Algebra comprehensive exam

January 23, 2018

Answer all questions, show all your work, and justify any statements that you make.

1. Consider the 3×3 matrix with entries in \mathbb{Q}

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & -1 \\ 3 & -1 & -3 \end{bmatrix}$$

- (a) Describe a field extension F of \mathbb{Q} of minimal degree (either abstractly, or as a subfield of the complex numbers), such that A has an eigenvector with entries in F (note: you do **not** need to find the eigenvector or eigenvalue).
- (b) Determine if A is diagonalizable over \mathbb{C} .
- (c) Does there exist a 3×3 matrix with rational coefficients with no eigenvectors over \mathbb{Q} which is not diagonalizable over \mathbb{C} ? Find an example of such a matrix, or prove none exists.
- 2. Let V be an n-dimensional vector space over a field F and let $A: V \to V$ be a linear transformation whose minimal polynomial m_A is of degree 2. Consider V as a module over F[x] where x acts by A.
 - (a) List the possible isomorphism types of V, for each possible factorization of m_A into irreducibles.
 - (b) Show that if m_A has a root, then there is an eigenvalue λ such that the eigenspace has dimension $\geq n/2$.
- 3. Let $f(x) = x^4 3$.
 - (a) Describe a splitting field E for f(x) over \mathbb{Q} as $\mathbb{Q}(a_1,\ldots)$ for $a_i\in\mathbb{C}$.
 - (b) Determine the Galois group $\operatorname{Aut}(E/\mathbb{Q})$ and how it acts on the generating elements you've given.
 - (c) Is this group a symmetric group or dihedral group? Prove your answer.
- 4. Let K/L/F be a tower of fields, such that $K = F(\alpha)$ for some element $\alpha \in K$. Let $m(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ be the minimal polynomial of α over L. Show that $L = F(a_1, \ldots, a_n)$.
- 5. (a) Let G be a group of order mp where m and p are coprime. Show that if G has k p-Sylow subgroups, then G has precisely k(p-1) elements of order p.
 - (b) Assume that P is a normal p-Sylow subgroup of G. Show that if H is a subgroup of G of order coprime to p, then HP is a subgroup isomorphic to a semi-direct product $H \ltimes P$.
 - (c) Classify groups of order 30 up to isomorphism.
- 6. Let G be a group, and H a subgroup of finite index n. Prove or give a counterexample to the following statements:
 - (a) If $a \in G$, then $a^n \in H$.
 - (b) If $a \in G$, then for some $0 < k \le n$, we have $a^k \in H$.
- 7. (a) Give a complete and irredundant list of abelian groups of order 144.
 - (b) Give a complete and irredundant list of finitely generated modules over $\mathbb{F}_2[t]$ where the polynomial $t^4 + t^3 + t + 1$ acts trivially.
- 8. We call a ring Artinian if it satisfies the descending chain condition, that is, there is no infinite descending sequence of ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$.
 - (a) Show that any commutative Artinian domain is a field.
 - (b) Show that if R is a PID, and $R \to S$ is a surjective ring homomorphism, then either $R \cong S$ or S is Artinian.