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§0. Introduction

Let K be an algebraic number field of degree d, with discriminant D, and
ring of integers Ox. Let My be the set of places (i.e. equivalence classes of
multiplicative valuations) on K. A place v is called finite if v contains only
non-archimedean valuations, and infinite otherwise. K has only finitely many
infinite places. Let S be a finite subset of M, containing all infinite places.
A number xeK is called an S-unit if |x|,=1 for every valuation ||, from a
place ve M \S. The S-units form a multiplicative group which is denoted by
Us. We shall deal with the S-unit equation

oy x+o, y=0a3 in x, yeUs, (1)

where a4, o, 36 K*(= K\ {0}). Lang [9] proved that (1) has only finitely many
solutions. Denote this number of solutions by vg(a;, 5, &3). We call two triples
(), 05, 3) and (B,, B2, B5) in (K*)* (and their corresponding S-unit equations)
S-equivalent if there exist a permutation ¢ of (1, 2, 3), a AeK* and S-units
€4, &, &5 such that

Bi=Aga,, for i=1,2,3. 2

It is easy to check that if (x,,a,,as3) and (B, B2, B,) are S-equivalent, then
Vs, 2y, a3) =vs(By, B2, B3) (cf. [6] § 1)

Evertse [3] proved that vg(oty, a5, %3) <3 x for every (a,, a,, a;)e(K*)?
where s denotes the cardinality of S. A general upper bound for vg which is
polynomial in s does not exist, since a result of Erdds, Stewart and Tijdeman
e —————————
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[2] implies that in case K= there is a positive constant C and there are
sets S of arbitrarily large cardinality for which vg(1, 1, 1)>exp(C(s/log s)'/?).
On the other hand, for a large class of triples (x,, #,, a3) specified below, Gyory
[7] derived an upper bound for vg(a,, o5, @3) which is linear in s. Let py, ..., p,
be the prime ideals corresponding to the finite places in S. For any acK*
the principal ideal («) can be written uniquely as a product of two (not necessarily
principal) ideals a' and a”, where o’ is composed of p, ..., p, and a” is composed
solely of prime ideals different from py, ..., p,. We put Ng(2)= Ngq(a”). Gyory
proved the following.

For any ¢ with 0<¢ =1 there is an effectively computable number C depend-
ing only on &K and S such that vg(x,,o,,23)<s+3t for each triple
(ala %325 a3)E(@K\{O})3 with

Ns(23)ZC and (Ns(a3))' ~° = min(Ns(xy), Ns(t,)). A)

If, moreover, (log Ng(x3))! ~*=max(log Ng(a,), log Ng(a,)), then vg(oty, oy, 03) <
s+t.

We remark that there are infinitely many S-equivalence classes which have
a representative satisfying condition (3) and infinitely many S-equivalence classes
which do not have such a representative (cf. [6], § 3).

In this paper we prove that almost all equivalence classes of S-unit equations
in two unknowns have remarkably few solutions.

Theorem 1. Let S be a finite subset of My containing all infinite places. Then
there exists a finite set o of triples in (K*)® with the following property: for
each triple (ay, a,, a3)€(K*)® which is not S-equivalent to any of the triples from
oA, the number of solutions of (1) is at most two.

For s> 1, the upper bound ‘two’ cannot be improved, since there are infinite-
ly many S-equivalence classes of S-unit equations (1) with two solutions {cf.
[6], § 1). The proof of Theorem 1 is based on the Main Theorem on S-Unit
Equations (Lemma 1) which is proved by the p-adic analogue of the Thue-Siegel-
Roth-Schmidt method and is therefore ineffective. Consequently, its proof does
not enable one to describe triples («;, &,, a3) for which (1) has no more than
two solutions. The following improvement of Gydry’s result is based on the
effective method of Baker and its p-adic analogue. It provides the upper bound
s+1 for the number of solutions of all S-unit equations with the exception
of a finite set of S-equivalence classes which is, at least in principle, effectively
determinable. For any non-zero algebraic number o with minimal polynomial

F(X)=a, n (X —a)eZ[X], (4
i=1
we define the height h(a) of o by
n 1/n -
h(a)=(|ao| 1 max(1,|a,-|)) . ©)
i=1

For given C> 1, there are only finitely many aeK* with k(o)< C, and all thes¢
o« can be effectively determined.
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Theorem 2. Let S be a finite subset of M of cardinality s, containing all infinite
places. Suppose that the rational primes corresponding to the finite places in S
do not exceed P(22). Let # denote the set of triples (B, B,, B3)e(Ox\{0})* with

max (h(B,), h(B,), h(Bs)) Sexp{(C, ) P!"1},

where C, and C, are certain explicitly computed numbers depending only on
d and |Dg|. Then for each triple (a,, o,, a3)e(K*)® which is not S-equivalent to
any of the triples in %, the number of solutions of (1) is at most s+ 1.

