On S-unit equations in two unknowns

J.-H. Evertse ${ }^{1 *}$, K. Györy ${ }^{2 * *}$, C.L. Stewart ${ }^{3 * * *}$, and R. Tijdeman ${ }^{4}$
${ }^{1}$ Department of Pure Mathematics, Centre for Mathematics and Computer Science, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands
${ }^{2}$ Mathematical Institute, Kossuth Lajos University, H-4010 Debrecen, Hungary
${ }^{3}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
${ }^{4}$ Mathematical Institute, University of Leiden, NL-2333 CA Leiden, The Netherlands

§ 0. Introduction

Let K be an algebraic number field of degree d, with discriminant D_{K} and ring of integers \mathcal{O}_{K}. Let M_{K} be the set of places (i.e. equivalence classes of multiplicative valuations) on K. A place v is called finite if v contains only non-archimedean valuations, and infinite otherwise. K has only finitely many infinite places. Let S be a finite subset of M_{K}, containing all infinite places. A number $\alpha \in K$ is called an S-unit if $|\alpha|_{v}=1$ for every valuation $\left\|\|_{v}\right.$ from a place $v \in M_{K} \backslash S$. The S-units form a multiplicative group which is denoted by U_{s}. We shall deal with the S-unit equation

$$
\begin{equation*}
\alpha_{1} x+\alpha_{2} y=\alpha_{3} \quad \text { in } x, y \in U_{S}, \tag{1}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K^{*}(=K \backslash\{0\})$. Lang [9] proved that (1) has only finitely many solutions. Denote this number of solutions by $v_{S}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. We call two triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ in $\left(K^{*}\right)^{3}$ (and their corresponding S-unit equations) S-equivalent if there exist a permutation σ of $(1,2,3)$, a $\lambda \in K^{*}$ and S-units $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ such that

$$
\begin{equation*}
\beta_{i}=\lambda \varepsilon_{i} \alpha_{\sigma(i)} \quad \text { for } i=1,2,3 . \tag{2}
\end{equation*}
$$

It is easy to check that if $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and ($\beta_{1}, \beta_{2}, \beta_{3}$) are S-equivalent, then $v_{s}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=v_{s}\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ (cf. [6] §1).

Evertse [3] proved that $v_{s}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leqq 3 \times 7^{d+2 s}$ for every $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(K^{*}\right)^{3}$ where s denotes the cardinality of S. A general upper bound for v_{S} which is polynomial in s does not exist, since a result of Erdös, Stewart and Tijdeman

[^0][2] implies that in case $K=\mathbb{Q}$ there is a positive constant C and there are sets S of arbitrarily large cardinality for which $v_{s}(1,1,1)>\exp \left(C(s / \log s)^{1 / 2}\right)$. On the other hand, for a large class of triples ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) specified below, Györy [7] derived an upper bound for $v_{s}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ which is linear in s. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the prime ideals corresponding to the finite places in S. For any $\alpha \in K^{*}$ the principal ideal (α) can be written uniquely as a product of two (not necessarily principal) ideals \mathfrak{a}^{\prime} and $\mathfrak{a}^{\prime \prime}$, where \mathfrak{a}^{\prime} is composed of p_{1}, \ldots, p_{t} and $\mathfrak{a}^{\prime \prime}$ is composed solely of prime ideals different from $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$. We put $N_{S}(\alpha)=N_{\boldsymbol{K} / \mathbb{Q}}\left(\mathfrak{a}^{\prime \prime}\right)$. Györy proved the following.

For any ε with $0<\varepsilon \leqq 1$ there is an effectively computable number C depending only on ε, K and S such that $v_{s}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leqq s+3 t$ for each triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ with

$$
\begin{equation*}
N_{S}\left(\alpha_{3}\right) \geqq C \quad \text { and } \quad\left(N_{S}\left(\alpha_{3}\right)\right)^{1-\varepsilon} \geqq \min \left(N_{S}\left(\alpha_{1}\right), N_{S}\left(\alpha_{2}\right)\right) . \tag{3}
\end{equation*}
$$

If, moreover, $\left(\log N_{S}\left(\alpha_{3}\right)\right)^{1-\varepsilon} \geqq \max \left(\log N_{S}\left(\alpha_{1}\right), \log N_{S}\left(\alpha_{2}\right)\right)$, then $v_{S}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leqq$ $s+t$.

We remark that there are infinitely many S-equivalence classes which have a representative satisfying condition (3) and infinitely many S-equivalence classes which do not have such a representative (cf. [6], §3).

