University of Waterloo Department of Pure Mathematics Analysis Comprehensive Examination Thursday January 28, 2010

Instructions: Do TWO problems from each section. Sections have equal weight. If you attempt three problems in a section, then you must clearly mark which two you want marked.

Basic Real Analysis

A1. (a) Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for $n \geq 1$ be continuous functions, and suppose that

$$
\text { for every } x \in \mathbb{R} \text {, there exists an } n \geq 1 \text { such that } f_{n}(x) \in \mathbb{Q} \text {. }
$$

Prove that for every $c<d$ in \mathbb{R}, one can find some numbers $a<b$ in the interval (c, d) and a positive integer n such that the function f_{n} is constant on (a, b).
(b) Provide a complete statement of any major theorem used in your solution.

A2. (a) Suppose that $f_{n}:[0,1] \rightarrow \mathbb{R}$ are C^{1} functions such that

$$
\left|f_{n}(x)\right|+\left|f_{n}^{\prime}(x)\right| \leq 1 \quad \text { for all } \quad x \in[0,1] .
$$

Prove that the sequence $\left(f_{n}\right)_{n \geq 1}$ has a uniformly convergent subsequence.
(b) Provide a complete statement of any major theorem used in your solution.

A3. Let (X, d) be a compact metric space, and let $T: X \rightarrow X$ be a function such that

$$
d(T x, T y)=d(x, y) \quad \text { for all } \quad x, y \in X
$$

(a) Let a be a point in X. Prove that a is a cluster point of the sequence $\left\{T^{n} a: n \geq 1\right\}$.
(b) Prove that the function T is surjective.
(c) Prove that the function T is a homeomorphism.

Complex Analysis

B1. Let $0<p<1$. Evaluate

$$
\int_{0}^{\infty} \frac{x^{p}}{1+x^{2}} d x
$$

Simplify your answer so that it is expressed in terms of real quantities.

B2. (a) State the Schwarz Lemma.
(b) Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$. Suppose that $f: \mathbb{H} \rightarrow \mathbb{C}$ is an analytic function such $|f(z)|<1$ for all $z \in \mathbb{H}$ and that $f(i)=0$. Prove that $|f(2 i)| \leq 1 / 3$.
(c) Prove that there exists a unique function f satisfying the hypotheses from part (b) such that $f(2 i)=i / 3$. Find a formula for f.

B3. Let Ω be a non-empty connected open subset of \mathbb{C}, and let $f(z)$ be analytic on Ω.
(a) Define what it means for Ω to be simply connected.
(b) If Ω is simply connected, prove that is there an analytic function $g(z)$ on Ω such that $g^{\prime}(z)=f(z)$.
(c) Provide an example of an analytic function f on a non-simply connected domain Ω which does not have a primitive (anti-derivative).

Topology and Set Theory

C1. (a) Prove that every real vector space has a basis.
(b) Let A be an infinite set. Prove that the collection $\mathcal{F}(A)$ of all finite subsets of A has the same cardinality as A.
(c) Let ℓ^{∞} denote the Banach space of all bounded real sequences. Prove that the vector space basis of ℓ^{∞} has cardinality $2^{\aleph_{0}}$.
Hint: for $A \subset \mathbb{N}$, let $s_{A}=\left(a_{i}\right)$ where $a_{i}=1$ if $i \in A$ and $a_{i}=0$ otherwise. Observe that a finite dimensional subspace of ℓ^{∞} contains at most finitely many such vectors.

C2. (a) Define connected and path-connected for a topological space.
(b) Prove that $[0,1]$ is connected.
(c) Prove that path-connected implies connected.
(d) Define a set $X \subset \mathbb{R}^{2}$ as follows. Let

$$
V=\{(0, t): 0 \leq t \leq 1\}=\{0\} \times[0,1]
$$

and

$$
H_{n}=\{(t, 1 / n): 0 \leq t \leq 1\}=[0,1] \times\left\{\frac{1}{n}\right\} \quad \text { for } \quad n \geq 1
$$

Set $X=V \cup\{(1,0)\} \cup \bigcup_{n \geq 1} H_{n}$. Prove that X is connected, but is not path-connected.

C3. Let $X=\{0,1\}^{\aleph_{0}}$ and $Y=\{0,1,2\}^{\aleph_{0}}$ where $\{0,1\}$ and $\{0,1,2\}$ have the discrete topology and X and Y are endowed with the product topology.
(a) Give a base for the topology on X.
(b) Define what a homeomorphism is.
(c) Prove that X and Y are homeomorphic.

Measure Theory

D1. Let f, f_{n} for $n \geq 1$ be bounded Lebesgue measurable functions on $[0,1]$. We say that f_{n} converges to f in measure if

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f(x)-f_{n}(x)\right|>\varepsilon\right\}\right)=0 \quad \text { for all } \quad \varepsilon>0
$$

Prove that f_{n} converges to f in $L^{1}(0,1)$ if and only if f_{n} converges to f in measure and $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1}=\|f\|_{1}$.

D2. Let $u:[0,1] \rightarrow[0, \infty)$ be a Lebesgue measurable function. For every $n \geq 1$, define a function f_{n} by the formula

$$
f_{n}(x)=\frac{u(x)^{n}}{1+u(x)^{n}}
$$

(a) Briefly explain why the integral $\int f_{n} d m$ exists and is finite for every $n \geq 1$.
(b) Prove that $\lim _{n \rightarrow \infty} \int f_{n} d m$ exists, and express it in terms of $m(A)$ and $m(B)$, where $A=\{x: u(x)<1\}$ and $B=\{x: u(x)>1\}$.
(c) Provide a complete statement of any major theorem used in your argument.

D3. Let X be an infinite uncountable set. Define

$$
\mathcal{M}=\{A \subset X: A \text { is countable or } X \backslash A \text { is countable }\}
$$

("countable subset" includes the empty set and finite subsets of X).
(a) Verify that \mathcal{M} is a σ-algebra of subsets of X.
(b) Let $f: X \rightarrow \mathbb{R}$ be a function which is measurable between (X, \mathcal{M}) and $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} denotes the Borel σ-algebra of \mathbb{R}. Prove that there exists a real number a, uniquely determined, such that $f^{-1}(\mathbb{R} \backslash\{a\})$ is a countable set.

