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w O. Introduction 

Let K be an algebraic number field of degree d, with discriminant Dr and 
ring of integers (PK. Let Mr be the set of places (i.e. equivalence classes of 
multiplicative valuations) on K. A place v is called finite if v contains only 
non-archimedean valuations, and infinite otherwise. K has only finitely many 
infinite places. Let S be a finite subset of M K, containing all infinite places. 
A number 0teK is called an S-unit if I~lv= 1 for every valuation I1o from a 
place wMK\S .  The S-units form a multiplicative group which is denoted by 
Us. We shall deal with the S-unit equation 

oc1 x d- 0~2 y--- o~ 3 in x,y~Us, (1) 

where cq, 0~2, ct 3 e K * ( =  K\{0}). Lang [9] proved that (1) has only finitely many 
solutions. Denote this number of solutions by Vs(Cq, ~2, o~a). We call two triples 
(~,, ~2, ~3) and (ill, f12, f13) in (K*) a (and their corresponding S-unit equations) 
S-equivalent if there exist a permutation a of (1, 2, 3), a 2eK* and S-units 
~1, e2, e3 such that 

fli=2ei~(1) for i =  1,2, 3. (2) 

It is easy to check that if (cq, ~2, ~t3) and (fl,, f12, f13) are S-equivalent, then 
Vs(~l, ~2, ~3)=Vs(fll, f12, f13) (cf. [6] w 1). 

Evertse [3] proved that Vs(Cq, ~2, ~t3)< 3 x 7 d+2~ for every (~l, ~2, ~3)e(K*) 3 
where s denotes the cardinality of S. A general upper bound for v s which is 
polynomial in s does not exist, since a result of Erd6s, Stewart and Tijdeman 
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[2] implies that in case K = Q  there is a positive constant C and there are 
sets S of arbitrarily large cardinality for which Vs(1, 1, 1)>exp(C(s/logs)l/2). 
On the other hand, for a large class of triples (~1, ~2, a3) specified below, Gy6ry 
[7] derived an upper bound for Vs(al, ~2, a3) which is linear in s. Let pl . . . . .  p, 
be the prime ideals corresponding to the finite places in S. For  any aeK* 
the principal ideal (a) can be written uniquely as a product of two (not necessarily 
principal) ideals a' and a", where a' is composed of p~, ..., Pt and a" is composed 
solely of prime ideals different from Pl . . . .  , Pr We put Ns(~)=NK/Q(a" ). Gy6ry 
proved the following. 

For  any e with 0 < e < 1 there is an effectively computable number C depend- 
ing only on e,K and S such that Vs(Cq, O~z,~3)<=s+3t for each triple 
(0tl, 0~2, (~3)~((.OK~{0}) 3 with 

Ns(~a)__> C and (Ns(~3)) 1-~__>min(Ns(~tl), Ns(ct2)). (3) 

If, moreover, (log Ns(~a)) 1 - ~ __> max (log Ns(oq), log Ns(~2)), then Vs(Oq, ~2, ~3) < 
s + t .  

We remark that there are infinitely many S-equivalence classes which have 
a representative satisfying condition (3) and infinitely many S-equivalence classes 
which do not have such a representative (cf. [6], w 3). 

In this paper we prove that almost all equivalence classes of S-unit equations 
in two unknowns have remarkably few solutions. 

Theorem 1. Let S be a finite subset of M r containing all infinite places. Then 
there exists a finite set ~t of triples in (K*) 3 with the following property: for 
each triple (~1, ct2, ct3)e(K*) 3 which is not S-equivalent to any of the triples from 
d ,  the number of solutions of (1) is at most two. 

For s > 1, the upper bound ' two'  cannot be improved, since there are infinite- 
ly many S-equivalence classes of S-unit equations (t) with two solutions (cf. 
[6], w 1). The proof of Theorem 1 is based on the Main Theorem on S-Unit 
Equations (Lemma 1) which is proved by the p-adic analogue of the Thue-Siegel- 
Roth-Schmidt method and is therefore ineffective. Consequently, its proof does 
not enable one to describe triples (~1, ~2, ~3) for which (1) has no more than 
two solutions. The following improvement of Gy6ry's result is based on the 
effective method of Baker and its p-adic analogue. It provides the upper bound 
s + 1 for the number of solutions of all S-unit equations with the exception 
of a finite set of S-equivalence classes which is, at least in principle, effectively 
determinable. For  any non-zero algebraic number = with minimal polynomial 

F(X) = a 0 f i  ( X -  ~q)eZ [-X], (4) 
i=1 

we define the height h (~) of ~ by 

1 n \ l / n  

h(oO=llao[ ~__lmax(1,1oti[)) . (5) 

For given C >  1, there are only finitely many ~eK* with h(ot)<C, and all these 
ct can be effectively determined. 
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Theorem 2. Let S be a finite subset of M K o f  cardinality s, containing all infinite 
places. Suppose that the rational primes corresponding to the finite places in S 
do not exceed P(__>2). Let ~ denote the set of  triples (ill, f12, fl3)e(Cx\{0}) 3 with 

max(h(fll), h(fl2), h(fl3)) <exp {(Cl s)C2~ p a+ 1}, 

where C~ and C2 are certain explicitly computed numbers depending only on 
d and IDxl. Then for each triple (~1, ~2, cta)~(K*) 3 which is not S-equivalent to 
any of the triples in ~ ,  the number of solutions of (1) is at most s+ 1. 

