ALGEBRA Comprehensive Examination

Wednesday, 22 January 2014

Instructions: Attempt all nine questions. You must show all of your reasoning. All rings can be assumed to have a multiplicative identity.

Prepared by: Jason Bell and David McKinnon.

[1] Show that a group G of order $2014 = 2 \cdot 19 \cdot 53$ is solvable.

[2] Let K be an algebraically closed field of characteristic 2 and let A be the matrix

1	0	1	0	0	
	0	0	1	0	
	0	0	0	1	
ĺ	1	0	0	0	Ϊ

in $M_4(K)$. Give the Jordan form of A.

- [3] Let I be the ideal $(x^3 2x^2 + 3x 6, x^2 + x)$ of $\mathbb{Z}[x]$. Find a nonzero constant polynomial in I.
- [4] Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial whose Galois group is isomorphic to the quaternion group Q. Prove that $\deg(f(x)) = 8$.
- [5] Let $0 \to V_1 \to V_2 \to \ldots \to V_n \to 0$ be an exact sequence of finite-dimensional vector spaces over a field F. Prove that $\sum_{i=1}^{n} (-1)^i \dim V_i = 0$.
- [6] Let R be a Noetherian ring and let M be a finitely generated R-module. Suppose that $f: M \to M$ is an R-module homomorphism. Show that if f is surjective then f is injective.

[7] Give the degrees of the spitting fields over the rationals of the following polynomials:

- (a) $x^3 1$, (b) $x^6 - 1$,
- (c) $x^3 + 3$.
- [8] Let G be a simple group, and let G act nontrivially on a finite set X, with $n \ge 3$ elements. Prove that G is finite, and that #G divides evenly into n!/2.

[9] Let R be a finite commutative ring.

- (a) Show that if the units group of R has odd order then R has characteristic 2.
- (b) Show that if R has characteristic 2 then every nonzero ideal of R has size 2^j for some $j \ge 1$.
- (c) Show that if R has characteristic 2 and the Jacobson radical, J(R), of R is nonzero then the set $\{1 + x : x \in J(R)\}$ is a subgroup of the units group of order 2^m for some $m \ge 1$.
- (d) Show that the group of units of R cannot be isomorphic to \mathbb{Z}_5 .