For t>0, Theorem 2 implies Gyory’s result stated above. For let
(1, 3, 23)€(Ox\{0})* be a triple satisfying (3) for some ¢>0 and some number
C which will be chosen later. For any triple (8;, £, f3)€(0x\{0})* which is
S-equivalent to (o, o, , a3) we have

Ns(3)

(max(h(), h(Ba) B2 e s

(6)

This can be proved easily by observing that the right hand side of (6) does
not change if «,, a,, @5 are multiplied by the same number in K* or by different
S-units, that the left-hand side of (6) is invariant under permutations of 8, f,, B3,
and that for each § in Ox\ {0}

1S Ns(B) <INk (B = (R (B

By combining (6) with (3) we obtain that

max (h(B,), h(B,), h(B3) = C**

for each triple (8, B,, B3)e(Ox\{0})® which is S-equivalent to (a,, &, a3). Togeth-
er with Theorem 2 this implies that (1) has at most s + 1 solutions if C is sufficient-
ly large.

By combining Theorem 2 with an explicit upper bound for the heights of
the solutions of (1), derived by Gyéry [7] (see also Lemma 7 in this paper)
we obtain that any triple (8,, B,, B5)€(K*)? for which B, x'+ B, y = B3 has more
than s+1 solutions in S-units x’,), is S-equivalent to a triple
(0}, 25, a3)e(Ox\{0})® such that the solutions of (1) have heights which do not
exceed an effectively computable number independent of a4, a5, 5. More precise-
ly we have the following result.

Theorem 3. Let K, S, s, P have the same meaning as in Theorem 2. Let
(B1, B,, Bs)e(K*)® be a triple for which the equation B, X + B,y =B in S-units
X,y has at least s+2 solutions. Then there is a triple (ay,®,,3)e(O\{0})3,
S-equivalent to (B1, B2, Bs), such that all solutions (x, y) of (1) satisfy

max (h(x), h(y)) Sexp {(C3 S)C4SP2d+2}’

Where C, and C, are effectively computable numbers depending only on d and
kl-
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The special case K=®Q of Theorem 1 has been considered in [6] §5. On
the other hand, it is possible to generalize Theorem 1 to the case that K is
any subfield of € and Us is any finitely generated multiplicative subgroup of
C*, or that U is just a subgroup of finite rank of C*. For the proofs it suffices
to replace the Main Theorem on S-Unit Equations as we use it (Lemma 1)
by the version due to van der Poorten and Schlickewei [14] in the first instance
and the version of Laurent [12] in the second.

Suppose that we want to extend our results to S-unit equations

Oy Xqt oo F 0 X, =0y 1D Xy, ..., X, U, )]

where (ay, ..., 0,4 )€(K*)"*! with n>2. If U is infinite an equation of this
type may have infinitely many solutions such that some non-empty proper sub-
sum of &, x, + ... +a, x, vanishes. Such solutions will be called degenerate. For
example, let ay, ..., a®,_;€K* such that o xi+...+0,_;x,_,=0 for some
Xy, ..., Xy_1€Us. Then, for any eeUs, Eq. (7) with a,,, =a, has the degenerate
solution x; =¢&X}, X, =EX}, ..., X,y =£X,_1, X,= 1. However, as we shall show
in § 5, the number of non-degenerate solutions can also be large. We shall prove
that for K =@ and for any sufficiently large integer s there is a set S of cardinality
s and infinitely many S-inequivalent n+ 1-tuples (, ..., &, ;)e(@*)"** for which
the number of non-degenerate solutions of the S-unit Equation (7) is at least
exp((4+o0(1)) (s/logs)*/?) as s — oo. Thus the constant two in Theorem 1 and
the number s+ 1 in Theorem 2 must be replaced by a number at least as large
as exp((4+o0(1)) (s/logs)'/? as s — 0. On the other hand, recently Evertse and
Gyory [5] have shown that apart from finitely many S-inequivalent n+ 1-tuples
(@, -, Ons 1) E(K*)" 1, the solutions of (7) are contained in at most 2¢* 1" proper
linear subspaces of K”. For n=2, this gives a weaker version of our Theorem I
with the upper bound 26 instead of 2.

For more background material and applications of results on S-unit equa-
tions, we refer the reader to our survey paper [6] in the Proceedings of the
L.M.S. Conference on Transcendence Theory at Durham, England. At this con-
ference, held in July, 1986, Theorem 1 was established.

