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The eight questions have equal weight. Attempt all of the questions.

1.

2.

Let T : V — V be a linear operator on an n-dimensional, complex vector
space. Prove that there exists a tower of 7T'-invariant subspaces
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such that dim V; = j for every j. Deduce from this that V' contains a basis
such that the matrix of 7" using this basis is upper triangular. Do not invoke
the Jordan canonical form theorem in your proof.

(a) Explain the class equation for a finite group, and illustrate it in the case
of the group S, of permutations on 4 letters.

(b) Prove that every group of order p? is abelian.

(a) Show that 1 + /=5 is irreducible but not prime in the ring Z [/—5].
(b) Prove that the ideal (2, 1+ \/—5) is maximal in Z [\/—5 .

(a) Let K be a Galois extension of degree 12 over a field /. Prove that
there is an intermediate field &/ between I and K such that E has
degree 3 over F'.

(b) If ¢ is a primitive 13th root of unity, how many subfields does the field
Q(¢) contain? Justify your answer.

() If f(X) in Q[X] is an irreducible polynomial of degree n > 2, with

) 1

roots o, s, . . ., ;, in C, show that E — € Q.
o
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5. (a) Let V be the vector space P3(R) of polynomials of degree < 3 with
coefficients in R. Let 7" : V' — V be the linear operator T'(p(x)) =
xp”(x). Find the Jordan canonical form of 7" and a corresponding
basis for V.

(b) If two 3 x 3 matrices over the complex numbers have the same charac-
teristic and the same minimal polynomial, prove that the matrices are
similar.

(c) Find two 4 x 4 matrices over the complex numbers, which are not sim-
ilar but have the same characteristic polynomial and the same minimal
polynomial.

6. (a) How many non-isomorphic groups of order 99 are there? Fully justify
your answer.

(b) Find six non-isomorphic groups of order 81, and justify your answer.

7. Suppose R is a unitary ring and M is a nontrivial finitely generated left R-
module. Prove that M has a nontrivial quotient N that is simple, i.e., such
that (0) and N are the only submodules of N.

8. Let K = F'(t,u) be the field of rational functions in the indeterminates ¢, u
over a field F' of characteristic 2. And suppose L is the splitting field over
K of the polynomial (X? —#)(X? — u).
(a) Prove that the degree [L : K| = 4.

(b) Prove that L is not a simple extension of K. That is, show L # K(«)
for any v in L.

(c) Show that there are infinitely many fields between K and L.



