Analysis and Topology Comprehensive Exam 2017

Examiners: Spiro Karigiannis and Vern Paulsen

Tuesday, May 16, 2017

Instructions: Attempt all ten questions. The questions are all of equal value.
[1] Let C be the counterclockwise unit circle centred at the origin. Show that

$$
\int_{C} e^{z+\frac{1}{z}} d z=2 \pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

[2] Prove that every continuous real-valued function on the square $[0,1] \times[0,1]$ can be uniformly approximated by polynomials in the functions $f(x, y)=x+e^{y}$ and $g(x, y)=x-e^{y}$.
[3] Let $I \subseteq \mathbb{R}$ be an open interval. Let $f: \mathbb{R} \times I \rightarrow \mathbb{R} \cup\{ \pm \infty\}$. Suppose that f satisfies the following three properties:
[i] for every $t \in I$, the function $x \mapsto f(x, t)$ is Lebesgue integrable;
[ii] for almost all $x \in \mathbb{R}$, the function $t \mapsto f(x, t)$ is finite and is differentiable on I with respect to t;
[iii] there exists a Lebesgue integrable function $F: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ such that for almost all $x \in \mathbb{R}$ and for all $t \in I$, we have $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq F(x)$.

Prove that the function $g(t)=\int_{\mathbb{R}} f(x, t) d x$ is differentiable on I and that $g^{\prime}(t)=\int_{\mathbb{R}} \frac{\partial f}{\partial t}(x, t) d x$.
[Hint: Use both the mean value theorem and the Lebesgue dominated convergence theorem.]
[4] Consider the Hilbert space $\ell^{2}(\mathbb{N})$. Let $y=(1,1,1,0, \ldots)$, and define a sequence of vectors in $\ell^{2}(\mathbb{N})$ by $x_{1}=(1,2,0, \ldots), x_{2}=(0,1,2,0, \ldots), x_{3}=(0,0,1,2,0, \ldots), \ldots$
Prove that y is not in the closed linear span of the set $\left\{x_{n}: n \in \mathbb{N}\right\}$.
[5] Let $C[0,1]$ denote the space of continuous real-valued functions on $[0,1]$. Given $f \in C[0,1]$, let $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ denote the uniform norm of f. Let $0<\alpha<1$. Define

$$
B^{\alpha}=\left\{f \in C[0,1] ;\|f\|_{\infty}+\sup _{\substack{x, y \in[0,1] \\ x \neq y}} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<1\right\} .
$$

Prove that any sequence $\left(f_{k}\right)$ in B^{α} admits a subsequence converging in $C[0,1]$ with respect to the uniform norm. [Give a precise statement of any major theorem you use.]
[6] Given two sets we let $A \Delta B=(A \cup B) \backslash(A \cap B)$ denote their symmetric difference. Let \mathcal{M} be the collection of all Lebesgue measurable subsets of $[0,1]$. Given $A \in \mathcal{M}$ we define its equivalence class to be

$$
[A]=\{B \in \mathcal{M}: \mu(A \Delta B)=0\}
$$

where μ denotes Lebesgue measure, and let $[\mathcal{M}]$ denote the collection of all equivalence classes.
[a] Prove that $d([A],[B])=\mu(A \Delta B)$ defines a metric on $[\mathcal{M}]$.
[b] Prove that $([\mathcal{M}], d)$ is a separable metric space.
[7] Let $U \subseteq \mathbb{C}$ be open. Recall that

$$
L^{2}(U)=\left\{f: U \rightarrow \mathbb{C} ;\|f\|^{2}=\iint_{U}|f(x+i y)|^{2} d x d y<\infty\right\}
$$

Define the subspace $L_{a}^{2}(U)=\left\{f \in L^{2}(U) ; f\right.$ is analytic on $\left.U\right\}$.
[a] Let $f \in L_{a}^{2}(U)$, and $z_{0} \in U$. Let $0<r<\operatorname{dist}\left(z_{0}, \partial U\right)$. Prove that

$$
\left|f\left(z_{0}\right)\right| \leq \frac{1}{\sqrt{\pi} r}\|f\|
$$

[b] Prove that $L_{a}^{2}(U)$ is a closed subspace of $L^{2}(U)$.
[8] Let $A_{n} \subseteq \mathbb{R}$ be a sequence of Borel sets. Let $A=\left\{x \in \mathbb{R} ; x \in A_{n}\right.$ for infinitely many $\left.n\right\}$.
[a] Prove that A is a Borel set.
[b] Let μ denote Lebesgue measure. Prove that if $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<+\infty$, then $\mu(A)=0$.
[9] Let R be a closed and bounded set in \mathbb{C} whose interior R° is connected. Let f be continuous and complex-valued on R, and analytic and nonconstant on R°.
[a] Suppose that $f(z) \neq 0$ anywhere in R. Show that $|f(z)|$ has a minimum value on R which occurs only on the boundary ∂R of R, and never in the interior.
[b] Show that the condition $f(z) \neq 0$ in part [a] is necessary. That is, show that $|f(z)|$ can attain its minimum value at an interior point of R if that minimum value is zero.
[10] Let $C^{1}[a, b]$ denote the space of real-valued functions with a continuous derivative on the interval $[a, b]$ (with one-sided derivatives at the endpoints).
[a] Show that $\|f\|=|f(a)|+\sup \left\{\left|f^{\prime}(t)\right| ; a \leq t \leq b\right\}$ defines a norm on this space and that $C^{1}[a, b]$ is complete in this norm.
[b] Give a precise statement of the contraction mapping principle and use it to prove that there is a continuously differentiable function f on $\left[0, \frac{\pi}{2}\right]$ satisfying $f(0)=1$ and $5 f^{\prime}(x)=\sin (x f(x))$.

