University of Waterloo Department of Pure Mathematics Analysis Comprehensive Examination Thursday January 28, 2010

Instructions: Do TWO problems from each section. Sections have equal weight. If you attempt three problems in a section, then you must clearly mark which two you want marked.

BASIC REAL ANALYSIS

A1. (a) Let $f_n : \mathbb{R} \to \mathbb{R}$ for $n \ge 1$ be continuous functions, and suppose that

for every $x \in \mathbb{R}$, there exists an $n \ge 1$ such that $f_n(x) \in \mathbb{Q}$. Prove that for every c < d in \mathbb{R} , one can find some numbers a < b in the interval (c, d) and a positive integer n such that the function f_n is constant on (a, b).

- (b) Provide a complete statement of any major theorem used in your solution.
- A2. (a) Suppose that $f_n: [0,1] \to \mathbb{R}$ are C^1 functions such that

 $|f_n(x)| + |f'_n(x)| \le 1$ for all $x \in [0, 1]$.

Prove that the sequence $(f_n)_{n\geq 1}$ has a uniformly convergent subsequence.

- (b) Provide a complete statement of any major theorem used in your solution.
- A3. Let (X, d) be a compact metric space, and let $T : X \to X$ be a function such that

$$d(Tx, Ty) = d(x, y)$$
 for all $x, y \in X$.

- (a) Let a be a point in X. Prove that a is a cluster point of the sequence $\{T^n a : n \ge 1\}$.
- (b) Prove that the function T is surjective.
- (c) Prove that the function T is a homeomorphism.

Complex Analysis

B1. Let 0 . Evaluate

$$\int_0^\infty \frac{x^p}{1+x^2} \, dx.$$

Simplify your answer so that it is expressed in terms of real quantities.

- B2. (a) State the Schwarz Lemma.
 - (b) Let $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$. Suppose that $f : \mathbb{H} \to \mathbb{C}$ is an analytic function such |f(z)| < 1 for all $z \in \mathbb{H}$ and that f(i) = 0. Prove that $|f(2i)| \leq 1/3$.
 - (c) Prove that there exists a unique function f satisfying the hypotheses from part (b) such that f(2i) = i/3. Find a formula for f.
- B3. Let Ω be a non-empty connected open subset of \mathbb{C} , and let f(z) be analytic on Ω .
 - (a) Define what it means for Ω to be simply connected.
 - (b) If Ω is simply connected, prove that is there an analytic function g(z) on Ω such that g'(z) = f(z).
 - (c) Provide an example of an analytic function f on a non-simply connected domain Ω which does not have a primitive (anti-derivative).

TOPOLOGY AND SET THEORY

- C1. (a) Prove that every real vector space has a basis.
 - (b) Let A be an infinite set. Prove that the collection $\mathcal{F}(A)$ of all finite subsets of A has the same cardinality as A.
 - (c) Let ℓ^{∞} denote the Banach space of all bounded real sequences. Prove that the vector space basis of ℓ^{∞} has cardinality 2^{\aleph_0} . **Hint:** for $A \subset \mathbb{N}$, let $s_A = (a_i)$ where $a_i = 1$ if $i \in A$ and $a_i = 0$ otherwise. Observe that a finite dimensional subspace of ℓ^{∞} contains at most finitely many such vectors.
- C2. (a) Define *connected* and *path-connected* for a topological space.
 - (b) Prove that [0, 1] is connected.
 - (c) Prove that path-connected implies connected.
 - (d) Define a set $X \subset \mathbb{R}^2$ as follows. Let

$$V = \{(0,t) : 0 \le t \le 1\} = \{0\} \times [0,1]$$

and

$$H_n = \{(t, 1/n) : 0 \le t \le 1\} = [0, 1] \times \{\frac{1}{n}\} \text{ for } n \ge 1.$$

Set $X = V \cup \{(1, 0)\} \cup \bigcup_{n \ge 1} H_n$. Prove that X is connected, but
is not path-connected.

- C3. Let $X = \{0, 1\}^{\aleph_0}$ and $Y = \{0, 1, 2\}^{\aleph_0}$ where $\{0, 1\}$ and $\{0, 1, 2\}$ have the discrete topology and X and Y are endowed with the product topology.
 - (a) Give a base for the topology on X.
 - (b) Define what a *homeomorphism* is.
 - (c) Prove that X and Y are homeomorphic.

MEASURE THEORY

D1. Let f, f_n for $n \ge 1$ be bounded Lebesgue measurable functions on [0, 1]. We say that f_n converges to f in measure if

 $\lim_{n \to \infty} m(\{x : |f(x) - f_n(x)| > \varepsilon\}) = 0 \quad \text{for all} \quad \varepsilon > 0.$

Prove that f_n converges to f in $L^1(0,1)$ if and only if f_n converges to f in measure and $\lim_{n\to\infty} ||f_n||_1 = ||f||_1$.

D2. Let $u : [0, 1] \to [0, \infty)$ be a Lebesgue measurable function. For every $n \ge 1$, define a function f_n by the formula

$$f_n(x) = \frac{u(x)^n}{1 + u(x)^n}$$

- (a) Briefly explain why the integral $\int f_n dm$ exists and is finite for every $n \ge 1$.
- (b) Prove that $\lim_{n\to\infty} \int f_n dm$ exists, and express it in terms of m(A) and m(B), where $A = \{x : u(x) < 1\}$ and $B = \{x : u(x) > 1\}$.
- (c) Provide a complete statement of any major theorem used in your argument.

D3. Let X be an infinite uncountable set. Define

 $\mathcal{M} = \{ A \subset X : A \text{ is countable or } X \setminus A \text{ is countable} \}$

("countable subset" includes the empty set and finite subsets of X).

- (a) Verify that \mathcal{M} is a σ -algebra of subsets of X.
- (b) Let $f: X \to \mathbb{R}$ be a function which is measurable between (X, \mathcal{M}) and $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} denotes the Borel σ -algebra of \mathbb{R} . Prove that there exists a real number a, uniquely determined, such that $f^{-1}(\mathbb{R} \setminus \{a\})$ is a countable set.