In this paper we prove that almost all equivalence classes of S-unit equations in two unknowns have remarkably few solutions.
Theorem 1. Let S be a finite subset of M_{K} containing all infinite places. Then there exists a finite set \mathscr{A} of triples in $\left(K^{*}\right)^{3}$ with the following property: for each triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(K^{*}\right)^{3}$ which is not S-equivalent to any of the triples from \mathscr{A}, the number of solutions of (1) is at most two.

For $s>1$, the upper bound 'two' cannot be improved, since there are infinitely many S-equivalence classes of S-unit equations (1) with two solutions (cf. [6], §1). The proof of Theorem 1 is based on the Main Theorem on S-Unit Equations (Lemma 1) which is proved by the p-adic analogue of the Thue-Siegel-Roth-Schmidt method and is therefore ineffective. Consequently, its proof does not enable one to describe triples ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) for which (1) has no more than two solutions. The following improvement of Györy's result is based on the effective method of Baker and its p-adic analogue. It provides the upper bound $s+1$ for the number of solutions of all S-unit equations with the exception of a finite set of S-equivalence classes which is, at least in principle, effectively determinable. For any non-zero algebraic number α with minimal polynomial

$$
\begin{equation*}
F(X)=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X], \tag{4}
\end{equation*}
$$

we define the height $h(\alpha)$ of α by

$$
\begin{equation*}
h(\alpha)=\left(\left|a_{0}\right| \prod_{i=1}^{n} \max \left(1,\left|\alpha_{i}\right|\right)\right)^{1 / n} . \tag{5}
\end{equation*}
$$

For given $C \geqq 1$, there are only finitely many $\alpha \in K^{*}$ with $h(\alpha) \leqq C$, and all these α can be effectively determined.

Theorem 2. Let S be a finite subset of M_{K} of cardinality s, containing all infinite places. Suppose that the rational primes corresponding to the finite places in S do not exceed $P(\geqq 2)$. Let \mathscr{B} denote the set of triples $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ with

$$
\max \left(h\left(\beta_{1}\right), h\left(\beta_{2}\right), h\left(\beta_{3}\right)\right) \leqq \exp \left\{\left(C_{1} s\right)^{c_{2} s} P^{d+1}\right\}
$$

where C_{1} and C_{2} are certain explicitly computed numbers depending only on d and $\left|D_{K}\right|$. Then for each triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(K^{*}\right)^{3}$ which is not S-equivalent to any of the triples in \mathscr{B}, the number of solutions of (1) is at most $s+1$.

For $t>0$, Theorem 2 implies Györy's result stated above. For let $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ be a triple satisfying (3) for some $\varepsilon>0$ and some number C which will be chosen later. For any triple $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ which is S-equivalent to ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) we have

$$
\begin{equation*}
\left\{\max \left(h\left(\beta_{1}\right), h\left(\beta_{2}\right), h\left(\beta_{3}\right)\right)\right\}^{d} \geqq \frac{N_{\mathrm{S}}\left(\alpha_{3}\right)}{\min \left(N_{S}\left(\alpha_{1}\right), N_{S}\left(\alpha_{2}\right)\right)} \tag{6}
\end{equation*}
$$

This can be proved easily by observing that the right hand side of (6) does not change if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplied by the same number in K^{*} or by different S-units, that the left-hand side of (6) is invariant under permutations of $\beta_{1}, \beta_{2}, \beta_{3}$, and that for each β in $\mathcal{O}_{K} \backslash\{0\}$

$$
1 \leqq N_{S}(\beta) \leqq\left|N_{K / \mathbb{Q}}(\beta)\right| \leqq(h(\beta))^{d} .
$$

By combining (6) with (3) we obtain that

$$
\max \left(h\left(\beta_{1}\right), h\left(\beta_{2}\right), h\left(\beta_{3}\right)\right) \geqq C^{\varepsilon / d}
$$

for each triple $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ which is S-equivalent to $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Together with Theorem 2 this implies that (1) has at most $s+1$ solutions if C is sufficiently large.

By combining Theorem 2 with an explicit upper bound for the heights of the solutions of (1), derived by Györy [7] (see also Lemma 7 in this paper) we obtain that any triple $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(K^{*}\right)^{3}$ for which $\beta_{1} x^{\prime}+\beta_{2} y^{\prime}=\beta_{3}$ has more than $s+1$ solutions in S-units x^{\prime}, y^{\prime}, is S-equivalent to a triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$ such that the solutions of (1) have heights which do not exceed an effectively computable number independent of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. More precisely we have the following result.