For t>0 ,  Theorem2 implies Gy6ry's result stated above. For let 
(cq, ~2, Cta)~((fr\{0)) 3 be a triple satisfying (3) for some e > 0  and some number 
C which will be chosen later. For any triple (ill, f12, fla)~((9r\{0}) 3 which is 
S-equivalent to (~1, 0~2, ~3) we have 

Ns(~3) 
{max(h(flx), h (f12), h(fl3))} a> min (Ns (~t 1), Ns(ct2)). (6) 

This can be proved easily by observing that the right hand side of (6) does 
not change if ~1, ~t2, ~3 are multiplied by the same number in K* or by different 
S-units, that the left-hand side of (6) is invariant under permutations of ill, f12, f13, 
and that for each fl in (gK\{0 } 

1 <= N s (fl) <= I NK/~ (fl)l <= (h (fl))a. 

By combining (6) with (3) we obtain that 

max (h (fl 1), h (f12), h (f13)) --> C~/a 

for each triple (ill, f12, f l3)E(~K\{0}) 3 which is S-equivalent to (0q, ~2, 0~3)- Togeth- 
er with Theorem 2 this implies that (1) has at most s + 1 solutions if C is sufficient- 
ly large. 

By combining Theorem 2 with an explicit upper bound for the heights of 
the solutions of (1), derived by Gy6ry [-7] (see also Lemma 7 in this paper) 
we obtain that any triple (ill, f12, f l3)~(K*)  3 for which fll x' + f12 Y'= f13 has more 
than s + l  solutions in S-units x',y', is S-equivalent to a triple 
(~1, ~2, ~3)e((~x\{0)) 3 such that the solutions of (1) have heights which do not 
exceed an effectively computable number independent of �9 1, ~2, ~3. More precise- 
ly we have the following result. 

Theorem 3. Let K, S, s, P have the same meaning as in Theorem 2. Let 
(/~1, f12, fla)e(K*) 3 be a triple for which the equation fll x ' +  fl2 Y'=fl3 in S-units 
x',y' has at least s + 2  solutions. Then there is a triple (~1,~2, ~3)~((9r\{0}) 3, 
S-equivalent to (ill, f12, fla), such that all solutions (x, y) of (1) satisfy 

max(h (x), h(y)) < exp {(C a s) c'~ p2e + 2}, 

Where C a and C4 are effectively computable numbers depending only on d and 
toKI. 
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The special case K = Q of Theorem 1 has been considered in [-6] w 5. On 
the other hand, it is possible to generalize Theorem 1 to the case that K is 
any subfield of 02 and Us is any finitely generated multiplicative subgroup of 
rE*, or that U s is just a subgroup of finite rank of rE*. For  the proofs it suffices 
to replace the Main Theorem on S-Unit Equations as we use it (Lemma 1) 
by the version due to van der Poorten and Schlickewei [14] in the first instance 
and the version of Laurent [12] in the second. 

Suppose that we want to extend our results to S-unit equations 

e a x ~ + . . . + c t . x , = e , + ~  in x~ . . . . .  x ,  eUs,  (7) 

where (~tl . . . . .  ~n+l)~(K*) n+l with n>2 ,  If Us is infinite an equation of this 
type may have infinitely many solutions such that some non-empty proper sub- 
sum of ~1 x~ + ... + ~. x,  vanishes. Such solutions will be called degenerate. For 
example, let cq . . . .  , ~ , _ l e K *  such that ~ x ' ~ + . . . + ~ . _ t x ' , _ l = 0  for some 
x'a . . . .  , x'._ ~ Us. Then, for any e e Us, Eq. (7) with ~.+1= ct. has the degenerate 

! 

solution x 1 =ex ' l ,  Xz=~X'2, . . . ,  x . - l = e x . - 1 ,  x , =  i. However, as we shall show 
in w 5, the number of non-degenerate solutions can also be large. We shall prove 
that for K = Q and for any sufficiently large integer s there is a set S of cardinality 
s and infinitely many S-inequivalent n + 1-tuples (~a . . . . .  ~.+ I)E(Q.),+ 1 for which 
the number of non-degenerate solutions of the S-unit Equation (7) is at least 
exp((4+o(1)) (s/logs) I/z) as s ~  ~ .  Thus the constant two in Theorem 1 and 
the number s + 1 in Theorem 2 must be replaced by a number at least as large 
as exp((4+o(1)) (s/logs) ~/z as s--, ~ .  On the other hand, recently Evertse and 
Gy6ry [-5] have shown that apart from finitely many S-inequivalent n + 1-tuples 
(~1 . . . .  , ~.+ 0E(K.) .+  1, the solutions of(7) are contained in at most 2 ("+ 1)~ proper 
linear subspaces of K". For  n = 2, this gives a weaker version of our Theorem 1 
with the upper bound 26 instead of 2. 

