University of Waterloo Department of Pure Mathematics Analysis and Topology Comprehensive Examination 1:00 p.m.–4:00 p.m., Wednesday May 13, 2015

Prepared by Benoit Charbonneau and Ken Davidson.

Instructions: Answer ALL questions in Part I. In Part II, do ONE problem from each section. Questions in Part I are marked out of 5; questions in Part II are marked out of 10.

Part I

Do all questions. Provide brief but complete answers with explanations.

I 1. Let $f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \notin \mathbb{Q} \end{cases}$. Does $\int_0^1 f(x) \, dx$ exist as a Riemann integral? Does it exist as a Lebesgue integral?

- I 2. Suppose that f(x) is a continuous complex valued function on $[0, \infty)$ and $\lim_{x \to \infty} f(x) = 0$. Prove that f can be uniformly approximated on $[0, \infty)$ by a sequence of functions of the form $q_n(x) = \sum_{k=1}^n a_k e^{-kx}$ where $a_k \in \mathbb{C}$.
- I 3. Suppose that f is an L^2 function on the unit disk \mathbb{D} in \mathbb{C} with respect to planar Lebesgue measure. Suppose further that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in \mathbb{D}$. Prove that $||f||_2^2 = \sum_{n=0}^{\infty} \frac{\pi |a_n|^2}{n+1}$.
- I 4. Find an analytic function f(z) defined on $\{z \in \mathbb{C} : x > 0\}$, where z = x + iy and $x, y \in \mathbb{R}$, whose real part is $u(x, y) = \log(x^2 + y^2)$.
- I 5. How many roots (counting multiplicity) does $f(z) = z^7 + 5z^3 z 2$ have in the open unit disc?
- I 6. Show that every infinite set is the disjoint union of countably infinite subsets.
- I 7. Let $\lfloor y \rfloor$ be the integer part of y, let $A_n = \{x \in [0,1] \mid \lfloor 2^n x \rfloor$ is even $\}$, and let $g_n = \chi_{A_n}$ be the characteristic function of A_n . Prove that $\lim_{n \to \infty} \int_0^1 fg_n \, dx = \frac{1}{2} \int_0^1 f \, dx$ for all $f \in L^1(0,1)$.
- I 8. Let X be a topological space and \sim be an equivalence relation on X. Let X/\sim be the set of equivalence classes and $\pi: X \to (X/\sim)$ be the projection. Define the quotient topology on X/\sim and prove that $f: (X/\sim) \to Y$ is continuous if and only if $\hat{f} := f \circ \pi$ is continuous.

Part II

Do one problem from each section. If you attempt both problems in a section, then you must clearly indicate which one you want marked. Otherwise only the first one encountered by the grader will be marked.

BASIC REAL ANALYSIS. ANSWER ONE QUESTION.

- A1. Let a > 0 and define $f(t) = e^{at}$ for $-\pi \le t \le \pi$.
 - (a) Find the Fourier series of f.
 - (b) Use a computation of $||f||_2$ to evaluate the sum $\frac{1}{a^2} + 2\sum_{n\geq 1} \frac{1}{a^2 + n^2}$.
- A2. Prove that [0,1] is not the *disjoint* union of a countably infinite collection of non-empty closed sets A_n . HINT: consider $X = [0,1] \setminus \bigcup_{n \ge 1} \operatorname{int}(A_n)$.

COMPLEX ANALYSIS. ANSWER ONE QUESTION.

- B1. Let Ω be a simply connected domain properly contained in \mathbb{C} , and let $z_0 \in \Omega$. Suppose that f is holomorphic on Ω , $f(\Omega) \subset \Omega$ and $f(z_0) = z_0$.
 - (a) Prove that $|f'(z_0)| \leq 1$.
 - (b) What more can be said when $|f'(z_0)| = 1$?
- B2. (a) For which real $a \operatorname{does} \int_{-\infty}^{\infty} \frac{\cos x}{a^2 x^2} dx$ make sense as an improper Riemann integral?
 - (b) Evaluate this integral for those values of a.
 - (c) What meaning can be given to the formula you obtained in (b) for other values of a?

MEASURE THEORY. ANSWER ONE QUESTION.

- C1. Find $\lim_{n\to\infty} \int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x} dx$. Justify your arguments carefully.
- C2. Let I = [0, 1] with Lebesgue measure, and let $p \in [1, \infty)$. Consider a sequence $f_k \in L^p(I)$ with $||f_k||_p \leq 1$. Suppose that $f(x) = \lim_{k \to \infty} f_k(x)$ exists for almost every x. Does f belong to $L^p(I)$? Prove it or give a counterexample.

TOPOLOGY AND SET THEORY. ANSWER ONE QUESTION.

D1. Put the lexicographic order on $X = [0, 1]^2$ defined by

$$(x_1, y_1) < (x_2, y_2)$$
 if $x_1 < x_2$ or $x_1 = x_2$ and $y_1 < y_2$.

Let \mathcal{T} be the order topology generated by the sets

$$\{(x,y): (x_1,y_1) < (x,y)\}$$
 and $\{(x,y): (x,y) < (x_2,y_2)\}.$

- (a) Show that every subset of X has a least upper bound.
- (b) What is the induced topology on $Y = \{(x, y) : y = \frac{1}{2}\}$?
- (c) What is the closure of Y?
- D2. Let A be an infinite set. A *chain* in the power set $\mathcal{P}(A)$ is a subset of $\mathcal{P}(A)$ which is totally ordered by inclusion.
 - (a) Prove that $\mathcal{P}(A)$ contains maximal chains.
 - (b) Prove that there are maximal chains of cardinality |A|.
 - (c) Prove that $\mathcal{P}(\mathbb{N})$ contains maximal chains of cardinality $2^{|\mathbb{N}|}$.