## Department of Pure Mathematics

# Algebra Comprehensive Examination

January 26, 2012

1pm-4pm, 3 hours at MC5045

Prepared by W. Kuo and R. Willard

Answer eight questions, including at least one from each of the four sections. Part (a), (b), (c), etc, of a question are often but not always related.

### Linear Algebra

- 1. Let A be an  $n \times n$  matrix over a field F. Prove the following.
  - (a) If A is nilpotent (that is,  $A^m = 0$ , the zero matrix, for some m), then  $\operatorname{Tr} A^r = 0$  for all r > 1.
  - (b) If the characteristic of F is 0, and  $\operatorname{Tr} A^r = 0$  for all  $r \geq 1$ , then A is nilpotent.
- 2. (a) Let J be an  $n \times n$  Jordan block. Show that any matrix that commutes with J is a polynomial in J.
  - (b) Let A be a symmetric  $n \times n$  matrix such that  $A^2 = K + pI$ , where K is the  $n \times n$  matrix with all entries equal to 1, I is the  $n \times n$  identity matrix, and  $p \ge 0$  is a real number. What are the possible eigenvalues of A?

#### Groups

- **3.** (a) Let G be a group and let N be a normal subgroup of index n. Show that  $g^n \in N$  for all  $g \in G$ .
  - (b) Let G be a finite group, H a subgroup of G and N a normal subgroup of G. Show that if the order of H is relatively prime to the index of N in G, then  $H \subseteq N$ .
  - (c) Let G be a finite group and let M be a maximal subgroup of G. Show that if M is a normal subgroup of G, then [G:M] is prime.
- 4. (a) Let G be a group of order  $153 = 3^2 \cdot 17$ . Prove that G is abelian.
  - (b) Determine all finitely generated abelian groups G whose automorphism group is finite.
- 5. (a) Prove that if G is a finite group containing no subgroup of index 2, then any subgroup of index 3 is normal in G.
  - (b) Let H be a group of order 9. Show that |Aut(H)| | 48 (Hint: you may assume that the group  $GL_2(\mathbb{F}_3)$  has order 48).

#### Rings

- **6.** In this problem R is an integral domain. For  $x,y\in R$  we write x|y if y=xz for some  $z\in R$ . We write  $x\sim y$  if y=xu for some unit u in R.
  - (a) Suppose R is Noetherian. Prove that if  $a_1, a_2, a_3, \ldots$  are nonzero elements of R with  $a_{i+1}|a_i$  for all  $i \geq 1$ , then there exists N such that  $a_m \sim a_n$  for all  $m, n \geq N$ .
  - (b) Suppose R is not a PID. Prove that there exists a nonprincipal ideal I of R with the property that for all  $a \in R \setminus I$ , the ideal I + (a) is principal.
  - (c): Show that if R is not a PID, then R has a nonprincipal prime ideal.
- 7. Let R be the following subring of  $M_2(\mathbb{C})$ :

$$R \ = \ \left\{ \left[ \begin{array}{cc} a & r \\ 0 & s \end{array} \right] \ : \ a \in \mathbb{Q} \ \mathrm{and} \ r, s \in \mathbb{C} \right\}.$$

- (a) Prove that R is both right Noetherian and right Artinian.
- (b) Prove that R has uncountably many left ideals.
- (c) Is R is left Noetherian? Is R is left Artinian? Justify your answers.

#### **Fields**

- 8. Let  $\zeta_7 = e^{2\pi i/7}$ , let  $E = \mathbb{Q}(\zeta_7)$ , and let G be the Galois group of E over  $\mathbb{Q}$ .
  - (a) Show that G is cyclic of order 6.
  - (b) Show that there are exactly two fields K satisfying  $\mathbb{Q} < K < E$ .
  - (c) If  $\psi$  is a generator of G, prove that  $\psi(\cos\frac{2\pi}{7}) \in \mathbb{R}$  and determine whether  $\psi(\cos\frac{2\pi}{7})$  is positive or negative. (Hint:  $\cos\frac{2\pi}{7} = \frac{1}{2}(\zeta_7 + \zeta_7^{-1})$ .)
- **9.** (a) Let  $f(x) = x^4 + x^3 + x^2 + x + 1$  and  $F = \mathbb{Z}_2[x]/(f)$ , and put  $\alpha = x + (f) \in F$ .
  - (i) Prove that F is a finite field. What is the size of F?
  - (ii) Find a primitive element for F; express your answer as a polynomial in  $\alpha$  (e.g.,  $\alpha$ ,  $\alpha + 1$ ,  $\alpha^2 + 1$  etc.)
  - (b) Prove that any two finite fields of the same size are isomorphic.
- 10. Suppose F is a field, E is an extension field,  $G = \operatorname{Aut}_F(E)$  is the group of automorphisms of E fixing F pointwise, H is a *finite* subgroup of G, and K is the fixed field of H.
  - (a) Prove that E is algebraic over K.
  - (b) Prove that E is normal and separable over K.