For  more background material and applications of results on S-unit equa- 
tions, we refer the reader to our survey paper [6] in the Proceedings of the 
L.M.S. Conference on Transcendence Theory at Durham, England. At this con- 
ference, held in July, 1986, Theorem 1 was established. 

w 1. Proof of Theorem 1 

Let n be an integer with n >  I. Points in the vector space K "+1 are denoted 
by X = (Xo ,  X1 . . . . .  X.). If we identify pairwise linearly dependent non-zero 
points in K "+1, we obtain the n-dimensional projective space P"(K). Points 
in ~ ( K ) ,  so-called projective points, are denoted by X = (Xo:XI : . . .  :X.), where 
the homogeneous coordinates are in K and are determined up to a multiplicative 
constant in K. We denote the subset of P"(K) of projective points with all 
the homogeneous coordinates in U s by P"(Us). We shall apply the Main Theorem 
on S-Unit Equations which was first stated by van der Poorten and Schlickewei 
[14]. Evertse formulated his version of this theorem in terms of (c, d, S)-admissi- 
ble points. Since P"(Us) consists precisely of all (1, 0, S)-admissible points, ~,e 
may use the following statement. 
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Lemma 1. (Evertse, [4, Theorem 1]). There are only finitely many projective 
points X=(Xo:  X1 :... : X , ) ~ ( U s )  such that 

Xo+X~ + ... + X . = 0  (8) 

with 
X~o + Xi 1+ ... + Xi :#0 

for each proper, non-empty subset {i0, il . . . . .  ira} of {0, 1 . . . . .  n}. 

Proof of Theorem 1. Since (~,  ~2, ~3) and (~i/~ 3, e2/~ 3, l) are S-equivalent, we 
may assume without loss of generality that a 3 = 1. Suppose 

~1 x+~2 y = l  (9) 

has three distinct solutions ( x I , Y l )  , (X2, Y2), (X3, Y3) in (Us) 2. Then we obtain, 
after eliminating el and ~2, 

XI Y2 --  X2 Yl + X2 Y3 --  X3 Y2 q- X3 Yl --  x l  Y3 = 0. 0o) 

Note that the expression on the left-hand side does not change value if we 
interchange all x's and y's or if we permute the subscripts {1, 2, 3} consistently. 
Furthermore, 

Xly2:~X2yl ,  X2YaZ~X3Y2, x3Yld6XlY3,  (11) 

since the solutions of (9) are distinct. We shall show that there are only finitely 
many possibilities for x2/x 1 and Y2/Yl. By the preceding considerations it suffices 
to prove this claim in each of the following cases: 

(a) no proper, non-empty subsum of the left-hand side of (10) vanishes, 
( b l )  xlY2-bx2Y3=O, X 2 Y l + X 3 Y 2 - X 3 Y l + X l Y 3 = O ,  
(b2) xl Y2--X3 Y2 =0, X 2 Yl --X2 Y3 --X3 21 "~Xl Y3 = 0 ,  

(cl) XlY2-x2Yl.-bx2Y3=O, x3Y2-X3Yl-I-xly3.-~O, 
(c2) x~y2+x2Y3+x3yl=O,  x2yl+x3Y2+x~y3=O,  
(c3) x ty2+x2Y3--x lY3=O,  x 2 y l + x 3 y 2 - x 3 y l = O .  

Case (a). By Lemma 1 there are only finitely many projective points 
(xl Y2:x2 Y l: x2 y3:x3 yz:x3 y l :x l  Y3)epS(Us). Hence there are only finitely many 
possibilities for x2/xl and Y2/Yv 

Case (b 1). No subsum of x 2 Yl +x3 y 2 - x 3  Yl + x l  Y3 can vanish by (11), x2 ~e x3, 
Yl ~:0, x 3 +0,  y~ ~Y2. By Lemma 1 there are only finitely many projective points 
(XI Y2"X2 y3)E~ 1 (Us) and (x2 Yl "x3 y2:x3 Yl :xl y3)e~3(Us). Hence there are only 
finitely many possibilities for x l y 2 / x 2 y  3, Y2/Yl, x2yl /xxy3,  whence for 
x2 Ya/xl Yl, x2 yl/xl  Y3, whence for x2/x 2, whence for x2/x 1. 

Case (b2). This is impossible, since Yz # 0, x l # x3. 

Case (cl). By Lemma 1 there are only finitely many projective points 
Xl Y2:x2 Yl :x2 Y3)eF2(Us) and (x 3 yz:x3 Yl :xl Y3)eF2(Us) �9 Hence there are only 
nitely many possibilities for Y2/YI, xa y2/x2 Yl, whence for x2/xl. 
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Case (c2). By Lemma 1 there are only finitely many projective points 
(X1 Y2 :X2 Y3 :)ca Yl)~F2(Us) and (x2 Yl :x3 Y:2 :)cl Y3)~.F2(Us) �9 Hence there are only 
finitely many possible values for x2 y3/xl Y2, xl Y2/)C3 Yl, X3 Y2/)C2 Yx, x2 Yl/Xl Y3, 
whence for 2 2 )C2 yl/X1 Y2, )Cl Y2/)C2 y2, whence for 3 3 x2/xl and y~/y3, whence for 
x:z/xl and Y2/Yl. 

Case (c3). By Lemma 1 there are only finitely many projective points 
(xl y2:x2 Y3 :xl y3)~F2(Us) and (x2 Yl :)c3 y2:x3 Yl)ep2(Us). Hence there are only 
finitely many possibilities for x2/xl and Y2/Yl. 

We conclude that there are indeed only finitely many possibilities for x2/xt 
and Y2/Yl. Since (xl, Yl) and (x2, Y2) satisfy (9), we have 

(Y2/Y,)-- 1 (x2/xl)-- 1 
~1 xl  = Y2/Yl - -x2 /x l '  ~2 Yl x2/xl--Y2/Yl 

Hence there are only finitely many possibilities for ~ and a2 up to multiplicative 
factors from Us. 