§ 1. Proof of Theorem 1

Let n be an integer with n>1. Points in the vector space K"*! are denoted
by X=(Xo, X;, ..., X,). If we identify pairwise linearly dependent non-zcro
points in K"*!, we obtain the n-dimensional projective space IP"(K). Points
in IP*(K), so-called projective points, are denoted by X =(X¢:X,:...: X,), Whéfc
the homogeneous coordinates are in K and are determined up to a multiplicative
constant in K. We denote the subset of IP"(K) of projective points with all
the homogeneous coordinates in Us by IP"(U). We shall apply the Main Theorem
on S-Unit Equations which was first stated by van der Poorten and Schlickewe!
[14]. Evertse formulated his version of this theorem in terms of (c, d, S)-admiss!-
ble points. Since P"(Us) consists precisely of all (1, 0, S)-admissible points, ¥
may use the following statement.
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Lemma 1. (Evertse, [4, Theorem 11]). There are only finitely many projective
points X =(Xo: X, :...: X,)eIP"(Us) such that

Xo+ X +...+X,=0 8)
with
X, +X;+...+X, *0

for each proper, non-empty subset {io, iy, ..., in} of {0, 1, ..., n}.

Proof of Theorem 1. Since (o, o5, 05) and (a,/a5, ay/04, 1) are S-equivalent, we
may assume without loss of generality that a3 =1. Suppose

&y X+Olzy=1 (9)

has three distinct solutions (x,, y,), (X2, y2) (x3,y3) in (Us)®. Then we obtain,
after eliminating o, and «,,

X1 Y2—X2 Y1 +X3Y3—X3Y2+X3y,—X%; y3=0. (10)

Note that the expression on the left-hand side does not change value if we
interchange all x’s and y’s or if we permute the subscripts {1, 2, 3} consistently.
Furthermore,

Xy Va$EXa Y1, XaYaEXsVa, X3 ViFEX (Y3, (1

since the solutions of (9) are distinct. We shall show that there are only finitely
many possibilities for x,/x, and y,/y,. By the preceding considerations it suffices
to prove this claim in each of the following cases:

(@) no proper, non-empty subsum of the left-hand side of (10) vanishes,
(b1) x; y,+%,y3=0, X3 y; +x3y,—X3y1+x; y3=0,
02 x;y,—Xx3y2=0, %3 y; =X y3—X3y1+%, y3=0,
(€) Xy y2—X,y1+Xx3¥3=0, X3y, —Xx3 1+ X1 y3=0,
€2) x;y,+X3y3+x3y1=0, x; y; +x3y2+%, y3=0,
(€3) x;y,4 %X, 93—%,¥3=0, X, y1 +x3y2—x3y,=0.

Case (a). By Lemma 1 there are only finitely many projective points
(X1 ¥31X5 ¥y 1% Y3:1X3 Y21 X3 ¥1:X; y3)€IP®(Us). Hence there are only finitely many
possibilities for x,/x, and y,/y;.

Case (b1). No subsum of x, y; 4 X3 y,—X3 ¥1 +X; y3 can vanish by (11), x, % x5,
N1%0,x340, y, +v,. By Lemma 1 there are only finitely many projective points
(X y,:x, y3)elP!(Us) and (x, y;:X3 ¥2:X3 y1:%; y3)€IP*(Us). Hence there are only
finitely many possibilities for x; y,/x, Vs, ¥2/¥1, X2 ¥1/X;y3, whence for
X2 ¥3/%y ¥4, X5 ¥1/X1 V3, whence for x3/x2, whence for x,/x,.

Case (b2). This is impossible, since y, 0, x, # x5.

Case (c1). By Lemma 1 there are only finitely many projective points
(xx‘yZ:xz y1:%, y3)€P?(Uy) and (x5 y,: x5 yy:%; y3)€IP?(U). Hence there are only
finitely many possibilities for y,/y,, X; ¥,/x2 y,, whence for x,/x;.
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Case (c2). By Lemmal there are only finitely many projective points
(1 y2:%5 ¥3:x3 y1)€PP?(Ug) and (x, y,: X3 y,:x, y3)€P?(Us). Hence there are only
finitely many possible values for x, y3/X1 5, X( Y2/X3 V1, X3 Y2/%2 V1s X2 ¥1/X, V3,
whence for x3 y,/x?y,, x; y3/x, y?, whence for x3/x} and y3/y3, whence for
Xa/xy and y,/y;.

