Algebra Comprehensive Exam: January 29, 2019

Jason Bell \& Jerry Wang

Galois theory

1. Suppose $K=\mathbb{Q}(\sqrt{2+\sqrt{2}})$. Show that K / \mathbb{Q} is Galois and determine its Galois group.
2. Let $p(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 3 with roots a, b, c and let $\Delta:=$ $(a-b)(a-c)(b-c)$.
(a) Show that if the Galois group of $p(x)$ is cyclic of order 3 then $\Delta:=(a-b)(a-c)(b-c)$ is a rational number.
(b) Show that if Δ is rational then the Galois group of $p(x)$ is cyclic of order three.

Linear algebra

1. Let A be an $n \times n$ complex matrix whose characteristic polynomial has no repeated roots. How many $n \times n$ matrices over \mathbb{C} are there that are both similar to and commute with A ?
2. Let V be a finite-dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Show that $V=W \oplus U$ where W and U are T-invariant subspaces and $\left.T\right|_{U}: U \rightarrow U$ is nilpotent and $\left.T\right|_{W}: W \rightarrow W$ is an isomorphism.

Group theory

1. Prove that a group G of order 105 is not simple.
2. (a) Let G be a finite group and let H be a proper subgroup. Show that G is not equal to the union of $g \mathrm{Hg}^{-1}$ as g ranges over the elements of G.
(b) Show that it is possible for an infinite group G to be the union of conjugates of proper subgroup. (Hint: Look at $G=\mathrm{GL}_{n}(\mathbb{C})$ with $n \geq 2$.)

Ring theory

1. (a) Let R be a ring and let $f: R \rightarrow R$ be a surjective homomorphism. Show that if the kernel of f is nonzero then

$$
(0) \subseteq \operatorname{ker}(f) \subseteq \operatorname{ker}(f \circ f) \subseteq \operatorname{ker}(f \circ f \circ f) \subseteq \cdots
$$

is an ascending chain of ideals of R that does not terminate.
(b) Let k be a field and let $f: k\left[x_{1}, \ldots, x_{d}\right] \rightarrow k\left[x_{1}, \ldots, x_{d}\right]$ be a k-algebra homomorphism. Show that if f is surjective then f is injective.
2. Let $R=M_{n}(\mathbb{Z})$ and let J be a two-sided ideal of R. Show that there is some integer d such that $J=M_{n}(d \mathbb{Z})$; i.e., the set of matrices whose entries are all multiples of d.

