University of Waterloo Department of Pure Mathematics Analysis & Topology Comprehensive Exam May 12, 2016

Prepared by Brian Forrest and Matthew Kennedy.

Instructions: Answer all of the questions in Part I and two of the questions in Part II. The questions in Part I are worth 10 points each. The questions in Part II are worth 15 points each. There are 110 total points available.

Part I

Answer all of the following questions.

[10] 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose there is an infinite countable subset $S \subseteq \mathbb{R}$ such that

$$\int_{a}^{b} f(x) \, dx = 0$$

whenever $a, b \notin S$. Show that f = 0.

- [10] 2. Let C([-1,1]) denote the Banach space of continuous real-valued functions on [-1,1] equipped with the supremum norm. Determine whether each of the following sets is dense in C([-1,1]) and justify your answer:
 - (a) span $\{1, x^2, x^4, x^6, \ldots\}$
 - (b) span $\{1, x^{171}, x^{172}, x^{173}, \ldots\}$
- [10] 3. Give an example of a sequence $(f_n)_{n=1}^{\infty}$ of non-negative measurable functions on \mathbb{R} and a measurable function f on \mathbb{R} such that
 - i. $f_{n+1}(x) \leq f_n(x)$ for all $n \geq 1$ and $x \in \mathbb{R}$, and
 - ii. $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in \mathbb{R}$,

but

$$\lim_{n\to\infty}\int_{\mathbb{R}}f_n(x)\,dx\neq\int_{\mathbb{R}}f(x)\,dx.$$

- [10] 4. Let (X, d) be a complete *countable* metric space. Show there is $x \in X$ such that the singleton $\{x\}$ is open.
- [10] 5. Let X and Y be topological spaces such that X is compact and Y is Hausdorff. Let $f: X \to Y$ be a continuous bijection. Show that f is a homeomorphism.
- [10] 6. Evaluate

$$\int_0^{2\pi} \frac{1}{1 + \cos \theta} \, d\theta.$$

$$\mathcal{F} = \{ (A, B, f) \mid A \subseteq X, B \subseteq Y, f : A \to B \text{ is a bijection} \}.$$

Partially order \mathcal{F} by $(A_1, B_1, f_1) \leq (A_2, B_2, f_2)$ if and only if $A_1 \subseteq A_2$, $B_1 \subseteq B_2$ and f_2 restricts to f_1 on A_1 . Use this to show that one of the following two possibilities must hold:

- i. There exists a one-to-one function from X into Y.
- ii. There exists an onto function from X onto Y.
- [10] 8. (a) Let (X,d) be a metric space and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous real-valued functions on (X,d) that converges uniformly to a function $f:X\to\mathbb{R}$. Show that f is also continuous.
 - (b) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. Suppose that this series converges at some $x_0 \in \mathbb{R}$ with $x_0 \neq 0$. Show that the power series converges for every $x \in (-|x_0|, |x_0|)$.
 - (c) Define $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-|x_0|, |x_0|)$, where the power series and $x_0 \in \mathbb{R}$ are as in (b). Show that f is continuous on $(-|x_0|, |x_0|)$.

Part II

Answer two of the following questions.

- [15] 1. (a) i. Prove Liouville's theorem that a bounded entire function $f:\mathbb{C}\to\mathbb{C}$ is constant.
 - ii. Let $f:\mathbb{C}\to\mathbb{C}$ be a non-constant entire function. Show that the range of f is dense in \mathbb{C} .
 - iii. Show that a bounded harmonic function $u: \mathbb{R}^2 \to \mathbb{R}$ is constant.
 - (b) i. Show that for every non-constant polynomial $p \in \mathbb{C}[z]$,

$$\lim_{|z|\to\infty}|p(z)|=\infty.$$

- ii. Prove the Fundamental Theorem of Algebra: For every non-constant polynomial $p \in \mathbb{C}[z]$, there is $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.
- 2. Let m denote the Lebesgue measure on \mathbb{R} .
- [15] (a) Let $E \subseteq \mathbb{R}$ be a measurable set with $0 < m(E) < \infty$. Show that the function

$$F(x) = m((x+E) \cap E)$$

is continuous at x = 0, where $x + E = \{x + y \mid y \in E\}$.

(b) Let $E \subseteq \mathbb{R}$ be a measurable set with m(E) > 0. Show that the set

$$E - E = \{x - y \mid x, y \in E\}$$

contains an open interval $(-\delta, \delta)$ for some $\delta > 0$.

- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function such that f(x) + f(y) = f(x+y) for all $x, y \in \mathbb{R}$. Show that f is continuous.
- (d) Let f be as in (c). Show there is $\gamma \in \mathbb{R}$ such that $f(x) = \gamma x$ for every $x \in \mathbb{R}$.
- [15] 3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces, and let $T: X \to Y$ be a linear map. Say that T is bounded if the quantity

$$\|T\|:=\sup_{\substack{x\in X\\ \|x\|_X\leq 1}}\|Tx\|_Y<\infty$$

is finite.

?

- (a) Prove that the following are equivalent:
 - i. T is continuous.
 - ii. T is continuous at 0.
 - iii. T is bounded.
- (b) Let $(\mathbb{R}^n, \|\cdot\|_2)$ denote the usual Euclidean space. A matrix $A \in \mathbb{R}^{n \times n}$ gives rise to a linear map $A : \mathbb{R}^n \to \mathbb{R}^n$ in the usual way, so that the norm of A can be defined as above by

$$||A|| := \sup_{\substack{x \in \mathbb{R}^n \\ ||x||_2 \le 1}} ||Ax||_2 < \infty$$

i. Let

$$D = \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

be a diagonal matrix. Show that $||D|| = \max\{d_1, d_2, \dots, d_n\}$.

ii. Let D be as in (i). Show that

$$||D|| = \sup_{\substack{x \in \mathbb{R}^n \\ ||x||_2 \le 1}} |\langle Dx, x \rangle|.$$

- iii. Let $U \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e. a matrix satisfying $U^T U = I$, where U^T denotes the transpose of U. Show that for every $x \in \mathbb{R}^n$, ||Ux|| = ||x||.
- iv. Let $A \in \mathbb{R}^{n \times n}$ be a matrix and let α denote the largest eigenvalue of the matrix $A^T A$. Show that $||A|| = \sqrt{|\alpha|}$.
- v. Compute ||A|| for

$$A = \left[\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array} \right].$$