ALGEBRA COMPREHENSIVE EXAM, WINTER 2017

WENTANG KUO AND ROSS WILLARD

Do all questions.

1. (a) If G is a non-abelian group of order p^{3} (p prime), prove that the centre of G is the subgroup generated by all elements $a b a^{-1} b^{-1}$ with $a, b \in G$.
(b) If G is a non-abelian group of order p^{3} for an odd prime p, prove that G has exactly $p^{2}+p-1$ distinct conjugacy classes.
2. How many maximal ideals of $\mathbb{Z}[x]$ contain $\left\{30, x^{2}+1\right\}$?
3. If V is an inner product space over \mathbb{R} or \mathbb{C}, a rigid motion is any function T from V to V (not necessarily linear) such that $\|T \alpha-T \beta\|=\|\alpha-\beta\|$ for all α, β in V. Recall that a linear operator T is called unitary if $\|T \alpha\|=\|\alpha\|$ for all α in V. A function S from V to V is called a translation if there exists $\gamma \in V$ such that $S \alpha=\alpha+\gamma$ for all α in V.
(a) Let T be a rigid motion such that $T(\mathbf{0})=\mathbf{0}$, where $\mathbf{0}$ is the zero vector in V. Show that T is linear and a unitary operator.
(b) Use the result of Part (a) to prove that every rigid motion is a translation followed by a unitary operator.
(c) Let $V=\mathbb{R}^{2}$ with the standard inner product over \mathbb{R}. Show that a rigid motion of \mathbb{R}^{2} is either a translation followed by a rotation, or a translation followed by a reflection followed by a rotation.
4. (a) Give an example (with proof) of an irreducible polynomial in $\mathbb{Q}[x]$ of degree 6 .
(b) Suppose $f(x)$ is an irreducible polynomial in $\mathbb{Q}[x]$ of degree $2 n$. Prove that if E is a field extension of \mathbb{Q} degree 2 , then $f(x)$ is either irreducible in $E[x]$, or $f(x)$ factors in $E[x]$ as a product of two irreducible factors each of degree n.
5. Let F be a field. Show that

$$
G=\left\{\left.\left[\begin{array}{ccc}
x & a & b \\
0 & y & c \\
0 & 0 & z
\end{array}\right] \right\rvert\, x, y, z, a, b, c \in F ; x y z \neq 0\right\}
$$

with the matrix product, is a solvable group.
6. Suppose R is a unital ring and M is a simple R-module. Prove that the additive group of M is either a direct sum of copies of \mathbb{Q}, or a direct sum of copies of \mathbb{Z}_{p} for some prime p.
7. (a) Let $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]$. Find the Jordan canonical form J of A and an invertible matrix P such that $A=P^{-1} J P$.
(b) Let M be an $n \times n$ complex matrix. Define the exponential e^{M} of M by

$$
e^{M}=I_{n}+M+\frac{1}{2!} M^{2}+\cdots+\frac{1}{l!} M^{l}+\cdots=\sum_{i=0}^{\infty} \frac{1}{i!} M^{i}
$$

where I_{n} is the $n \times n$ identity matrix and $M^{0}=I_{n}$. Compute e^{A}, where A is defined in (a).
(c) Prove that for any $n \times n$ complex matrix B, e^{B} exists (i.e., the infinite sum converges) and is invertible.
8. Prove or disprove the following: if F, K are fields with $\mathbb{Q} \leq F \leq K \leq \mathbb{C}$ and $[K: F]=4$, then there exists an intermediate field strictly between F and K.

[^0]
[^0]: Date: January 9, 2017.