Remark. Up to multiplicative factors from Us, there are only finitely many ele- 
ments of K* which can be represented as sums of two S-units in two essentially 
different ways. This is an immediate consequence of Lemma 1. It means that 
in Theorem 1 ' two '  can be replaced by 'one '  when ~1 =~2 and solutions (x, y) 
and (y, x) are not distinguished. 

w 2. Valuations and heights 

Since the algebraic number field K has degree d, it has d different Q-isomor- 
phisms into ~E, trl, ..., ~r,~, trrl + 1, -.., trr, +,2, tr,1 +r2+ 1, "",  tr,, + 2r2 = an say, where 
tr~ maps K into P-, for i=1,  . . . , r l ,  tr~ maps K into IE for i = r l + l ,  . . . ,d  and 
tr,,+~(~)=trr,+r~+j(~ ) for oteK and j~{1 . . . . .  r2}. K has exactly r l + r 2  infinite 
places, and each infinite place v contains exactly one valuation of the type 
Io'i~o)( )1 where i(v)e {1 . . . .  , rl + r2}. In each infinite place v we choose the valua- 
tion 

where do= 1 if 1 ~i(v)<rl  and do=2 ifra + 1 <i(v)<rl  +r2. 
For each ~eK* we have 

(~)=I]p~ ~), 
p 

where (0 0 denotes the ideal generated by ~, p runs through the set of prime 
ideals of d~x, and the exponents ord~(ct) are integers of which at most finitely 
many are non-zero. If v is the finite place corresponding to the prime ideal 
p, then we put 

Ial,,=(Nr/~(p)) -~ if a#O, 101o=0. (13) 

The valuations [ Io(wMx) chosen above satisfy the product formula 



On S-unit equations in two unknowns 467 

I-I Ic~l~= 1 for c~eK*. (14) 
VEMK 

The set of infinite places on K is denoted by S~o. If S is any finite subset 
of Mt~ containing S~, then we have 

Ns(c0--(l-[ I~lv) e for aeK,  (15) 
vffS 

where Ns(e) has the same meaning as in the Introduction. In particular, Ns=(e) 
= PNK/Q(c~)I. Finally we have 

Ns(e) = 1 for each S-unit ~. (16) 

If h is the height defined in (5), then (cf. [111 p. 54) 

h(~)= I-I max(1,1~lv) for ~eK*.  (17) 
vEMK 

We shall use frequently that 

h(~- x) = h(e), h(~)<h(~)h(~)  for e,/~eK*. (18) 

In the literature two other heights frequently appear, namely H(e), which is 
the maximum of the absolute values of the coefficients of the minimal polynomial 
of ~ over 7Z, and IT[, which is the maximum of the absolute values o f  the conju- 
gates of ~ over ~ .  We have 

I~1 ~/" < h(~) < I~1 (19) 

if ~ is a non-zero algebraic integer of degree n, and 

�89 1/" < h(o 0 < (n + 1)l/~2")n(~)l/" (20) 

if ~ is a non-zero algebraic number of degree n. (19) is obvious, while the proof  
of (20) can be found, for instance, in [1 i] ,  p. 60, Theorem 2.8. 

w 3. Lemmas for the proofs of Theorems 2 and 3 

We shall use the same notation as in the previous sections. In particular, s 
is the cardinality of S and the rational primes corresponding to the finite places 
in S do not exceed P(>2) .  Let t denote the number of finite places in S, and 
define r such that r + 1 is equal to the number of infinite places on  K. Thus 
s-- r + t + 1. It is well known that the group Us of S-units has rank r + t = s -- 1. 
In the remainder of the paper, cl, c2, ..., will denote effectively computable 
numbers > 1, which depend only on d and the absolute value of the discriminant 
/)~ of K. We shall use frequently the fact that the class number hK of K and 
the regulator R r of K can be estimated from above by effectively computable 
numbers depending only on d and IDx[. This follows from an upper bound 
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for h K RK derived by Siegel [16] and a lower bound for R r due to Zimmert 
[17]. 

In the next three lemmas some estimates for S-units are given. We recall 
that do and the valuations [ Iv were introduced in (12) and (13). 

Lemma 2. I f  r>  1, then there exist multiplicatively independent units r h . . . . .  q, 
in (9 x with the following properties: 

(i) max h if/j) < c 1; 
J 

(ii) every unit r I in (9 r can be written as rl=rl'rl]~...rl~ ~ with al, ..., a ,~Z 
and h(rf) < c 2 ; 

(iii) for  each vo ~ S oo , the entries o f  the inverse o f  the matrix 
(loglr/jlv)l=<j=<~ have absolute values at most c 3. 

vEs~\{Vo} 

Proo f  Lemma 2 has been proved e.g. in [8] Lemma 2 and in [15] Corollaries A.4 
and A.5, however with I~jl and I~/'1 instead of h(r/~), h(r/'), respectively. In view 
of (19) we may replace Ir/jl, I~'1 by h(r/j) and hff/'), respectively. 

Let rh, ..., r/r be a fixed system of independent units in (9 x with the properties 
specified in Lemma 2, and denote by U the multiplicative group generated by 
them. 

Lemma 3. Let  ~teK* with INK/Q(~)I = M .  Then there exists an rl~ U such that 

c41Md~/d~<[rl~l~<C 5 M d~/~ forevery v~So~. 

