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1. Intmducﬁun. It was conjectured by Erdos ('seé p. 218 of [4])
in 1965 that P(2"—1)/n tends to infinity with n, where P(m) denotes
the greatest prime factor of m. The elementary result that P (a™ —b") = n + 1

when n > 2 and a > b > 0, wag first proved by Zsigmondy [8] in 1892

and the result was rediscovered by Birkhoff and Vandiver [3] in 1904,
It was improved by Schinzel [6]in 1962; he showed that P (a" - ™) 3= 20 -1
if ab is a square or twice a square, provided that one excludes the cages
n =4, 6,12 when'a = 2 and b = 1. In the present paper we.ghall obtain
some further results in this context; in particular we shall prove that

(1 - Pa —b") 10

a8 7 rung through the sequence of primes, a,:ud in fact, more generally,
as # runs through a cart&m et of integers of density 1 which includes
the primes. : -

For any integer » > 0 a,nd rélatively primie integers a, b with a>b >0,

-we denote by &,(a, b) the nth cyclotomic polynomial, that is

i

(@)  oa,b) = [ @—t),

fe ]l
{({,n)=1

| where { is a primitive nth root of unity, We shall 1w1*ita', for brevity,

P, = P(®,(a, b))
Our main theorem is then as follows: .
TaEoREM 1. For any » with 0 < w< 1/log2 and any mﬁeger n (> 2) |

Iw@th at most xloglogn distinet prime factors, we have

@ P>l

where: f is a funection, striotly mcmws-mg and uﬂbomded which com be .
specified ewplicitly in terms of a, b ond x only.
Tt will be observed that, since almost all integers n have (1+ o(l))
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xloglogn distinct prime factors (see p. 356 of [B]), the dﬁnsitf_y of the set

| of infegers covered by Theorem 1 is 1. Aectually to demonstrate that.

P,[n->c0 ag n runs through all integers excluding a set of density zevo
1s relatively easy; in fact it follows from [3] or [8] that D, («, b) has a prime
factor of the form %n -1 for all » > 6 whence, for any f a8 in Theorem: 1
(3) holds for every » such that kn +1 is composite for &k =1, 2, ..., f(n
and, by the prime number theorem, these n have denﬂlty 1 1f f (fn)
= o(logn)(*). However, this clearly does not yield the characterisation of
the integers as deseribed in our theorem.

The size of f relative to »n will be explleltly determined in the case

when » 18 & prime or twice a prime:

TERBOREM 2. There exists an effectwsly computable number G’ dspmdmg
onty on a and b, such that -

P,> %19 logp)”“ - Py, > p(logp)

Jor all primes p > .

~ The proofs of both Theorems 1 and 2 depend on the theory of Baker
on linear forms in the logarithms of rational numbers; for Theorem 1
we require the most recent result of Baker {2] on the 'subject, Whlle for
Theorem 2 we utilize [1]. -
To show that Theorem 1 implies that (1) holds for all integers = a8
specified in the enuncla,tmn, Whence, in particular, for the primes, we.

- use the equation

(4) | @ — b = n@d a,

which follows directly from (2); this plainly gives
_ - P(d—bM 2P,
Similarly we deduce that |

Pumw-wm

for any factor 7 of n-with r 7 n, and on replacmg % by 2n and taking
P = n, we 3ée thatb
. P —l—b'”' ) fn—s o0

a8 7% Tuns thrﬁugh 21l 1111Jegers as ahove. Furthermora, in view of Theorem 2
we have

P(a?—b%) > p(logp)™, P(a”+b7) > p(logp)'”

) I am grateful to Professor Erdds for pointing this out. To obtain the
edtimate o {logn) one should note that, by [3], the prime factors of B, (a, b) specified
above are distinet for different n. In fact a slightly weaker eﬂtlma,ta follows dlreﬂtly
from theorems on pnme& in arithmetic progressions. -
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for all suffwlently large pr1mes p, and clearly the lower bound for these
is effective. ' |

2. Preliminaries. ’Firat we record the two results of Baker mentioned
In § 1 which are required in the proofs of Theorems 1 and 2. We shall
denote by ay,..., a, positive rationals and we shall suppose that, for
~each j, the pumerator and denominator of a; do not exceed 4, (= 4).
Further we denote by b,, ..., b, rational integers W1th absolute values at
most B (= 4), and we erte, for brevity, !

A —_— bIIOgﬂl +... +bﬂ10‘gﬂ'ﬂ-
We have
LeMMA 1. If A £ 0 th&n 14| > B“Gm“”, where

Q2 =logd,...logd,

md ¢ = C(n) i an effectively computable number depmdmg mly on n.
LeMMA 2, If A 0 then

(5) log |4} > —max{sB, (4" 5 1og 4 )fﬂﬂ“}ﬂ},

where A = maxAd; and § is any number satisfying 0 < § <

Lemma 1 is the main theorem of [2]; Lemma 2 ig given by [1].

