Analysis and Topology Comprehensive Exam 2017

Examiners: Spiro Karigiannis and Vern Paulsen

Tuesday, May 16, 2017

Instructions: Attempt all ten questions. The questions are all of equal value.

[1] Let C be the counterclockwise unit circle centred at the origin. Show that

$$\int_C e^{z+\frac{1}{z}} dz = 2\pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}.$$

- [2] Prove that every continuous real-valued function on the square $[0,1] \times [0,1]$ can be uniformly approximated by polynomials in the functions $f(x,y) = x + e^y$ and $g(x,y) = x e^y$.
- [3] Let $I \subseteq \mathbb{R}$ be an open interval. Let $f : \mathbb{R} \times I \to \mathbb{R} \cup \{\pm \infty\}$. Suppose that f satisfies the following three properties:
 - [i] for every $t \in I$, the function $x \mapsto f(x,t)$ is Lebesgue integrable;
 - [ii] for almost all $x \in \mathbb{R}$, the function $t \mapsto f(x,t)$ is finite and is differentiable on I with respect to t;
 - [iii] there exists a Lebesgue integrable function $F: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ such that for almost all $x \in \mathbb{R}$ and for all $t \in I$, we have $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq F(x)$.

Prove that the function $g(t) = \int_{\mathbb{R}} f(x,t) dx$ is differentiable on I and that $g'(t) = \int_{\mathbb{R}} \frac{\partial f}{\partial t}(x,t) dx$. [Hint: Use both the mean value theorem and the Lebesgue dominated convergence theorem.]

- [4] Consider the Hilbert space $\ell^2(\mathbb{N})$. Let $y = (1, 1, 1, 0, \ldots)$, and define a sequence of vectors in $\ell^2(\mathbb{N})$ by $x_1 = (1, 2, 0, \ldots)$, $x_2 = (0, 1, 2, 0, \ldots)$, $x_3 = (0, 0, 1, 2, 0, \ldots)$, ...

 Prove that y is not in the closed linear span of the set $\{x_n : n \in \mathbb{N}\}$.
- [5] Let C[0,1] denote the space of continuous real-valued functions on [0,1]. Given $f \in C[0,1]$, let $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$ denote the uniform norm of f. Let $0 < \alpha < 1$. Define

$$B^{\alpha} = \Big\{ f \in C[0,1]; \|f\|_{\infty} + \sup_{\substack{x,y \in [0,1]\\x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < 1 \Big\}.$$

Prove that any sequence (f_k) in B^{α} admits a subsequence converging in C[0,1] with respect to the uniform norm. [Give a precise statement of any major theorem you use.]

[6] Given two sets we let $A\Delta B = (A \cup B) \setminus (A \cap B)$ denote their symmetric difference. Let \mathcal{M} be the collection of all Lebesgue measurable subsets of [0,1]. Given $A \in \mathcal{M}$ we define its equivalence class to be

$$[A] = \{ B \in \mathcal{M} : \mu(A\Delta B) = 0 \},$$

where μ denotes Lebesgue measure, and let $[\mathcal{M}]$ denote the collection of all equivalence classes.

- [a] Prove that $d([A], [B]) = \mu(A\Delta B)$ defines a metric on $[\mathcal{M}]$.
- [b] Prove that $([\mathcal{M}], d)$ is a separable metric space.

[7] Let $U \subseteq \mathbb{C}$ be open. Recall that

$$L^2(U) = \Big\{ f: U \to \mathbb{C} \, ; \, \|f\|^2 = \iint_U |f(x+iy)|^2 dx dy < \infty \Big\}.$$

Define the subspace $L_a^2(U) = \{ f \in L^2(U) ; f \text{ is analytic on } U \}.$

[a] Let $f \in L_a^2(U)$, and $z_0 \in U$. Let $0 < r < \operatorname{dist}(z_0, \partial U)$. Prove that

$$|f(z_0)| \le \frac{1}{\sqrt{\pi}r} ||f||.$$

- [b] Prove that $L_a^2(U)$ is a closed subspace of $L^2(U)$.
- [8] Let $A_n \subseteq \mathbb{R}$ be a sequence of Borel sets. Let $A = \{x \in \mathbb{R} : x \in A_n \text{ for infinitely many } n \}$.
 - [a] Prove that A is a Borel set.
 - [b] Let μ denote Lebesgue measure. Prove that if $\sum_{n=1}^{\infty} \mu(A_n) < +\infty$, then $\mu(A) = 0$.
- [9] Let R be a closed and bounded set in \mathbb{C} whose interior R^{o} is connected. Let f be continuous and complex-valued on R, and analytic and nonconstant on R^{o} .
 - [a] Suppose that $f(z) \neq 0$ anywhere in R. Show that |f(z)| has a minimum value on R which occurs only on the boundary ∂R of R, and never in the interior.
 - [b] Show that the condition $f(z) \neq 0$ in part [a] is necessary. That is, show that |f(z)| can attain its minimum value at an interior point of R if that minimum value is zero.
- [10] Let $C^1[a, b]$ denote the space of real-valued functions with a continuous derivative on the interval [a, b] (with one-sided derivatives at the endpoints).
 - [a] Show that $||f|| = |f(a)| + \sup\{|f'(t)|; a \le t \le b\}$ defines a norm on this space and that $C^1[a, b]$ is complete in this norm.
 - [b] Give a precise statement of the contraction mapping principle and use it to prove that there is a continuously differentiable function f on $[0, \frac{\pi}{2}]$ satisfying f(0) = 1 and $5f'(x) = \sin(xf(x))$.