University of Waterloo Department of Pure Mathematics Analysis Comprehensive Examination

9am-noon, June 1, 2011

Prepared by Doug Park and Nico Spronk

Instructions: There are 10 problems on this exam, worth a total of 110 points, on the topics of real analysis, measure theory, complex analysis and topology. Attempt every problem.

- [7] 1. (a) Give the definition of a G_{δ} -set in a topological space.
 - (b) Determine if the set of rational numbers \mathbb{Q} is a G_{δ} -set in \mathbb{R} .
- [10] 2. Use contour integration to evaluate the improper integral

$$\int_0^\infty \frac{x^2}{(x^2+1)^2} \, dx.$$

Make sure to justify your steps.

- [13] 3. (a) Let f = u + iv and g = p + iq be analytic functions defined in a neighbourhood U of the origin in the complex plane \mathbb{C} . Assume that |g'(0)| < |f'(0)|. Prove that there is a neighbourhood $V \subset U$ of the origin in which the function $h = f + \overline{g}$ is one-to-one.
 - (b) Suppose $f: \mathbb{C} \to \mathbb{C}$ is an entire function which satisfies $|f(z)| \leq C(1+|z|)^n$ for z in \mathbb{C} , where C > 0 is a constant. Show that f is a polynomial of degree $\leq n$.
- [10] 4. (a) Prove that every compact subset of a Hausdorff space is closed.
 - (b) Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then prove that f is a homeomorphism.
 - (c) Suppose X is a dense subset of a topological space Y. If X is Hausdorff, must the same be true of Y? Prove or give a counter-example.

[15] 5. Consider the Cantor set

$$C = \left\{ \sum_{k=1}^{\infty} \frac{t_k}{3^k} : t_1, t_2, \dots \in \{0, 2\} \right\} \subset [0, 1]$$

with the usual topology.

- (a) Show that C is homeomorphic to $C \times C$. [You may wish to use the product space $P = \{0, 1\}^{\mathbb{N}}$.]
- (b) Define $\psi: C \to [0, 1]$ by $\psi\left(\sum_{k=1}^{\infty} \frac{t_k}{3^k}\right) = \sum_{k=1}^{\infty} \frac{t_k}{2^{k+1}}$.
 - (i) Show that ψ is continuous and surjective.
 - (ii) Is ψ a homeomorphism? Is it possible to find a homeomorphism $\varphi: C \to [0,1]$? Justify your answer.
 - (iii) Determine if ψ satisfies the property of absolute continuity, as defined below. Given $\varepsilon > 0$, there is $\delta > 0$ so that for any n, if $a_1 < b_1 < \ldots < a_n < b_n$ in C satisfies $\sum_{j=1}^{n} (b_j a_j) < \delta$, we have $\sum_{j=1}^{n} |\psi(b_j) \psi(a_j)| < \varepsilon$.

- [10] 6. For each n, let $f_n: [0,1] \to \mathbb{R}$ be a continuous function which satisfies that $f_n(0) = 0$, and f_n is continuously differentiable on (0,1) with $|f'_n(x)| \le x$ for x in (0,1).
 - (a) Prove that there exists a subsequence of $(f_n)_{n=1}^{\infty}$ which converges uniformly to a continuous function f.
 - (b) Must the limit function f, in (a) above, be differentiable on (0,1)? Prove, or provide a counter-example.

- [10] 7. (a) Evaluate $\lim_{n\to\infty}\int_0^{3/n}n\cos(t^3)\,dt$. Justify all of your steps.
 - (b) Let $g_n: [0,1] \to [0,\infty)$, $n=1,2,\ldots$ be a sequence of measurable functions such that $\lim_{n\to\infty} \int_0^1 g_n = 0$. Is it the case that $\lim_{n\to\infty} g_n(t) = 0$ for almost every t in [0,1]? Prove, or provide a counter-example.

[10] 8. Let (X,d) be a metric space. For any subset $A \subset X$ and any real number $\varepsilon > 0$, let

$$\begin{split} B(A,\varepsilon) &= \{x \in X \mid d(x,a) < \varepsilon \ \text{ for some } \ a \in A\}, \\ \overline{B}(A,\varepsilon) &= \{x \in X \mid d(x,a) \le \varepsilon \ \text{ for some } \ a \in A\}. \end{split}$$

- (a) Prove that $B(A, \varepsilon)$ is an open subset of X.
- (b) Prove that if C is compact then $\overline{B}(C,\varepsilon)$ is a closed subset of X.
- (c) Does the result in (b), above, remain true if C is *not* assumed to be compact? Prove, or provide a counter-example.
- (d) Show that if C is compact, A is closed and $C \cap A = \emptyset$, then there is $\varepsilon > 0$ for which $\overline{B}(C,\varepsilon) \cap \overline{B}(A,\varepsilon) = \emptyset$.

- [15] 9. (a) State the Stone-Weierstrass Theorem for C-valued continuous functions on a compact metric space.
 - (b) Given a Lebesgue measurable set $A \subset [0,1]$, $1 \le p < \infty$, and $\varepsilon > 0$, show that there exists a continuous function $g:[0,1] \to \mathbb{R}$ such that

$$\|\chi_A - g\|_p = \left(\int_0^1 |\chi_A - g|^p\right)^{1/p} < \varepsilon.$$

[For the case where A is a finite union of open intervals, a labelled picture will suffice.]

(c) Suppose $f:[0,1]\to\mathbb{R}$ is a bounded Lebesgue measurable function for which $\int_0^1 f(t)e^{nt}\,dt=0$ for $n=0,1,2,\ldots$ Show that f(t)=0 for almost every t in [0,1].

- [10] 10. Let $f(z) = 3z^{100} e^z$.
 - (a) Counting multiplicities, how many zeros z does f have inside the unit circle, i.e. with |z| < 1?
 - (b) How many zeros of f inside the unit circle are simple?