We need also a lemma on the prime decomposition of ¢, = &, (a, b)
Implied by the work of Birkhoff and Vandiver {3]; the f:u'st version of
this result was apparently obtained by Sylvester [7]. It is |

Lemma 3. The prime P(n) can divide @, to ot most the first power.
Al other prime factors of ®, are congruent to 1(modn),

3. Proof of Theorem 1. We shall suppose throughout that » exceeds
a sufficiently large number which is effectively computable in terms
of 4, b and » only. Further we assume that » has at most »loglogn distinet
prime factors, where 0 < »<<1/log2. Let d, =1 and let dy,...,d, be
all the divisors of n with u(n/d,) # 0, ordered according to size, Then
there existy an integer s depending only on n such that

(8) O Ayld,_ > e,

where 4 = 1 —~xlog2. In fact one can take s as the smallest integer > 1

such that d,> n*, which exists sinee d, =m, and than clearly a,

= 2", ; but we have
| (7) t -ﬂ zulﬂglngn = (I{}gﬂ)ﬂluﬂ
- and (6) follows.
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We proceed now to compa,re estimates for

R = ” {1—(b /a. dr}#fﬂfdw - -

Foue g
First we have

- max (R, R‘ H(l-—-m

Fuug

where # = b/a and. since, for d sufficiently large,

(8) | (L—ah)™' < 140",
and, furthermore, by (6), d,~-co as n-+oo, we see that the above product
is at most | | |

: ¢ |
(L+a% Y <1+ D (),

I-ﬁl

Since also, for n aufflclently I&rge, to*—! < 3 and, by hypothesis, » < 1/10g2
we deduce from (7) that the above sum -does not exceed

2t < gllogm. |
Hence, on reca,llmg that leg(l—i—y) < y for y > 0, we obtain
(9) o flogRl—:: (b/a)%logn.

Further we note that since (a, b) =1 we have R # 1.

We now employ Lemma 1 to derive a lowar bound for llthI We
shall nead the followmg identity

{10) D, (@, by = [ [ (™% —p™o)@

din

which is easily veritied from (4). From (10) we have

Gun }
R = a7 ®,(a,b) [ [ (a%— b=ty etein, -

. | re=l

where

H = Zd,.p ﬂ/d)

You3d

The product here can be expressed ag a rational number wiﬁhlnumemj:or |
and denominator not exceeding a®t-*™%-1 apd, by (7) again, this is
at most a%—128" PFyrther, we plainly have |

Hi< Yr<n

o]
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Furthermore, by Lemma 3 We can wmte

(11) - 2 (@, B) -—pn[]p;,
| ot
where 2,, ..., 9, are distinct primes congruent to 1(modn), &,, .. .y By are

positive integers and py, = 1 or P(n). Clearly p, < n and the h’s do not
exceed n2. Thus on applying Lemms 1 with n = k43 and with a4, ..., a,

given respectively by py, ..., Py, oy ¢ and the rational number referred
to above, we obtain o , | N
(12) * llog R| > B~9%le 2

where B == n?, O = f,(k) for some positive 'fulncti_on' fy of & only é;nd
2 = logp, ... log p lognlogalog (afs~1196m).
- On combining (9) and (12)' we get |
d.log(a/b) —loglogn < G.Qlog Rlog B.

But we can assume that p;, ..., p; are each less than n?, for othermﬂe
the theorem is certainly v&hd and thuﬂ

R < zk(mg_ﬂ.)m (loga)’d, .. .
Since d,;_l < n and B - n?, it follows that |
. G, < f at'lﬁgﬂ)kﬂdsﬂ
or 8some p;)sitive function fo = fa(a, b, k). This together with (6) gives
(lnr,lg'%)‘1L < faloglogﬂ,

where 0 < A< 1 and f; = fg(a, b, k) Plainly we can assume that f;, as
a function of %, is strictly increasing and unbounded, and as such, can
be extended to a function of the positive reals. Hence emplomng the
inverse function of f;, we conclude that % > f(n) for some f as in the
enunciation of the theorem. Finally we recall that, for § > 1, p; = gn-+1
for some distinet g,’,, o a:ud 50 (3)-bolds, as req_uired

4. Proof of Thaarem 2. We shall assume that p is a pﬂme exeeedlng
a sufficiently large number effectively computable in terms of o and b
only. We first establish the proposition for P,; the result for P,, follows
similarly. The proof depends on 2 comparison of est imates for

B = a?/(a® -—-_b"}.
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Olearly R > 1 and, by (8), |
(13) - logR < (blay*~t.
Further,' by (10) we have
| | Bl =a"(a—0)D,.

Thus, on. -appéa,ling to (11) with #n = p, we see that all the hypotheses
of Lemma 2 are satisfied with n = &+ 3 and with a,, ..., g, given res-
pectively by 21y ...) D) Do, & and a—b; and if p is su:Efmmntly large,
one can plainly take 4 = P,, B = . Furthermore, one can assume that
Py < p* for otherwise the theorem is cerfainly valid.

Arguing as at the end of the proof of Theorem 1, it ﬁle&rly suffices

to show that % > }(logp)¥*. We shall assume that thla does not hold
and obtain a contradiction. It is then readily verified that, on taking

§ = min{l, §log(a/b)},
the second entry in the maximum on the right of (5) is ait mMOoS%
| 44{k+4}4(2 a—llﬂgp)(ﬂkﬂ}ﬁ < Gﬁ”

where ¢ is an aieetwely comjputa,ble number dependmg on & and b, and
~ here the number on the right is at most dp if p is sufficiently large. Hence
we conclude from (B) that | | |

loglogR > —dp.

But, in view of the choice of 4, tl:us aontmd.mta (13) and the reqmred
result follows. -
The asserted estimate for P, followa similarly by comidering

= (a® +b%)/a? = a~P(a+D)D,,.

In conclusion, T would like to express my gratitude to Dr. A, Baker
for his generous assistance in the preparation of this paper and I would
like to thank the Canada Council for their financial support while I was
engaged on this researoh - -
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