Analysis and Topology Comprehensive Exam

May 27, 2019; 1:00pm-4:00pm in MC 5417 Examiners: Spiro Karigiannis and Laurent Marcoux

Instructions. Attempt all questions. Show all your work. The questions are not of equal difficulty.

- (1) Parts (a) and (b) of the following question are not related.
 - (a) Let G be a non-trivial subgroup of $(\mathbb{R}, +)$. Prove that either G is dense in \mathbb{R} , or there exists $\alpha > 0$ such that $G = \alpha \mathbb{Z}$.
 - (b) (i) Let $(b_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} , and suppose that $\beta := \lim_{n \to \infty} b_n$ exists in \mathbb{R} . Prove that

$$\lim_{N \to \infty} \left(\frac{1}{N} \sum_{n=1}^{N} b_n \right) = \beta.$$

(ii) Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} such that $\sum_{n=1}^{\infty} a_n$ converges to some real number α . Prove that

$$\lim_{N \to \infty} \left(\frac{1}{N} \sum_{n=1}^{N} n a_n \right) = 0.$$

(2) Evaluate the following integral:

$$\int_{-\infty}^{\infty} \frac{\cos x}{(1+x^2)} dx.$$

- (3) These questions are similar but they are *not* directly related to each other. Let G be a group of $n \times n$ matrices over either \mathbb{R} or \mathbb{C} . We give G the subspace topology as a subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$ or $M_{n \times n}(\mathbb{C}) \cong \mathbb{C}^{n^2}$, respectively.
 - (a) Let $G = GL(n, \mathbb{R})$ be the group of invertible $n \times n$ real matrices. Show that G is not connected.
 - (b) Let H = SU(n) be the group of $n \times n$ special unitary complex matrices. Show that H is both compact and connected.
 - (c) Show that SU(2) is homeomorphic to $S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \sum_{i=1}^4 x_i^2 = 1\}.$
- (4) Consider the set [0,1] equipped with Lebesgue measure μ . Let $0 \neq f \in L^{\infty}([0,1],\mu)$, and let $\alpha_n := \int_{[0,1]} |f|^n d\mu$ for all $n \geq 1$. Prove that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = ||f||_{\infty}.$$

- (5) Let A be a complex $n \times n$ matrix. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A.
 - (a) If $|z| > \max_{k=1}^{n} |\lambda_k|$, express $(zI A)^{-1}$ as a convergent power series.
 - (b) Let p(z) be a polynomial. Let $R > \max_{k=1}^{n} |\lambda_k|$ and let $\gamma(t) = Re^{2\pi it}$ for $t \in [0,1]$. Prove that

$$p(A) = \frac{1}{2\pi i} \int_{\gamma} p(z)(zI - A)^{-1} dz,$$

where the integral of a matrix of functions is defined by $(\int_{\gamma} B(z)dz)_{ij} = \int_{\gamma} B(z)_{ij}dz$.

(c) Let $q(z) = \det(zI - A)$ be the characteristic polynomial of A. Use part [b] to prove the Cayley-Hamilton theorem, namely that q(A) = 0. Hint: You will need to use the formula $B \operatorname{adj}(B) = (\det B)I$ where $\operatorname{adj} B$ is the transpose of the matrix of cofactors of B.

- (6) Let $(V, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, and let D be a linear operator on V such that $D^2 = 0$. Thus im D is a subspace of ker D. Let H be the quotient space ker D/ im D. Let D^* denote the Hilbert space adjoint of D. Let [v] = v + im D be an equivalence class in H.
 - (a) Suppose there exists a representative w of [v] such that $D^*w = 0$. Prove that any representative w' of [v] with $w' \neq w$ satisfies ||w'|| > ||w||.
 - (b) Suppose there exists a representative w of [v] with minimal norm. Prove that $D^*w = 0$.
- (7) (a) Give a precise statement of Rouché's Theorem.
 - (b) Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be an entire function which is not a polynomial. For each $N \ge 1$, set

$$s_N(z) := \sum_{k=0}^N a_k z^k, \qquad z \in \mathbb{C}.$$

Prove that for each R > 0, there exists an integer $M_0 \ge 1$ such that for all $N \ge M_0$, the function $s_N(z)$ has at least one root outside of the disc $D := \{z \in \mathbb{C} : |z| \le R\}$.

(8) Let μ denote Lebesgue measure on \mathbb{R} . Let $(f_n)_n$ and f be real-valued Lebesgue measurable functions on [0,1]. Recall that we say that $(f_n)_n$ converges to f in measure if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mu(\{x \in X : |f(x) - f_n(x)| \ge \varepsilon\}) = 0.$$

Prove that the following two conditions are equivalent:

- (i) $(f_n)_n$ converges to f in measure on [0,1].
- (ii)

$$\lim_{n \to \infty} \int_{[0,1]} \frac{|f_n - f|}{1 + |f_n - f|} \, d\mu = 0.$$

- (9) Let U be an open set in \mathbb{R}^n , and let $f: U \to \mathbb{R}^n$ be a C^k mapping, where $k \geq 1$.
 - (a) Give a precise statement of the *inverse function theorem*, including any additional hypotheses that are required. Do not prove this theorem.
 - (b) Suppose that the differential $(Df)_x$ of f at x is *invertible* for all $x \in U$. Use the inverse function theorem to prove that f is an *open mapping*. That is, if $W \subseteq U$ is open in \mathbb{R}^n , prove that f(W) is open in \mathbb{R}^n .
- (10) Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle in the complex plane. Let \mathcal{A} be the set of all polynomial functions on \mathbb{C} restricted to S^1 . That is,

$$\mathcal{A} = \left\{ f \colon S^1 \to \mathbb{C}; f(e^{i\theta}) = \sum_{k=0}^n c_k e^{ik\theta}, c_k \in \mathbb{C} \right\}.$$

- (a) Prove that A is an algebra of functions that separates points in S^1 and includes constant functions.
- (b) Either prove that the uniform closure of \mathcal{A} is all of $\mathcal{C}(S^1)$, or give an example (with justification) to show that it is not.