Analysis Comprehensive Exam May 23, 2013, MC5046, 9:00am-12:00pm K.E. Hare and K.G. Hare

- Attempt all questions.
- You must show all of your reasoning.
- 1. Let ℓ^{∞} denote the space of bounded \mathbb{R} -valued sequences with norm $\|(x_n)\|_{\infty} = \sup_n |x_n|$.
 - (a) Show that ℓ^{∞} is a complete metric space, and that it is non-separable.
 - (b) Show that $B = \{(x_n) \in \ell^{\infty} : ||(x_n)||_{\infty} \le 1\}$ is not compact.
- 2. A set $E \subset \mathbb{R}^n$ is called *midpoint convex* if, for any x, y in E we have $\frac{1}{2}(x+y) \in E$ as well.
 - (a) Give an example of a set $E \subset \mathbb{R}^n$ which is midpoint convex, but not convex.
 - (b) Suppose $E \subset \mathbb{R}^n$ is closed. Show that if E is midpoint convex, then it is convex.
 - (c) Suppose $E \subset \mathbb{R}^n$ is open. Show that if E is midpoint convex, then it is convex.
- 3. Show that any non-empty open set in a separable metric space (X, d) is the union of a countable family of open balls.
- 4. Let C[0,1] denote the space of all continuous \mathbb{C} -valued functions on the interval [0,1] with uniform norm. Let A be the subset of all polynomials with p(0) = p(1).
 - (a) Prove that A is dense in $\{f \in C[0,1] : f(0) = f(1)\}$.
 - (b) Let $f(t) = |t \frac{1}{2}|$. Show that any sequence (p_n) of elements of A, converging uniformly to f, necessarily has $\lim_{n\to\infty} \deg p_n = \infty$. Here $\deg p$ is the degree of the polynomial p.

- 5. Let m be the Lebesgue measure and $L^1[0,1] = L^1([0,1],m)$.
 - (a) Let $\varepsilon > 0$ and $f \in L^1[0,1]$. Prove that there exists $\delta > 0$ such that $\int_A |f| \, dm < \varepsilon$ whenever A is measurable with $m(A) < \delta$.
 - (b) Suppose $f_n, f \in L^1[0,1], f_n \geq 0, f_n \to f$ pointwise, and $\int_{[0,1]} f_n \to \int_{[0,1]} f$. Prove that $\int_E f_n \to \int_E f$ for each measurable $E \subseteq [0,1]$. [Hint: Egoroff's Theorem.]
- 6. How many roots does the function $g(z) = 4z^7 + 7z^4 + 1$ have within the circle |z| = 1?
- 7. Suppose $f: \mathbb{C} \to \mathbb{C}$ is an entire function with $|f(z)| \leq \sqrt{|z|}$ for all |z| > R, for some fixed R > 0. Prove that f is a constant.
- 8. Evaluate each of the following integrals.

(a)
$$\int_{|z|=2} \frac{e^z}{z^2-2} dz$$

(b)
$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 - 2x + 4} dx$$

- 9. (a) Suppose $f: \mathbb{C} \to \mathbb{C}$ is an entire function with f(z+1) = f(z) = f(z+i) for each z. Show that f is necessarily constant.
 - (b) Let

$$g(z) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(z - n - mi)^4}.$$

Show that g defines an analytic function on $\mathbb{C}\setminus\{a+bi:a,b\in\mathbb{Z}\}$, with g(z+1)=g(z)=g(z+i) for each z in its domain.

- 10. Let A and B be non-empty sets. We say that A has cardinality greater than B if there is an injection from B into A, but no bijection.
 - (a) Show that if A has cardinality greater than B, and B has cardinality greater than C, then A has cardinality greater than C.
 - (b) Find a sequence of infinite sets $\{A_n\}_{n=1}^{\infty}$ such that for each n, A_{n+1} has cardinality greater than A_n .
 - (c) Find a set A with cardinality greater than A_n for each of the sets in (b), above.