Case (c3). By Lemma 1l there are only finitely many projective points
(1 ¥2:X5 y3:%1 y3)€P?(Ug) and (x5 y,: X3 y,:x3 ¥,)€P?(Us). Hence there are only
finitely many possibilities for x,/x; and y,/y;.

We conclude that there are indeed only finitely many possibilities for x,/x,
and y,/y,. Since (x;, y,) and (x,, y,) satisfy (9), we have

(v2/y)—1 (x2/x4)—1

0y X{= , M,y =
t V2/Y1—X2/%y 2 Xy/X1—Y2/y1

Hence there are only finitely many possibilities for o; and «, up to multiplicative
factors from U.

Remark. Up to multiplicative factors from Us, there are only finitely many ele-
ments of K* which can be represented as sums of two S-units in two essentially
different ways. This is an immediate consequence of Lemma 1. It means that
in Theorem 1 ‘two’ can be replaced by ‘one’ when o, =a, and solutions (x, )
and (y, x) are not distinguished.

§ 2. Valuations and heights

Since the algebraic number field K has degree d, it has d different @Q-isomor-
phisms into €, 64, ..., G,y Gpy s 15 -5 Opytry> Oribrat 15 o5 Opy 420, = Oq SAY, WheLE
6; maps K into R for i=1,...,r, 6; maps K into € for i=r;+1, ...,d and
0,,+;(0) =0y, 4,,+;(@) for aeK and je{l, ...,2}. K has exactly r,+r, infinite
places, and each infinite place v contains exactly one valuation of the type
|6:wy( )l where i(v)e{L, ..., r;+r,}. In each infinite place v we choose the valua-
tion

[ l=103)( )14, (12)

whered,=1if 1Li(v)<r, and d,=2ifr; + 1 SiW)=ry +7,.
For each ae K* we have

(a) - I_[ pord,(a)’
P

where («) denotes the ideal generated by «,p runs through the set of prime
ideals of Oy, and the exponents ord, () are integers of which at most finitely
many are non-zero. If v is the finite place corresponding to the prime ideal
p, then we put

o), =(Ngg(®)) "o if 40, |0],=0. (13)

The valuations | |,(ve Mg) chosen above satisfy the product formula
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IT lal,=1 for aeK*. (14)

veMx

The set of infinite places on K is denoted by S,. If S is any finite subset
of My containing S, then we have

NS(“)=(1—I]alu)d for (XEK, (15)

ves

where Ng(x) has the same meaning as in the Introduction. In particular, Ny_ (=)
=[Nk /(). Finally we have

Ny(e)=1  foreach S-unit a. (16)
If 7 is the height defined in (5), then (cf. {11], p. 54)

h(e)= [] max(1,|al,) for aeK*. amn

veMk
We shall use frequently that
h@™ )=h(®), h@p)<h(@h(B) for o peK* (18)

In the literature two other heights frequently appear, namely H(x«), which is
the maximum of the absolute values of the coefficients of the minimal polynomial
of « over Z, and |«|, which is the maximum of the absolute values of the conju-
gates of & over Q. We have

led " < b (o) < Jo (19)

if « is a non-zero algebraic integer of degree n, and
TH(@)'""Sh@=(n+1)"VC"H (o)'" (20)

if o is a non-zero algebraic number of degree n. (19) is obvious, while the proof
of (20) can be found, for instance, in [11], p. 60, Theorem 2.8.

§3. Lemmas for the proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular, s
Is the cardinality of S and the rational primes corresponding to the finite places
1 § do not exceed P(=2). Let ¢ denote the number of finite places in S, and
define r such that r+1 is equal to the number of infinite places on K. Thus
S=r+t+1. It is well known that the group Us of S-units has rank r+t=s5—1.
In the remainder of the paper, ¢, C,, ..., will denote effectively computable
Numbers > 1, which depend only on d and the absolute value of the discriminant
Dy of K. We shall use frequently the fact that the class number hg of K and
the regulator Ry of K can be estimated from above by effectively computable
Numbers depending only on d and |Dg|. This follows from an upper bound
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for hg Ry derived by Siegel [16] and a lower bound for Ry due to Zimmert
[173.

In the next three lemmas some estimates for S-units are given. We recall
that d, and the valuations | |, were introduced in (12) and (13).

Lemma 2. If r=1, then there exist multiplicatively independent units n, ..., 1,
in Oy with the following properties:

(i) maxh(m)=cy;
J
(i) every unit n in Ok can be written as n=n'ni'...nir with a,, ..., a,€Z
and h(n)=c,;
(iii) for each wv4eS,, the entries of the inverse of the matrix

(login;lnsj=r  have absolute values at most ;.
DESQ\{DO}

Proof. Lemma 2 has been proved e.g. in [8] Lemma 2 and in [15] Corollaries A 4
and A.5, however with [;] and || instead of h(n}), h(r'), respectively. In view
of (19) we may replace In_j[, 17| by h(n ;) and h(y'), respectively.

