Algebra comprehensive exam

January 23, 2018
Answer all questions, show all your work, and justify any statements that you make.

1. Consider the 3×3 matrix with entries in \mathbb{Q}

$$
A=\left[\begin{array}{ccc}
0 & -2 & 1 \\
1 & 2 & -1 \\
3 & -1 & -3
\end{array}\right]
$$

(a) Describe a field extension F of \mathbb{Q} of minimal degree (either abstractly, or as a subfield of the complex numbers), such that A has an eigenvector with entries in F (note: you do not need to find the eigenvector or eigenvalue).
(b) Determine if A is diagonalizable over \mathbb{C}.
(c) Does there exist a 3×3 matrix with rational coefficients with no eigenvectors over \mathbb{Q} which is not diagonalizable over \mathbb{C} ? Find an example of such a matrix, or prove none exists.
2. Let V be an n-dimensional vector space over a field F and let $A: V \rightarrow V$ be a linear transformation whose minimal polynomial m_{A} is of degree 2 . Consider V as a module over $F[x]$ where x acts by A.
(a) List the possible isomorphism types of V, for each possible factorization of m_{A} into irreducibles.
(b) Show that if m_{A} has a root, then there is an eigenvalue λ such that the eigenspace has dimension $\geq n / 2$.
3. Let $f(x)=x^{4}-3$.
(a) Describe a splitting field E for $f(x)$ over \mathbb{Q} as $\mathbb{Q}\left(a_{1}, \ldots\right)$ for $a_{i} \in \mathbb{C}$.
(b) Determine the Galois group $\operatorname{Aut}(E / \mathbb{Q})$ and how it acts on the generating elements you've given.
(c) Is this group a symmetric group or dihedral group? Prove your answer.
4. Let $K / L / F$ be a tower of fields, such that $K=F(\alpha)$ for some element $\alpha \in K$. Let $m(x)=$ $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be the minimal polynomial of α over L. Show that $L=F\left(a_{1}, \ldots, a_{n}\right)$.
5. (a) Let G be a group of order $m p$ where m and p are coprime. Show that if G has $k p$-Sylow subgroups, then G has precisely $k(p-1)$ elements of order p.
(b) Assume that P is a normal p-Sylow subgroup of G. Show that if H is a subgroup of G of order coprime to p, then $H P$ is a subgroup isomorphic to a semi-direct product $H \ltimes P$.
(c) Classify groups of order 30 up to isomorphism.
6. Let G be a group, and H a subgroup of finite index n. Prove or give a counterexample to the following statements:
(a) If $a \in G$, then $a^{n} \in H$.
(b) If $a \in G$, then for some $0<k \leq n$, we have $a^{k} \in H$.
7. (a) Give a complete and irredundant list of abelian groups of order 144.
(b) Give a complete and irredundant list of finitely generated modules over $\mathbb{F}_{2}[t]$ where the polynomial $t^{4}+t^{3}+t+1$ acts trivially.
8. We call a ring Artinian if it satisfies the descending chain condition, that is, there is no infinite descending sequence of ideals $I_{1} \supsetneq I_{2} \supsetneq I_{3} \supsetneq \cdots$.
(a) Show that any commutative Artinian domain is a field.
(b) Show that if R is a PID, and $R \rightarrow S$ is a surjective ring homomorphism, then either $R \cong S$ or S is Artinian.

