ALGEBRA Comprehensive Examination

Wednesday, 22 January 2014

Instructions: Attempt all nine questions. You must show all of your reasoning. All rings can be assumed to have a multiplicative identity.

Prepared by: Jason Bell and David McKinnon.
[1] Show that a group G of order $2014=2 \cdot 19 \cdot 53$ is solvable.
[2] Let K be an algebraically closed field of characteristic 2 and let A be the matrix

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

in $M_{4}(K)$. Give the Jordan form of A.
[3] Let I be the ideal $\left(x^{3}-2 x^{2}+3 x-6, x^{2}+x\right)$ of $\mathbb{Z}[x]$. Find a nonzero constant polynomial in I.
[4] Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial whose Galois group is isomorphic to the quaternion group Q. Prove that $\operatorname{deg}(f(x))=8$.
[5] Let $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of finite-dimensional vector spaces over a field F. Prove that $\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} V_{i}=0$.
[6] Let R be a Noetherian ring and let M be a finitely generated R-module. Suppose that $f: M \rightarrow M$ is an R-module homomorphism. Show that if f is surjective then f is injective.
[7] Give the degrees of the spitting fields over the rationals of the following polynomials:
(a) $x^{3}-1$,
(b) $x^{6}-1$,
(c) $x^{3}+3$.
[8] Let G be a simple group, and let G act nontrivially on a finite set X, with $n \geq 3$ elements. Prove that G is finite, and that $\# G$ divides evenly into $n!/ 2$.
[9] Let R be a finite commutative ring.
(a) Show that if the units group of R has odd order then R has characteristic 2 .
(b) Show that if R has characteristic 2 then every nonzero ideal of R has size 2^{j} for some $j \geq 1$.
(c) Show that if R has characteristic 2 and the Jacobson radical, $J(R)$, of R is nonzero then the set $\{1+x: x \in J(R)\}$ is a subgroup of the units group of order 2^{m} for some $m \geq 1$.
(d) Show that the group of units of R cannot be isomorphic to \mathbb{Z}_{5}.