Let 5, ..., n, be a fixed system of independent units in @ with the properties
specified in Lemma 2, and denote by U the multiplicative group generated by
them.

Lemma 3. Let e K* with | Ng,q(a)| = M. Then there exists an ne U such that

ey M <, S cs M%4 forevery veS.,.

Proof. This follows e.g. from [8], Lemma 3 or [15], Lemma A.15, together with
(12).

Let py, ..., P, be the prime ideals corresponding to the finite places in S.
Each of these prime ideals has norm at most P’. Together with Lemma 3 this
proves that there are n,, ..., 7,6 0y with

(n)=p' and h(r)<ceP"™ for j=1,...,t 21

We fix elements 7, ..., 7, in Og with property (21). The number «eK is called
an S-integer if |a|,<1 for all v+S (i.e. veM\S). The S-integers form a ring
which is denoted by Og. The group of units of Og is just Us. The next lemma
is a straightforward consequence of Lemmas 2 and 3.

Lemma 4. Every a.€ Og can be written in the form
a=a'nP.. .q%nl.. . 22

with appropriate rational integers a;,b; and with o« €Oy such that mfo for j
=1,...,tand

c7 ' Ny(a)'¥ <o), S cg PO No(a)®/4*  for veS,,. (23

Remark. 1t is clear that in (22) a/a’e Us.
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Proof. Let ae@s. Then (x)=a"p*...p%, where a” is an integral ideal relatively
prime with p,, ..., p, and d,, ..., d, are rational integers. Define rational integers
b, bi(j=1, ..., t) by d;=hg b;+ b and 0L b;<hy. Then the ideal b:=a" p*... g%
is principal, with norm M, say. Using the fact that Ngq(a”)=Ns(x) and that
cach prime ideal p; has norm at most P, it follows that

Ng(0) = M < P**= Ny(o).

Together with Lemma 3 and Lemma 2 (ii) this shows that b has a generator
o for which m o for j=1, ..., t and (22) and (23) hold. [

We recall that two triples («;, &;, a3), (81, 82, B5) in (K*)? are called S-equiva-
lent if there are Ac K*, S-units ¢, &,, &3 and a permutation ¢ of (1, 2, 3) such
that

Bi=Ag o, for i=1,2,3.

The next lemma shows that each S-equivalence class contains a triple with
certain specified properties.

Lemma 5. Each S-equivalence class contains a triple («,, oy, o3) with the following
properties:

@) oy, 0y, “35(91(\{0} >
(ii) Ns(a1) < Ns(orp) = Ny(3);

(i) []max(oyl,, lealy, lasl)Zes *s
vé¢S

(iv) c7 ! Ny(a)*** <o), L cg Po < Ny(a)™'® for i=1, 2, 3 and veS .
(V) P <o, <1 fori=1,2,3 and veS\S,,.

We shall call such triples S-normalized.

Proof. Let (B,, B,, Bs)e(K*)?. We shall prove that (8,, 8,, B5) is S-equivalent
with an S-normalized triple. We suppose that Ny(8,) < N5(B,) < Ny(B;). This can
be achieved by permuting B, 8, and B;. Let b be the inverse of the ideal generat-
ed by f,,B,, and B;. Then there exists a ded with |Ngg(d)| < |Dk|"? Nyg(d)
(cf. [101, p. 119 for a sharper estimate). Put §;=3B; fori=1, 2, 3. Then B, Ox\ {0}
fori=1,2, 3, Ng(B}) < Ns(B2) < Ns(83) and

Niio((B1: B2, B3) = Nig(9) Neo((B1s B2, B3))
S |Dk|' Neig(®) Nyg((B1s B2, B3) =| D2 (24)

Moreover, by (13),

Neo((B3s B2, B3)=( [ max(Bil., |B2lo, 1B5l) ™

véSa

2 ([T max(1Bi ., 182l 185D~

véS
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Together with (24) this implies that

[Tmax (1811, 1851, 185l 2 cs "

véS

Hence the triple (8, 85, f3) satisfies (i), (ii), (iii). By Lemma 4 there are S-units
£1, &3, €3 such that for a;=¢; f; we have a;e Ox\ {0}, n ko, fori=1,2,3,j=1,..,t
and

c7 ! Ns(B)'** <oyl S g P4 Ng(B)/** for ve S, . (25)

Thus (i) holds. (v) follows from = fa; and (i), while (25) and Ns(8;)= Ns(e;) for
i=1, 2, 3 imply (iv). Since &, &;,&5 are S-units, o), a,, a5 also satisfy (ii) and
@) O

The main tools in the proofs of Theorems 2 and 3 are lower bounds for
linear forms in logarithms, both in the archimedean and the p-adic case.

