Analysis and Topology Comprehensive Exam

May 27, 2019; 1:00pm-4:00pm in MC 5417
Examiners: Spiro Karigiannis and Laurent Marcoux

Instructions. Attempt all questions. Show all your work. The questions are not of equal difficulty.
(1) Parts (a) and (b) of the following question are not related.
(a) Let G be a non-trivial subgroup of $(\mathbb{R},+)$. Prove that either G is dense in \mathbb{R}, or there exists $\alpha>0$ such that $G=\alpha \mathbb{Z}$.
(b) (i) Let $\left(b_{n}\right)_{n=1}^{\infty}$ be a sequence in \mathbb{R}, and suppose that $\beta:=\lim _{n \rightarrow \infty} b_{n}$ exists in \mathbb{R}. Prove that

$$
\lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum_{n=1}^{N} b_{n}\right)=\beta
$$

(ii) Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence in \mathbb{R} such that $\sum_{n=1}^{\infty} a_{n}$ converges to some real number α. Prove that

$$
\lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum_{n=1}^{N} n a_{n}\right)=0
$$

(2) Evaluate the following integral:

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)} d x
$$

(3) These questions are similar but they are not directly related to each other. Let G be a group of $n \times n$ matrices over either \mathbb{R} or \mathbb{C}. We give G the subspace topology as a subset of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$ or $M_{n \times n}(\mathbb{C}) \cong \mathbb{C}^{n^{2}}$, respectively.
(a) Let $G=\operatorname{GL}(n, \mathbb{R})$ be the group of invertible $n \times n$ real matrices. Show that G is not connected.
(b) Let $H=\mathrm{SU}(n)$ be the group of $n \times n$ special unitary complex matrices. Show that H is both compact and connected.
(c) Show that $\mathrm{SU}(2)$ is homeomorphic to $S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: \sum_{i=1}^{4} x_{i}^{2}=1\right\}$.
(4) Consider the set $[0,1]$ equipped with Lebesgue measure μ. Let $0 \neq f \in L^{\infty}([0,1], \mu)$, and let $\alpha_{n}:=\int_{[0,1]}|f|^{n} d \mu$ for all $n \geq 1$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=\|f\|_{\infty} .
$$

(5) Let A be a complex $n \times n$ matrix. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A.
(a) If $|z|>\max _{k=1}^{n}\left|\lambda_{k}\right|$, express $(z I-A)^{-1}$ as a convergent power series.
(b) Let $p(z)$ be a polynomial. Let $R>\max _{k=1}^{n}\left|\lambda_{k}\right|$ and let $\gamma(t)=R e^{2 \pi i t}$ for $t \in[0,1]$. Prove that

$$
p(A)=\frac{1}{2 \pi i} \int_{\gamma} p(z)(z I-A)^{-1} d z
$$

where the integral of a matrix of functions is defined by $\left(\int_{\gamma} B(z) d z\right)_{i j}=\int_{\gamma} B(z)_{i j} d z$.
(c) Let $q(z)=\operatorname{det}(z I-A)$ be the characteristic polynomial of A. Use part [b] to prove the CayleyHamilton theorem, namely that $q(A)=0$. Hint: You will need to use the formula $B \operatorname{adj}(B)=$ $(\operatorname{det} B) I$ where $\operatorname{adj} B$ is the transpose of the matrix of cofactors of B.
(6) Let $(V,\langle\cdot, \cdot\rangle)$ be a real Hilbert space, and let D be a linear operator on V such that $D^{2}=0$. Thus $\operatorname{im} D$ is a subspace of $\operatorname{ker} D$. Let H be the quotient space $\operatorname{ker} D / \operatorname{im} D$. Let D^{*} denote the Hilbert space adjoint of D. Let $[v]=v+\operatorname{im} D$ be an equivalence class in H.
(a) Suppose there exists a representative w of $[v]$ such that $D^{*} w=0$. Prove that any representative w^{\prime} of $[v]$ with $w^{\prime} \neq w$ satisfies $\left\|w^{\prime}\right\|>\|w\|$.
(b) Suppose there exists a representative w of $[v]$ with minimal norm. Prove that $D^{*} w=0$.
(7) (a) Give a precise statement of Rouché's Theorem.
(b) Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be an entire function which is not a polynomial. For each $N \geq 1$, set

$$
s_{N}(z):=\sum_{k=0}^{N} a_{k} z^{k}, \quad z \in \mathbb{C} .
$$

Prove that for each $R>0$, there exists an integer $M_{0} \geq 1$ such that for all $N \geq M_{0}$, the function $s_{N}(z)$ has at least one root outside of the disc $D:=\{z \in \mathbb{C}:|z| \leq R\}$.
(8) Let μ denote Lebesgue measure on \mathbb{R}. Let $\left(f_{n}\right)_{n}$ and f be real-valued Lebesgue measurable functions on $[0,1]$. Recall that we say that $\left(f_{n}\right)_{n}$ converges to f in measure if for all $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x \in X:\left|f(x)-f_{n}(x)\right| \geq \varepsilon\right\}\right)=0
$$

Prove that the following two conditions are equivalent:
(i) $\left(f_{n}\right)_{n}$ converges to f in measure on $[0,1]$.
(ii)

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0
$$

(9) Let U be an open set in \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}^{n}$ be a C^{k} mapping, where $k \geq 1$.
(a) Give a precise statement of the inverse function theorem, including any additional hypotheses that are required. Do not prove this theorem.
(b) Suppose that the differential $(D f)_{x}$ of f at x is invertible for all $x \in U$. Use the inverse function theorem to prove that f is an open mapping. That is, if $W \subseteq U$ is open in \mathbb{R}^{n}, prove that $f(W)$ is open in \mathbb{R}^{n}.
(10) Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle in the complex plane. Let \mathcal{A} be the set of all polynomial functions on \mathbb{C} restricted to S^{1}. That is,

$$
\mathcal{A}=\left\{f: S^{1} \rightarrow \mathbb{C} ; f\left(e^{i \theta}\right)=\sum_{k=0}^{n} c_{k} e^{i k \theta}, c_{k} \in \mathbb{C}\right\}
$$

(a) Prove that \mathcal{A} is an algebra of functions that separates points in S^{1} and includes constant functions.
(b) Either prove that the uniform closure of \mathcal{A} is all of $\mathcal{C}\left(S^{1}\right)$, or give an example (with justification) to show that it is not.

