Comprehensive Exam - Analysis and Topology

Tuesday, 29 May 2012: 2:00pm - 5:00pm

Examiners: Spiro Karigiannis and Laurent Marcoux

Attempt all the questions. In order to pass the examination, competence must be demonstrated in all areas.
[1] [a] (5 marks) Show that there exists a bijection from $\mathcal{P}(\mathbb{R})$, the power set of \mathbb{R}, onto the set of all real-valued functions on \mathbb{R}.
[b] (5 marks) Let $\mathcal{C}(\mathbb{R}, \mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$. Find a cardinal number α so that $|\mathcal{C}(\mathbb{R}, \mathbb{R})|=2^{\alpha}$.
[2] Let \mathcal{H} be a complex Hilbert space. Given a non-empty subset $E \subseteq \mathcal{H}$, define $E^{\perp}=$ $\{v \in \mathcal{H} ;\langle v, w\rangle=0$ for all $w \in E\}$.
[a] (10 marks) Let \mathcal{M} be a closed subspace of \mathcal{H}.
(i) Given $x \in \mathcal{H}$, show that there exists $m_{0} \in \mathcal{M}$ so that $\left\|x-m_{0}\right\|=\operatorname{dist}(x, \mathcal{M})$, where $\operatorname{dist}(x, \mathcal{M}):=\inf \{\|x-m\|: m \in \mathcal{M}\}$.
(ii) Show that with x and m_{0} as in (i), $x-m_{0}$ is orthogonal to \mathcal{M}.
(iii) Conclude that $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$.
[b] (5 marks) Prove that a non-empty subset $E \subseteq \mathcal{H}$ satisfies $E=\left(E^{\perp}\right)^{\perp}$ if and only if E is a closed subspace of \mathcal{H}.
[3] (5 marks) Let $h \in C[0,1]$. Show that every $f \in C[0,1]$ is a uniform limit of polynomials in h if and only if h is strictly monotone.
[4] (10 marks) Prove that the following limit exists, and calculate its value.

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k!)}\right) e^{-2 x} d x
$$

[5] Recall that $\ell_{2}=\left\{\mathbf{x}=\left(x_{k}\right)_{k=1}^{\infty}: x_{k} \in \mathbb{R} \forall k \geq 1\right.$ and $\left.\|\mathbf{x}\|_{2}:=\left(\sum_{k=1}^{\infty} x_{k}{ }^{2}\right)^{1 / 2}<\infty\right\}$. Consider the following subset of ℓ_{2} :

$$
H:=\left\{\mathbf{x}=\left(x_{k}\right)_{k=1}^{\infty} \in \ell_{2}:\left|x_{k}\right| \leq 1 / k \text { for all } k \geq 1\right\}
$$

[a] (5 marks) Consider a sequence $\left(\mathbf{x}_{n}\right)_{n=1}^{\infty}$ in H, where each $\mathbf{x}_{n}=\left(x_{n, 1}, x_{n, 2}, x_{n, 3}, \ldots\right)$. Prove that the sequence $\left(\mathbf{x}_{n}\right)_{n=1}^{\infty}$ converges in ℓ_{2} if and only if for each $k \geq 1$, the sequence $\left(x_{n, k}\right)_{n=1}^{\infty}$ converges.
[b] (5 marks) Prove that H is compact and nowhere dense in ℓ_{2}.
[6] (5 marks) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous. Suppose that for all $x \in[0,1]$,

$$
\lim _{n \rightarrow \infty} f(n x)=0
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
Hint: Consider $A_{n, \varepsilon}:=\{x \in[0,1]:|f(k x)| \leq \varepsilon$ for all $k \geq n\}$.
[7] Let m denote Lebesgue measure on $[0,1]$. Suppose $\left(f_{n}\right)_{n=1}^{\infty}$ and f are real-valued, Lebesgue measurable functions on $[0,1]$ and that $\left(f_{n}\right)_{n=1}^{\infty}$ converges pointwise a.e. to f.
[a] (5 marks) Prove that for each pair $\varepsilon, \delta>0$ there exist a Lebesgue measurable set $A \subseteq[0,1]$ and an integer k such that $m([0,1] \backslash A)<\varepsilon$ and

$$
\left|f_{n}(x)-f(x)\right|<\delta
$$

for all $x \in A$ and $n \geq k$.
[b] (5 marks) Use this to prove that for each $\varepsilon>0$ there exists a set $B \subseteq[0,1]$ such that $m([0,1] \backslash B)<\varepsilon$ and $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to f on B. [This is Egoroff's Theorem.]
[c] (5 marks) Does Egoroff's Theorem hold if we replace $[0,1]$ by \mathbb{R} ? Justify your answer.
[8] Let Ω be a connected open set in $\mathbb{R}^{2} \cong \mathbb{C}$. Recall that if $u: \Omega \rightarrow \mathbb{R}$ is a C^{2} function, we say that it is harmonic if $u_{x x}+u_{y y}=0$.
[a] (5 marks)
(i) Show that the real and imaginary parts of a holomorphic function are harmonic.
(ii) If $u: \Omega \rightarrow \mathbb{R}$, then a function $v: \Omega \rightarrow \mathbb{R}$ is a conjugate of u if $f=u+i v$ is holomorphic on Ω. Show that if u is harmonic, then $-u_{y}$ is a conjugate of u_{x}.
[b] (5 marks) Prove that a harmonic function u admits a conjugate if and only if the holomorphic function $g=u_{x}-i u_{y}$ has a primitive f in Ω. Under what topological conditions on Ω is this guaranteed to hold?
[9] (5 marks) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function with power series

$$
f(z)=\sum_{n=0}^{\infty} c_{a, n}(z-a)^{n}
$$

about the point a. Suppose that for every $a \in \mathbb{C}$, at least one coefficient $c_{a, n}$ is zero. Prove that f is a polynomial.
[10] (5 marks) Let g be an entire function. Show that if g is not a polynomial, then there exists a sequence $\left(z_{n}\right)_{n=1}^{\infty}$ in \mathbb{C} with $\lim _{n \rightarrow \infty}\left|z_{n}\right|=\infty$ and $\lim _{n \rightarrow \infty} g\left(z_{n}\right)=0$.