Proo f  This follows e.g. from [8], Lemma 3 or [15], Lemma A.15, together with 
(12). 

Let P l . . . . .  Pt be the prime ideals corresponding to the finite places in S. 
Each of these prime ideals has norm at most pd. Together with Lemma 3 this 
proves that there are ~ . . . . .  ~t~(9 K with 

(rt~)=p~,, and h(rtj)<c6 PhK f o r j = l  . . . . .  t. (21) 

We fix elements rq . . . . .  nt in OK with property (21). The number ~ K  is called 
an S-integer if ]~lv<l for all v~eS (i.e. v ~ M r \ S ) .  The S-integers form a ring 
which is denoted by (9 s. The group of units of (gs is just Us. The next lemma 
is a straightforward consequence of Lemmas 2 and 3. 

Lemma 4. Every ~ ( 9  s can be written in the form 

= ~ '  r/~' . . .  n ,  "r ~z~l . . .  rt, b, ( 2 2 )  

with appropriate rational integers ai, bj and with ~'etgK such that n;d~' for .j 
= 1 . . . . .  t and 

C71 Ns(Ot)d~/a2 ~]~'lv~=C s Pa~'h'~/aNs(ct)ada: for v e S t .  (23) 

Remark.  It is clear that in (22) ~/~t'e Us. 
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Proof. Let ae(9 s. Then (~)=a"p~ a' ... Oa,, where a" is an integral ideal relatively 
prime with Px . . . . .  p~ and d~ . . . . .  d~ are rational integers. Define rational integers 
b~,b)(j= 1 . . . .  , t) by d~=hr b~+b~ and O<b~<hr. Then the ideal b,=o"p~ ~i ...~b; 
is principal, with norm M, say. Using the fact that NK/r and that 
each prime ideal p~ has norm at most pal, it follows that 

Ns(a) <= M <= ptah" Ns(a). 

Together with Lemma 3 and Lemma 2 (ii) this shows that b has a generator 
~' for which gj /~ '  for j = 1, ..., t and (22) and (23) hold. [] 

We recall that two triples (~1, a2, c%), (ill, f12, f13) in (K*)  3 a re  called S-equiva- 
lent if there are 2eK*, S-units el, e2, e3 and a permutation a of (t, 2, 3) such 
that 

fli=2eioc~(i) for i=  1,2, 3. 

The next lemma shows that each S-equivalence class contains a triple with 
certain specified properties. 

Lemma 5. Each S-equivalence class contains a triple (al, c~2, a3) with the following 
properties: 

(i) a l ,  ~2 ,  ~ : r  
(ii) Ns(~t) <= Ns(~g) _-< Ns(a3); 

(iii) l-[max(lal[v, la21v, [~31v)>-_c91; 
yes 

(iv) c71 Ns(cq)ao/a2 <= [ally_-< c8 Pa:hK/dNs(~i)av/d2 for i= 1, 2, 3 and wSo~. 
(v) p-h,~ < [gi[v----< 1 for i = 1, 2, 3 and wS\So~.  

We shall call such triples S-normalized. 

Proof. Let (fll, flE,fla)6(K*) 3. We shall prove that (/~l, flz,fl3) is S-equivalent 
with an S-normalized triple. We suppose that Ns(fll)<=Ns(fl2)<= Ns(fl3 ). This can 
be achieved by permuting ill, flz and fla. Let b be the inverse of the ideal generat- 
ed by ill, fiE, and /13. Then there exists a 6eb with [Nx/Q(6)[<=[Dx[1/ZNr/Q(b) 
(cf. [10], p. 119 for a sharper estimate). Put fl'i=Jfli for i=  1, 2, 3. Then fli6(Px\{0 } 
for i=  1, 2, 3, Ns(ff~)<__Ns(ff2)<=Ns(ff3) and 

xK:~((/~;,/~,/~)) = N,~/r N,~:r #~)) 

<_-IDKI ~/2 NK/~(b) Nx/~((fl./5'2, ,83))= IDKI 'n. (24) 

Moreover, by (13), 

NK/Q((fl.~z,fl3))=( 1~I max(lflll~, ' , -d 
vr 

' [ f l 2 l ~ ,  [ f l 3 1 ~ ) )  �9 >__( l - [max( i /~ l l~ ,  , , -a  
yeS 
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Together with (24) this implies that 

! t t 

I-I m a x  (1,61 I~, I/~2 Iv, I /~  Iv) = c91 �9 
yes  

Hence the triple (fl~, fl~, fl;) satisfies (i), (ii), (iii). By Lemma 4 there are S-units 
el, e2, ea such that for ei=ei fl'i we have aieCr\{0},  njXai for i =  1, 2, 3 , j =  1 . . . . .  t, 
and 

c f  x Ns(B;) ao/a~ <= I~lv_-__ cs pa~tn,,/a Ns (fl~)a~/d~ for v e S~. (25) 

Thus (i) holds. (v) follows from ni/~a i and (i), while (25) and Ns(fi~)=Ns(ei) for 
i=  1, 2, 3 imply (iv). Since e 1, ~2,e3 are S-units, ~1, ~2, a3 also satisfy (ii) and 
(iii). []  

The main tools in the proofs of Theorems 2 and 3 are lower bounds for 
linear forms in logarithms, both in the archimedean and the p-adic case. 