Lemma 6. Let veS. Let yy, ..., 7,€K* with h(y)<A, B3£A,£...A) fori
.,k and let by, ..., by be rational integers with max|b;| < B(BZ3). Put

k k-1
A=y yb—1, Q=]]logd;,, Q=]] log4,.
i=1 i=1

Then either A=0 or

[A],zexp{—(c,ok)1"*Qlog @ log B}  if visinfinite

and
|A],Zexp{—(c 2 k)** P*(log P) Q(log B’}  if vis finite.

Proof. This follows easily from results of Baker [1] (in case that v is infinite)
and van der Poorten [13] (in case that v is finite), by taking (20) into considera-
tion. [J

The next lemma gives an effective upper bound for the heights of the solutions
of the S-unit Equation (1). It is an easy consequence of a result of Gyory [7]-

Lemma 7. Let o, «,,u; be non-zero elements of Oy with maxh(oc;)<A(A>3)
and let x, ye U such that
al x+ a2 y= a3 .

Then max (h(x), h(y)) Sexp{(c145) > P2 log A}.

Proof. Let x5 be an S-unit such that xx,, yx; and x; are all algebraic integers
and put x, =xx; and x,=yx;. Then a; x; 4a, x,=0a3 x5. By a result of Gyory
[7] there are ke Usn O and py, p,, p3€ 0 such that

x;=xp; fori=1273
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and
max |p;| Sexp{(c,65)*7* P{(log P)'*° log A},

where A'=max (3, |a,], ||, [23]). We may now deduce Lemma 7 from this result
by employing (19), the inequalities

h(x)=h(§)=h(§)§h(pl)h(p3),

3 3
and

h(y)=h(%):h(%)gh(pz)h(ps),

3

which hold in view of (18), and the estimate (log P)'*°<P'2(c,gs)'* which
applies for appropriate constants ¢, g and ¢,45. [

§4. Proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular,
€10 €21, --. are explicitly computable numbers, depending on d and |Dy| only.

Proof of Theorem 2. Let (B,, B, B3)€(K*)? be an S-normalized triple for which
the equation B,x-+B,y==85 in S-units x, y has at least s+2 solutions. Put m
=max(h(f,), h(8,), h(B5)). We shall prove that

m=exp {(cyo8)2° P41} (26)

This proves Theorem 2, since by Lemma 5, each triple in (K*)? is S-equivalent
to an S-normalized triple.
Put g\ = B,/B5, B>=B,/B5. By assumption, the equation

Bix+By=1 in x,yels

has s+2 different solutions (Xg, Yo), (X, Vi) ---» (Xs4 1> Vs 1) S2Y, ordered such
that

Hmax(l, |ﬁ,1 xO'u)é nmax(ls lﬂ,l xllu)é aen é
veS vesS
< [Jmax(1, |8} Xs4 110)- 27

veS
First we show that for i=1, ..., s+1, there is a place w(i) in S with
|8 xilw(i)épcn/sm— Hie2ss?), (28)

This estimate will play a key role in our proof. To prove (28) we distinguish
W0 cases: (a) Ng(B,)Sm™~%* and (b) Ns(B;)>m ™.

We note that the case (a) can essentially be found in Gyéry [7]. The new
apect of Theorem 2 and its proof is that we can now prove (28), hence the
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theorem, in case (b). Further, we shall obtain a slight improvement of Gyory
[7] in case (a) by treating infinite and finite places uniformly.

Suppose first that Ng(8,)<m~%* Then, by the fact that x; is an S-unit for

i=1,...,s+1, and by (16), (15), we have [[|B, x;[,=m™V* for i=1,...,5+1.
veS

But this implies at once that for each i in {1, ..., s+ 1} there is a w(i)eS with

1B xilw(i)ém—ll(4s)-

Now suppose that Ng(B;)>m~ %4 Then also Ns(B3)>m~ %% by Lemma 5
(ii). Let i>1 and take veMg\S. By B x;+B5y;=1 for j=0, 1,...,s+1, we
have

(B (x;— xolo=1B2(¥o — ¥i)lo>
whence
1B (xi—xo)l, Smin(| f1],, 1B21,)  for ve M\S.

