UNIVERSITY OF WATERLOO

Department of Pure Mathematics

Algebra Comprehensive Examination

Winter 2011

Examiners: Barbara Csima, Frank Zorzitto

Answer as many questions as you can. It is important to demonstrate comprehensive knowledge in each of the four areas: linear algebra, group theory, ring theory and field theory.

Linear Algebra

- [10] L1. If $T: V \to V$ is a linear operator on an n-dimensional vector space and the characteristic polynomial of T splits into linear factors, prove that T can be represented by an upper triangular matrix using a suitable basis of V. Your proof should be elementary and not use advanced results such as the Jordan canonical form.
- [5] L2. If A is a 3×3 matrix over the complex numbers and $\operatorname{trace}(A^k) = 0$ for k = 1, 2, 3, prove that $A^3 = 0$.
- [15] L3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that ||Tx|| = ||x|| for all x in \mathbb{R}^3 , and such that $\det T = 1$.
 - (a) Show that 1 is an eigenvalue of T.
 - (b) If V is the eigenspace for the eigenvalue 1, show that V^{\perp} is T-invariant.
 - (c) Show that with respect to a suitable orthonormal basis of \mathbb{R}^3 the operator T has a matrix representation of the form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

for some number θ .

(d) If two operators S, T each have a matrix representation of the above type, not necessarily with respect to the same orthonormal basis, does their composite ST also have a representation of the above type?

Group theory

- [5] G1. Use the Sylow theory to show that every group of order 100 has a non-trivial normal subgroup.
- [5] G2. Letting \mathbb{Z}_n denote the cyclic group of order n, sort the following abelian groups into isomorphism classes:

$$\mathbb{Z}_{25} \times \mathbb{Z}_4$$
, \mathbb{Z}_{90} , \mathbb{Z}_{100} , $\mathbb{Z}_3 \times \mathbb{Z}_{30}$, $\mathbb{Z}_9 \times \mathbb{Z}_{10}$, $\mathbb{Z}_{10} \times \mathbb{Z}_{10}$, $\mathbb{Z}_{50} \times \mathbb{Z}_2$.

[5] G3. Let G be a finite group acting on a finite set X. If $p \in X$, the orbit of p is the subset of X given by:

$$O_p = \{ \sigma p : \sigma \in G \}.$$

The stabilizer of p is the subset of G given by:

$$S_p = \{ \sigma \in G : \sigma p = p \}.$$

Show that the cardinality of G is the product of the cardinality of O_p and the cardinality of S_p .

- [15] G4. This problem is about p-groups, i.e. groups of order p^e where p is a prime and e is a positive integer.
 - (a) Prove that a p-group has a non-trivial centre.
 - (b) Identify all groups of order p^2 , up to isomorphism, and justify your answer.
 - (c) If $e \ge 2$, prove that groups of order p^e are nilpotent of class at most e-1.

Ring theory

- [5] R1. Prove that every homomorphic image of a left Noetherian ring is again left Noetherian.
- [5] R2. If $\langle X^2 + 1 \rangle$ is the ideal generated by $X^2 + 1$ in the polynomial ring $\mathbb{C}[X]$, prove that $\mathbb{C}[X]/\langle X^2 + 1 \rangle \cong \mathbb{C} \times \mathbb{C}$.

- [5] R3. If $\mathbb{Z}[X]$ is the ring of polynomials in X with integer coefficients and $\langle X^2+1, X-2 \rangle$ is the ideal generated by the polynomials indicated, prove that the quotient ring $\mathbb{Z}[X]/\langle X^2+1, X-2 \rangle \cong \mathbb{Z}_5$, the finite field of residues modulo 5.
- [15] R4. In this problem R is an integral domain. An element p in R is called *prime* provided p is not a unit, and

$$a, b \in R$$
 and $p|ab \implies p|a \text{ or } p|b$.

A subset D of R is called *multiplicatively closed* provided $1 \in D$, and

$$a, b \in D \implies ab \in D$$
.

The set D is called saturated provided

$$ab \in D \implies \text{both } a \in D \text{ and } b \in D.$$

- (a) If R is a unique factorization domain, show that every non-zero prime ideal contains a prime element.
- (b) Prove that the complement of a union of prime ideals in R is a multiplicatively closed and saturated set.
- (c) If D is a multiplicatively closed and saturated set in R and $x \in R \setminus D$, show that R contains an ideal P such that $x \in P$, $P \cap D = \emptyset$ and P is maximal with respect to these properties.
- (d) Continuing with item (c), show that the ideal P is a prime ideal.
- (e) If R is not a unique factorization domain, show that there is a non-zero prime ideal P inside R such that P contains no prime element.
 Hint. The set D of elements in R that are either units or products of primes is multiplicatively closed and saturated.

Field theory

- [15] F1. Let $\alpha = \sqrt[3]{5}$, the real cube root of 5, and $\beta = \sqrt{-3}$, a complex square root of -3.
 - (a) Find the degree of the field extension $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} , and justify your answer.

- (b) Show that the extension $\mathbb{Q}(\alpha, \beta)$ is the splitting field of the polynomial $X^3 5$ over \mathbb{Q} .
- (c) List all the elements of the Galois group of the extension $\mathbb{Q}(\alpha, \beta)$. It suffices to specify the group actions only on the field generators α, β . Explain why every action of the Galois group must appear on your list, and why your list picks up the entire Galois group.
- (d) Display the lattice of subfields of the extension $\mathbb{Q}(\alpha, \beta)$, and show that all subfields have been included.
- [15] F2. (a) If a field K is a finite extension of an infinite field F and there are only a finite number of intermediate subfields, show that $K = F(\theta)$ for some θ in K.
 - (b) If θ is an algebraic element over a field F, show that there are only finitely many fields between F and the field extension $F(\theta)$.