Lemma 6. Let  yeS .  Let  71 . . . . .  ~;k~K* with h(Ti)<Ai ( 3 < A 1 < . . .  ~,Ak) for i 
= 1, . . . ,  k and let bl . . . . .  b k be rational integers with max [bil < B(B > 3). Put 

i 

k k - 1  

A=?~'...?kb~--l, f 2 = I ] l o g A i ,  Q ' = ~  logAi. 
i=1  i=1 

Then either A = 0 or 

and 

1Alv ~ exp { - (cl o k) c'' k f2 log f2' log B} 

I A Iv > exp { -(c12 k)c'3kea(log P) I2 (log B) 2 } 

i f  v is infinite 

if  v is finite. 

Proof. This follows easily from results of Baker 1,1] (in case that v is infinite) 
and van der Poorten 1-13] (in case that v is finite), by taking (20) into considera- 
tion. [] 

The next lemma gives an effective upper bound for the heights of the solutions 
of the S-unit Equation (1). It is an easy consequence of a result of Gy6ry I-7]. 

Lemma 7. Let  at, ~2, :t3 be non-zero elements o f  (9 K with max h(~i) < A(A > 3) 
and let x, y e  Us such that 

6t I X q - ~ 2  y = O ~  3.  

Then max(h(x), h(y)) < exp {(C14 s ) c l s s e  d + 1/2 log A}. 

Proof. Let x3 be an S-unit such that x x  a, y x 3  and x a are all algebraic integers 
and put x l  = x x 3  and x 2 = y x  3. Then ~1 xl +~2 x2=~a x3. By a result of Gy6ry 
I-7] there are r e  Us r~ d)l~ and P l, P2,/93 ~ d)K such that 

xi = xpi  for i = 1, 2, 3, 
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and 
maxlpi[ < exp {(c16 s) .... pd(log p)t+ 5 log A'}, 

i 
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where A '=  max(3, I~ 11, Ice 21, let 3 D. We may now deduce Lemma 7 from this result 
by employing (19), the inequalities 

and 

h(x)=h (xl  I =h (I)11 < h(pl)h(p3) , 
\ X 3 1  \ P 3 1  

h(y)=h(~3)=h(P~Zl<h(pz)h(Pa), 
\Pa/ 

which hold in view of (18), and the estimate (log P)t+5<P~/2(c~ss) ~'~ which 
applies for appropriate constants C~s and c19. [] 

w 4. Proofs of Theorems 2 and 3 

We shall use the same notation as in the previous sections. In particular, 
c2o, c21 . . . .  are explicitly computable numbers, depending on d and tDxl only. 

Proof of Theorem 2. Let (ill, f12, fl3)E(K*) 3 be an S-normalized triple for which 
the equation f l lx+fl2y=fl3 in S-units x,y  has at least s+2  solutions. Put m 
=max(h(fll), h(fl2), h(fla)). We shall prove that 

m < exp {(C2o s) c~,s pa + 1 }. (26) 

This proves Theorem 2, since by Lemma 5, each triple in (K*) 3 is S-equivalent 
to an S-normalized triple. 

Put fl'l = fll/fl3, if2 = f12/f13. By assumption, the equation 

fl ' lx+fl'2y=l in x,y~Us 

has s + 2  different solutions (xo, Yo), (xt, Yt), ..-, (xs+~, Y~+I), say, ordered such 
that 

I-I max (1, lilt Xo Iv) < 1--[ max(l ,  [fl] xl [v) < . . .  < 
w S  w S  

=< 1-] max(l ,  1#~ x,+l  [~). (27) 
yes 

First we show that for i=  1 . . . .  , s +  1, there is a place w(/) in S with 

]fl'l xil,,,) < tx~/ 'm-  1/(c~3s2). (28) 

This estimate will play a key role in our proof. To prove (28) we distinguish 
two cases: (a) N s (fit) < m - a/4 and (b) Ns (fl'l) > m - a/4. 

We note that the case (a) can essentially be found in Gy6ry I-7]. The new 
aspect of Theorem 2 and its proof is that we can now prove (28), hence the 
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theorem, in case (b). Further, we shall obtain a slight improvement of Gy6ry 
1-7] in case (a) by treating infinite and finite places uniformly. 

Suppose first that Ns(/3'O<m -d/4. Then, by the fact that x~ is an S-unit for 
i=1  . . . . .  s + l ,  and by (16), (15), we have I]l/3'~x~lv<m -1/4 for i=1  . . . . .  s+ l .  

P~S 

But this implies at once that for each i in {1, ..., s +  1} there is a w(i)~S with 
I/3'~ x~lw,~ < m -  1/(4s). 

Now suppose that Ns(/3'O>m -am. Then also Ns(fl'2)>m -a/4, by Lemma 5 
(ii). Let i > l  and take veMK\S.  By f l ~ x i + f l ~ y i = l  for j = 0 ,  1 . . . . .  s + l ,  we 
have 

1fl'1 (xi - Xo)lv = 1/3'2 (Yo - Yi)lv, 
whence 

I/3'~(x~-xo)lv<min(lfl'~l~,l/3'21v) for veMK\S.  