Together with the product formula (14) this implies that
TT18 = xo)lo = 4, (29)

veS
where
A = {H min(lﬁ’l lw Iﬂlllu)} N 1‘
véS
By applying the product formula and (15) we obtain

A=([1181 B2ly)~ " [ max({Bil., 1821.)

¢S véS
= Ns(p g TLma (152 122 ).
v¢S Bilo 1B
Another application of the product formula yields that
A=Ns(B ﬂ'z)”"Ns(ﬁs)”"I;IsmaX(lﬁllw 1821,). (30

In view of B, X, + B2 yo = B3 we have | B3], Smax (|, ,, |B2l,) for ve Mg \S. Hence
by Lemma 5 (iii),
[Tmax(B,l,,|821) = I max(iB1l,, B2l 1Bsl)Z cs . (31

véS véS

By Lemma 5 (iv), (v) and the fact that P>2 and Ng(B)=1 for i=1, 2, 3 w¢
have
1B:l,=P 2 max(1,|fl,) for i=1,2,3 and veS.

Therefore, by (15) and Lemma 5 (ii), we have, for i=1, 2, 3,
Ng(B3)= Ns(B) = P~<>+%{] | max(1, |Bilo)}* = P~ 244 {h(B))}".

veS

Hence
Ns(B3)2 P™e%m’,
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Together with (15), (30) and (31) and Ns(B5) = Nx(B7) = m™%* this yields
A= P sspl/2,

By combining this with (29) we obtain

118 (x;i=xo)l,2 P~ 2*m'?  for i=1,...,s+1.

veS

Using
|81 (x; —x0)l, =2 max(1, B} xol,) max(1,|B; x;l,) for veS,

we obtain, in view of (27),

TT181 (e —xo)l, £2° { T Tmax (L, |81 xol,)} {] ] max (L, {8} x:l,)}

veS veS veS

<2¢{]Jmax(1, |8} x:|.)}>

ves
Together with (32) this yields

[Tmax(1, |8 xil)Z P~ m'/%.

veS

We may assume that
4
m> P*c26s,

473

(32)

(33)

(34)

since otherwise (26) holds for appropriate c,g, ¢;;. Now (33) implies that there

isa v(i)eS with
|81 xi|u(i)§P—c"ml/(4s)-

Further, since []|B; x;|,= 1, there is a w(i)eS with

ve§

- 2
|81 xi|w(i)§Pc“/sm 1459,

This implies (28) for sufficiently large c,,.

By using (28) we now prove that for appropriate i, j (i+j) and w, |1 ~y;/yjl.
1 quite small in terms of m. Then, a standard application of Baker’s inequality
and its p-adic analogue will yield a lower bound for |1—y,/yj, in terms of

m which immediately provides inequality (26).

By the box principle, there are distinct i,j in {1, ..., s+ 1} with w(i)=w(j)=w,

say. Hence
1By X, S P2 m™ Weass?) | By Xl < Praafsyy = 1le23s?)
w= =

While proving (26) we assume that

m g (4s1 Pc22s)2023

(35)

(36)
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which is obviously no restriction. Then |8] x;],,<4% and |} x;|,,<%. Together
with (35) and B x;+ B y;= B x;+ B, y;=1 this shows that

1By yiwZd 12— y)he =181 (e;— X, S2Peraom ™ Hicassh),

By combining this with (36) we obtain

11”& =1—B’M§m"/(2023‘2’§m‘1/“2752’. 37
Vilw I:23 J’jiw
Further, y;/y;#1, since (x;, y;) and (x;, y;) are distinct solutions. By Lemma 4
and y;/y;€ Us, there are rational integers a,, ..., a,, by, ..., b, such that
y’ r t
==z [[n¥]] =, (38)

i k=1 I=1

where #,, ..., 1, satisfy the conditions of Lemma 2, n,, ..., m, satisfy the condi-
tions of (21) and

zeOy, h(2)Sc,q P7?°° (39)

By combining this with Lemma 6, (38), Lemma 2 (i) and (21) we obtain

-

i

Zexp{—(cso8)**P*" " (log 2B)*}, (40)

w

where B=max(3, |a,}, --., |a,], |b1}, .-+, be]).
We shall now estimate B from above. By (18) and Lemma 7 we have

h (&)§ h(y:) h(y) Sexp{(cs2 5> P41/ log(4m)}. S

J

For I=1, ..., t, let v, be the finite place in S for which |x;|,,<1. By (38), the
product formula, (17) and (18) we have

-1
2'bz"dgmax(|n?'|v,,lnf"'|v,)=max(&z—’ RECS )
J vy yj vy
=max(n Yi, ,ﬁz )
CERY] Vi v Vi lo

Vi

< [] max (1,

veMgk

e

Y Yi Vi

forl=1,...,t. Put B'= lrrslailx |b,|. Together with (39) and (41) this yields
slgt

B Z(C345) 25 P*+ 34 log(4m). (#2)
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Note that, by (38) and (18),

t
o ...n:r)=k(&z"‘ I 7!?”')
=1

J

<h (;—) h(z) ( N h(n,))B’.

