d-c d+1}{a b c d+c d}\right)<\log \left(1+\frac{2}{b}\right)<b^{-1 / 2} . \tag{14}
\end{equation*}
$$

We have

$$
\log T_{3}=l_{1} \log p_{1}+\ldots+l_{r} \log p_{r}-\log c d
$$

where l_{1}, \ldots, l_{r} are integers of absolute value at most $6 \log a$. Since $\log T_{3}>0$ it follows from (14) and Lemma 2 that

$$
\begin{equation*}
p_{r}>C_{10} \log \left(\frac{\log b}{\log (2 c d) \log \log a}\right) . \tag{15}
\end{equation*}
$$

It follows from (11) and (15) that we may assume that $c d \geq 16$ since otherwise the theorem holds. Note that

$$
\begin{equation*}
\log T_{4}=\log \left(1+\frac{(a-d)(b-c)}{a b c d+a c+b d+1}\right)<\log \left(1+\frac{2}{c d}\right)<(c d)^{-1 / 2} . \tag{16}
\end{equation*}
$$

Since $a>d$ and $b>c$, we find that $\log T_{4}>0$. Further,

$$
\log T_{4}=m_{1} \log p_{1}+\ldots+m_{r} \log p_{r}
$$

where m_{1}, \ldots, m_{r} are integers of absolute value at most $6 \log a$. We may apply Lemma 2 with $h_{0}=1, \alpha=1$ and $U=(c d)^{1 / 2}$ to obtain

$$
\begin{equation*}
p_{r}>C_{11} \log \left(\frac{\log 2 c d}{\log \log a}\right) . \tag{17}
\end{equation*}
$$

Our result now follows from (11), (15) and (17).
5. Proof of Theorem 3. For each integer i with $1 \leq i \leq n$ let $k(i)$ denote the number of subsets of L containing i. The polynomial in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ given by

$$
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(x_{i_{1}} \ldots x_{i_{t}}+1\right)-\prod_{i=1}^{n} x_{i}^{k(i)}
$$

can be expressed as a finite sum of terms of the form

$$
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L^{\prime}}\left(x_{i_{1}} \ldots x_{i_{t}}+1\right)
$$

where L^{\prime} is a proper subset of L. Here the empty set is permitted and in that case the product is 1 . This may be proved by induction on the cardinality of L. The corresponding assertion holds with M in place of L. It then follows that

$$
\begin{align*}
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(x_{i_{1}} \ldots x_{i_{t}}+1\right)- & \prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(x_{i_{1}} \ldots x_{i_{t}}+1\right) \tag{18}\\
& =\sum_{R} c_{R} \prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(x_{i_{1}} \ldots x_{i_{t}}+1\right)
\end{align*}
$$

where the sum on the right hand side of (18) is over all proper subsets R of L and of M and where c_{R} is an integer for each such R.

Let s be a positive integer and let $S=\left\{p_{1}, \ldots, p_{s}\right\}$ be the set of the first s prime numbers. We choose s sufficiently large that the prime factors of c_{R} lie in S for all proper subsets R of L and of M. Suppose that a_{1}, \ldots, a_{n} are positive integers for which (4) holds and for which

$$
\begin{equation*}
P\left(\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L \cup M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right) \leq p_{s} . \tag{19}
\end{equation*}
$$

Then, by (18),

$$
\begin{align*}
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)- & \prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) \tag{20}\\
& -\sum_{R} c_{R} \prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)=0
\end{align*}
$$

is an S-unit equation. By (4) there is a subsum of the sum on the left hand side of equality (20) which is zero and has no vanishing subsum and which involves $\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)$ and at least one term of the form $-c_{R} \prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)$ with $c_{R} \neq 0$, where R is a proper subset of L or of M. Let g be the greatest common divisor of the terms in this subsum. It follows from Lemma 3 that $\left(\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right) / g$ is bounded in
terms of p_{s}. Plainly

$$
g \leq\left|c_{R}\right| \prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) \leq 2^{|R|}\left|c_{R}\right| \prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(a_{i_{1}} \ldots a_{i_{t}}\right),
$$

where $|R|$ denotes the cardinality of R. Since

$$
\begin{equation*}
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(a_{i_{1}} \ldots a_{i_{t}}\right)=\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}\right), \tag{21}
\end{equation*}
$$

we find that

$$
\left(\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right) / g \geq \frac{\min _{\left(i_{1}, \ldots, i_{t}\right) \in L \cup M}\left(a_{i_{1}} \ldots a_{i_{t}}\right)}{2^{|R|}\left|c_{R}\right|}=\frac{a^{-}}{2^{|R|}\left|c_{R}\right|}
$$

and so a^{-}is bounded in terms of p_{s} as required.
We shall now prove (6). Let C_{12}, C_{13}, \ldots denote positive numbers which are effectively computable in terms of t and the cardinality of L. Let p_{1}, \ldots \ldots, p_{r} be the distinct prime factors of

$$
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L \cup M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)
$$

and suppose that p_{r} is the largest of them. We may assume without loss of generality, by (4), that

$$
\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)>\prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) .
$$