Together with the product formula (14) this implies that 

I-] 1/3] (x~- xo)lo > A, (29) 
v~.S 

where 
A = {1-I min(I/3'~ Iv, Ifl~ Iv)} -1. 

v~S 

By applying the product formula and (15) we obtain 

A =(]-I 1/3'1/321v) -1 ]-1 max(lfl'~lv, )/3hlv) 
yes  yes  

= Ss(/3'l fl'2)l/a I-Imax [l fll , ~3 v)" 

Another application of the product formula yields that 

A = Ns(fl'l fl'2)l/aNs(fla) lld ]-] max(l/31 Iv, 1fl2 Iv). 
yes  

(30) 

In view of/31 Xo+/32 Yo=fl3 we have [/331v<max([/311v, I/3zlv) for VeMK\S. Hence 
by Lemma 5 (iii), 

I-I max(I/~l Iv. 1/321v) = ]-1 max(I/3~ Iv, I/3zlv, 1/33D>c91. (3l) 
y e s  y e s  

By Lemma 5 (iv), (v) and the fact that P > 2  and Ns(fli)>l for i=1 ,  2, 3 we 
have 

[fli[,>P-C2"max(1, t/3ilv) for i = t , 2 , 3  and yeS. 

Therefore, by (15) and Lemma 5 (ii), we have, for i=  1, 2, 3, 

Ns (/33) ~ Ns(fli) ->-- P-c2,d~ { I-I max(l,  113,1v)} d = P-c2,ds {h (/3,)}d. 
vE:S 

Hence 
Ns(/33):> p-c2,a~ma. 
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Together with (15), (30) and (31) and Ns(fl'2)> N s (frO> m-d/4 this yields 

A > p-~Sml /2 .  

By combining this with (29) we obtain 

Using 

r l l f l ' l ( x i - x o ) l ~ P - ~ , * m  1/2 for i = i ,  ..., s+  1. 
v~S 

Iff~(x~-xo)l~_<2 max(l,  I/3'1 xol~) max(l,  tfl'l xil~) for yeS, 

(32) 

we obtain, in view of (27), 

i[-[ 13'~ (x~- Xo)l~_-< 2 ~ { r I  max(l ,  lfl'~ Xo[~)} { 1~ max(l ,  t/~'l x,[~)} 
yeS w S  y e s  

< 2~ {I-I max(i ,  Ifl'l xil~)} ~. 
v~S 

Together with (32) this yields 

1--[ max(l,  Ifl'~ x~lo) > P-r 1/4. (33) 
yES 

We may assume that 
m :> p4cz6s ,  (34) 

since otherwise (26) holds for appropriate C2o, c21. Now (33) implies that there 
is a v(i)ES with 

Further, since I ]  Ifl'l xil~ > 1, there is a w(i)eS with 
ve~S 

I/3'1 x~lw.) =< tx~/~m- x/~4~). 

This implies (28) for sufficiently large c22. 
By using (28) we now prove that for appropriate i, j (i:0j) and w, I I-Yi/Yjlw 

is quite small in terms of m. Then, a standard application of Baker's inequality 
and its p-adic analogue will yield a lower bound for II-yi/yslw in terms of 
rn which immediately provides inequality (26). 

By the box principle, there are distinct i,j in {1, ..., s+  1} with w(i)=w(j)=w, 
say. Hence 

[fl'l xilw < Pc2~/sm-1/~c~3~2), Ifl'l xslw< PC~/'m- l:~23~2) (35) 

While proving (26) we assume that 

m > (4'~Pr 2c~3 (36) 
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which is obviously no restriction. Then Ifl'a x i ] ~ � 8 9  and lfl] xjlw~�89 Together 
with (35) and fl] x~ + fl~ y~ =/~'~ x s + fl~ Ys = 1 this shows that  

t ~ ! t _ 1f12 YAw=�89 1fl2(yi-Yj)lw=lfla(xj-xi)lw <-2P~2z/'m-1/r 

By combining this with (36) we obtain 

I Yi tfl'2(Yl--Ys)lw<m-1/t2 . . . .  2)<m-l/ t  . . . .  ~. 
1 - ~ w =  [fl'2 Y~[w - 

(37) 

Further,  yi/yj=[ = 1, since (xi, Yi) and (xj, yj) are distinct solutions. By Lemma 4 
and yi/yje Us, there are rational integers a~, .. . ,  at, bl . . . .  , bt such that  

h t Yi = z r/~, k I-[ rib', (38) 
YJ k= 1 l=~ 

where r/1 . . . . .  r h satisfy the condit ions of Lemma 2, rq . . . .  , n t satisfy the condi- 
tions of (21) and 

Z e (_.OK, h ( z )  < c2 s / x 2 9 L  (39) 

By combining this with Lemma 6, (38), Lemma 2 (i) and (21) we obtain 

1--Yi >exp{--(c30s)CS~sP a+ 1/4(log 2B)2}, 
Yi ~' 

(40) 

where B = m a x ( 3 ,  laxl, . . . ,  la, I, Ib~t . . . .  , b,I). 
We shall now estimate B from above. By (18) and Lemma 7 we have 

h ( ~ )  <= h(yi) h(yj) <= exp { (ca2 s)Csa~ P d +1/2 log(4m)}. (41) 

For  l = 1  . . . .  , t, let vt be the finite place in S for which [rq[v,<l. By (38), the 
product  formula, (17) and (18) we have 

[ 
21bd/d<-~ max(In~'lv,, I~Fb'l~,) = max ! Yi z -  1 , Yi z -  ! \1 y j  v~ y j  vt 

--max(n "z / 
v*v~ Yi v Yi vd 

VqMK \ [ Yi 

for l - -  1 . . . . .  t. Put  B ' =  m a x  [b~[. Together  with (39) and (41) this yields 
l~l<=t 

B' = (ca4 s ) ~ '  P a§ 3/4 log(4m). (42) 
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Note that, by (38) and (18), 

h ( t /~ t  . . .  r / ,  ~ ' )  = h y ~  z - - 7g I bt 
\Yj 

Together with (41), (39), (21) and (42) this implies 

h(rlal.., na,)<exp {(c36s)C3,sp~+ 1 log(4m)}. 