J i=1
Together with (41), (39), (21) and (42} this implies
h(nf ... n) Sexp{(csqs)*"*P** ! log(4m)}.

By (17) and (18) we have h(o) = |al,, h(e)2|al, ! for ae O\ {0}, ve M. Hence

S(caes)> P+ log(dm) for veS,,.

3 alogln,

i=1

Together with Lemma 2 (iii) this yields

max |a;| S(csg8)** Pt log(d4m).

1<ksr

By combining this with (42) we obtain
2B E(CapsF s P log(dm).
A substitution of this into (40) yields that

Zexp{—(caz8)* P12 {loglog(4m)}*}.

w

LK

J
By comparing this with (37) we obtain
log(4m) }2 é (C44 s)c,,_e,sPd + 1/2.

{loglog(4m)

It is easy to check that this implies (26). [

Proof of Theorem 3. Let (B, B,, B5)e(K*)® and suppose that the equation
B x'+8,y=p, in x, yeUs has at least s+2 solutions. Then there exists, by
Theorem 2, a triple (a;, &5, 23)€(Ux\ {0})%, S-equivalent to (B,, B, B) such that

log {max(h(e,), h(az), h(x3))} S(C, 5)"> P1*!

with the C, and C, specified in Theorem 2. By combining this with Lemma 7,
we obtain that each pair of S-units (x, y) with a x + a, y=a, satisfies

max (h(x), h(y)) Sexp{(C;s)c+* P24*2},

where C, and C, are effectively computable positive numbers depending only
ondand | Dyl



476 J.-H. Evertse et al.

§ 5. An example of an S-unit equation in more than two variables
with many solutions

At the end of the Introduction we mentioned that for the case of unit equations
in n>2 variables there do not exist such small upper bounds for the numbers
of solutions as those of Theorems 1 and 2 for the case n=2. In this section
we shall prove this claim by showing that for K=Q@ and for any sufficiently
large integer s there is a set S of cardinality s and infinitely many pairwise
S-inequivalent n+ 1-tuples (g, ..., %,+)e(@*)"*! for which (7) has at least
exp((4 +o0(1)) (s/log 5)*/?) non-degenerate solutions as s — co.

To see this, observe that, by Theorem 3 of [2], for s sufficiently large there
is a set W of s — 1 prime numbers, and a positive integer ¢ such that the equation
X, —x,=c has at least exp((4+o0(1)) (s/logs)'/?) solutions in positive integers
x; and x, all of whose prime factors are from W, Let S consist of the infinite
place together with those places associated with a prime number from W. Next
let q,,9,... be a sequence of prime numbers such that g, is larger than all
of the prime numbers in W and also larger than ¢ +n~—3 and such that

gis1>qi+c+n—3 for i=1,2,....
Then, for j=1, 2, ..., the S-unit equation
X1 ~Xp+q;Xz+X4+ ... +Xx,=c+q;+n—3

has at least exp((4+o0(1)) (s/logs)!/?) solutions in S-units, since we may take
x3=...=Xx,=1 and choose x; and x, so that x, —x, =c. Among them at most
2n solutions are degenerate, since in any vanishing subsum x, does not occur,
—x, has to occur and the number of possible values for x, in a vanishing
subsum is at most 2n. Observe by (2) that if (x,, ..., a,.,;) and (By, ..., Bas1)
are S-equivalent n+ 1-tuples then there is a permutation ¢ of {1, ..., n+1} such
that for all pairs (i, j) with 1<i<n, 1 £j<n we have

1.
B; % (j)

with g ; an S-unit. Let k>I[>1. If the n+1-tuples (By, ..., Bos)=0, — L &
1., 1, c+gqu+n—3)and (ay, ..., 0, )=, =1, q,, 1, ..., 1, c+gq,+n—3) are
S-equivalent then

qo=e22p 43)

%a(j)

where ¢ is an S-unit, f;e{1, —1, c+g,+n—3} and &), #,; are from {1, — 1.
i, ¢+q;+n—3}. But by construction the g,-adic value of the right-hand Sldf)

of (43) is 1 which is a contradiction. Thus (1, —1, q;, 1, ..., 1, c+q+n—"
and (1, -1, ¢, 1, ..., 1, c+¢q;+n—3) are S-inequivalent for k=1
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