Put

$$
\begin{equation*}
T=\left(\prod_{\left(i_{1}, \ldots, i_{t}\right) \in L}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right)\right) / \prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(a_{i_{1}} \ldots a_{i_{t}}+1\right) . \tag{22}
\end{equation*}
$$

Then

$$
\log T=l_{1} \log p_{1}+\ldots+l_{r} \log p_{r}
$$

where l_{1}, \ldots, l_{r} are integers of absolute value at most $C_{12} \log a^{+}$. By (22),

$$
\begin{equation*}
0<\log T<\log \left(1+C_{13} Z\right), \tag{23}
\end{equation*}
$$

where

$$
Z=\max _{R}\left(\prod_{\left(i_{1}, \ldots, i_{t}\right) \in R}\left(a_{i_{1}} \ldots a_{i_{t}}\right)\right) / \prod_{\left(i_{1}, \ldots, i_{t}\right) \in M}\left(a_{i_{1}} \ldots a_{i_{t}}\right)
$$

and where the maximum is taken over all proper subsets R of L. Further, by (21),

$$
\begin{equation*}
Z=\left(\min _{\left(i_{1}, \ldots, i_{t}\right) \in L} a_{i_{1}} \ldots a_{i_{t}}\right)^{-1} \leq 1 / a^{-} . \tag{24}
\end{equation*}
$$

Therefore, provided that a^{-}exceeds C_{14}, which we may assume, we find from (23) and (24) that

$$
0<\log T<1 /\left(a^{-}\right)^{1 / 2}
$$

Our result now follows from Lemma 2 on taking $\alpha=h_{0}=1, U=\left(a^{-}\right)^{1 / 2}$ and $H=C_{12} \log a^{+}$.
6. Proof of Corollary 2. Denote a, b, c, d and e by $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} respectively. We apply Theorem 3 with the balanced pair of sets of 2-element subsets of $\{1, \ldots, 5\}$ given by $\{L, M\}$ where $L=\{(1,2),(1,3),(4,5)\}$ and $M=\{(1,4),(1,5),(2,3)\}$. Condition (4) becomes

$$
(a b+1)(a c+1)(d e+1) \neq(a d+1)(a e+1)(b c+1)
$$

and our result now follows since

$$
\min \{a b, a c, a d, a e, b c, d e\} \geq \min \{b, c, d, e\}
$$

7. Proof of Corollary 3. Denote a, b, c, d, e and f by $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} respectively. We now apply Theorem 3 with the balanced pair of 3 sets of $\{1,2,3,4,5,6\}$ given by $\{L, M\}$ where $L=\{(1,2,3),(3,4,5),(1,5,6)\}$ and $M=\{(1,4,6),(1,3,5),(2,3,5)\}$. The result follows on noting that

$$
\min \{a b c, a e f, a d f, a c e\} \geq a \quad \text { and } \quad \min \{c d e, b c e\} \geq e
$$

References

[1] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984), 225-244.
[2] K. Győry, personal communication.
[3] K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form $a b+1$, Acta Arith. 74 (1996), 365-385.
[4] A. J. van der Poorten and H. P. Schlickewei, The growth conditions for recurrence sequences, Macquarie Univ. Math. Rep. 82-0041, North Ryde, Australia, 1982.
[5] —, 一, Additive relations in fields, J. Austral. Math. Soc. (A) 51 (1991), 154-170.
[6] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt Theorem, Arch. Math. (Basel) 29 (1977), 267-270.
[7] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.

Department of Pure Mathematics Mathematical Institute
University of Waterloo R.U. Leiden
Waterloo, Ontario 2333 CA Leiden, The Netherlands
Canada N2L 3G1
E-mail: tijdeman@wi.leidenuniv.nl
E-mail: cstewart@watserv1.uwaterloo.ca

[^0]: Research of the first author supported in part by Grant A 3528 from the Natural Sciences and Engineering Research Council of Canada.

 Research of the second author supported in part by the Netherlands Organization for Scientific Research NWO.