By (17) and (18) we have h(ct)> I~I~, h(~)> ]ctJ~ -1 for ~ed)x\{0 }, v e M r .  Hence 

" loglqil~ ~-~-(C36S) c37sPd+l a i log(4m) for v~S~ .  
i=1 

Together with Lemma 2 (iii) this yields 

max [akl <(c38s)C~gsP a+ 1 log(4m). 
l<_k_<r  

By combining this with (42) we obtain 

2 B < (caos)C,~ pa+ t log(4rn). 

A substitution of this into (40) yields that 

1-Y~ >exp { -(C,,zS)C"~P d+ 1/2 {loglog(4m)}2}. 
yj w 

8y comparing this with (37) we obtain 

log(4m) 
{l~176 2 <=(c44s)~,~, pd+ 1/2. 

It is easy to check that this implies (26). [] 

Proof o f  Theorem 3. Let (fl~,fl2,fl3)e(K*) 3 and suppose that the equation 
fit x '+/ /Ey'=/ /3 in x', y 'eUs has at least s + 2  solutions. Then there exists, by 
Theorem 2, a triple (~1, :r e3)e((-0K\{0}) 3, S-equivalent to (//~, //2, //3) such that 

log {max(h(a0, h(az), h(:r <= (Cl s)C~P "+ 1 

with the C~ and C 2 specified in Theorem 2. By combining this with Lemma 7, 
wc obtain that each pair of S-units (x, y) with ~ x + say = ~3 satisfies 

max (h(x), h (y)) < exp {(C3 s) c"" pZa + 2}, 

Where C 3 and Ca are effectively computable positive numbers depending only 
on d and IDxl. 
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w 5. An example of an S-unit equation in more than two variables 
with many solutions 

At the end of the Introduction we mentioned that for the case of unit equations 
in n > 2 variables there do not exist such small upper bounds for the numbers 
of solutions as those of Theorems i and 2 for the case n = 2. In this section 
we shall prove this claim by showing that for K = Q  and for any sufficiently 
large integer s there is a set S of cardinality s and infinitely many  pairwise 
S-inequivalent n + l - t u p l e s  (oh, ... ,  0q+l)E(~*) "§ for which (7) has at least 
exp((4 + o(1)) (s/log s) 1/2) non-degenerate solutions as s ~ oo. 

To see this, observe that, by Theorem 3 of [2], for s sufficiently large there 
is a set W of s -  1 prime numbers, and a positive integer c such that the equation 
x ~ - x 2 = c  has at least exp((4+o(1)) (s/logs) ~/2) solutions in positive integers 
x~ and x2 all of whose prime factors are from W. Let S consist of the infinite 
place together with those places associated with a prime number  from W. Next 
let qa, q2... be a sequence of prime numbers such that q~ is larger than all 
of the prime numbers in W and also larger than c + n - 3  and such that 

q i + l > q i W c - F n - 3  for i = 1 , 2  . . . . .  

Then, for j = 1, 2, .. . ,  the S-unit equation 

X I - - X 2 " - I - q j x 3 - t - X 4 - [ -  . . .  +x.=c+qj+n--3 

has at least exp((4+o(1)) (s/logs) 1/2) solutions in S-units, since we may take 
x a . . . . .  x , =  1 and choose xl  and x2 so that x l - x 2  =c.  Among  them at most 
2n solutions are degenerate, since in any vanishing subsum xl does not occur, 
- x 2  has to occur and the number  of possible values for x2 in a vanishing 
subsum is at most  2n. Observe by (2) that if (0q, .. . ,  0~,+1) and (ill . . . . .  fl,+1) 
are S-equivalent n + 1-tuples then there is a permutat ion tr of { 1 . . . . .  n + 1 } such 
that for all pairs (i,j) with 1 < i < n, 1 < j  < n we have 

fli O~,~(i) 
flj  ~i,j O~rlJ) 

with e~.j an S-unit. Let k > l > l .  If the n + l - t u p l e s  (flz . . . . .  f t ,+l)=(1,  - I ,  qk, 
1 . . . . .  1, c + q k + n - 3 )  and (~1 . . . . .  ~ , + 0 = ( i ,  - 1 ,  qz, 1 . . . .  ,1,  c + q l + n - 3 )  are 
S-equivalent then 

qk = e ~{3) flj (43) 
O~a (j) 

where e is an S-unit, f l i t{ l ,  - 1 ,  C+qk+n--3}  and ~,t3), ~-u) are from {1, - i ,  
q,, c+q~+n--3} .  But by construction the qk-adic value of the right-hand side 
of (43) is 1 which is a contradiction. Thus (1, - 1 ,  qk, 1, ..., 1, C+qk + n - 3 )  
and (1, --1, q~, 1, .. . ,  1, c + ql + n--3)  are S-inequivalent for k ~  I. 
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