Theorem 3. Let K, S, s, P have the same meaning as in Theorem 2. Let $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(K^{*}\right)^{3}$ be a triple for which the equation $\beta_{1} x^{\prime}+\beta_{2} y^{\prime}=\beta_{3}$ in S-units x, y^{\prime} has at least $s+2$ solutions. Then there is a triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}$, S-equivalent to $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$, such that all solutions (x, y) of (1) satisfy

$$
\max (h(x), h(y)) \leqq \exp \left\{\left(C_{3} s\right)^{\left.C_{4} s P^{2 d+2}\right\}, ~}\right.
$$

where C_{3} and C_{4} are effectively computable numbers depending only on d and $\left|D_{K}\right|$.

The special case $K=\mathbb{Q}$ of Theorem 1 has been considered in [6] §5. On the other hand, it is possible to generalize Theorem 1 to the case that K is any subfield of \mathbb{C} and U_{S} is any finitely generated multiplicative subgroup of \mathbb{C}^{*}, or that U_{S} is just a subgroup of finite rank of \mathbb{C}^{*}. For the proofs it suffices to replace the Main Theorem on S-Unit Equations as we use it (Lemma 1) by the version due to van der Poorten and Schlickewei [14] in the first instance and the version of Laurent [12] in the second.

Suppose that we want to extend our results to S-unit equations

$$
\begin{equation*}
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=\alpha_{n+1} \text { in } x_{1}, \ldots, x_{n} \in U_{S}, \tag{7}
\end{equation*}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in\left(K^{*}\right)^{n+1}$ with $n>2$. If U_{s} is infinite an equation of this type may have infinitely many solutions such that some non-empty proper subsum of $\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}$ vanishes. Such solutions will be called degenerate. For example, let $\alpha_{1}, \ldots, \alpha_{n-1} \in K^{*}$ such that $\alpha_{1} x_{1}^{\prime}+\ldots+\alpha_{n-1} x_{n-1}^{\prime}=0$ for some $x_{1}^{\prime}, \ldots, x_{n-1}^{\prime} \in U_{S}$. Then, for any $\varepsilon \in U_{S}$, Eq. (7) with $\alpha_{n+1}=\alpha_{n}$ has the degenerate solution $x_{1}=\varepsilon x_{1}^{\prime}, x_{2}=\varepsilon x_{2}^{\prime}, \ldots, x_{n-1}=\varepsilon x_{n-1}^{\prime}, x_{n}=1$. However, as we shall show in $\S 5$, the number of non-degenerate solutions can also be large. We shall prove that for $K=\mathbb{Q}$ and for any sufficiently large integer s there is a set S of cardinality s and infinitely many S-inequivalent $n+1$-tuples $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in\left(\mathbb{Q}^{*}\right)^{n+1}$ for which the number of non-degenerate solutions of the S-unit Equation (7) is at least $\exp \left((4+o(1))(s / \log s)^{1 / 2}\right)$ as $s \rightarrow \infty$. Thus the constant two in Theorem 1 and the number $s+1$ in Theorem 2 must be replaced by a number at least as large as $\exp \left((4+o(1))(s / \log s)^{1 / 2}\right.$ as $s \rightarrow \infty$. On the other hand, recently Evertse and Györy [5] have shown that apart from finitely many S-inequivalent $n+1$-tuples $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in\left(K^{*}\right)^{n+1}$, the solutions of (7) are contained in at most $2^{(n+1)!}$ proper linear subspaces of K^{n}. For $n=2$, this gives a weaker version of our Theorem I with the upper bound 2^{6} instead of 2 .

For more background material and applications of results on S-unit equations, we refer the reader to our survey paper [6] in the Proceedings of the L.M.S. Conference on Transcendence Theory at Durham, England. At this conference, held in July, 1986, Theorem 1 was established.

§ 1. Proof of Theorem 1

Let n be an integer with $n \geqq 1$. Points in the vector space K^{n+1} are denoted by $X=\left(X_{0}, X_{1}, \ldots, X_{n}\right)$. If we identify pairwise linearly dependent non-zero points in K^{n+1}, we obtain the n-dimensional projective space $\mathbb{P}^{n}(K)$. Points in $\mathbb{P}^{n}(K)$, so-called projective points, are denoted by $X=\left(X_{0}: X_{1}: \ldots: X_{n}\right)$, where the homogeneous coordinates are in K and are determined up to a multiplicative constant in K. We denote the subset of $\mathbb{P}^{n}(K)$ of projective points with all the homogeneous coordinates in U_{S} by $\mathbb{P}^{n}\left(U_{S}\right)$. We shall apply the Main Theorem on S-Unit Equations which was first stated by van der Poorten and Schlickewei [14]. Evertse formulated his version of this theorem in terms of (c, d, S)-admissible points. Since $\mathbb{P}^{n}\left(U_{S}\right)$ consists precisely of all ($1,0, S$)-admissible points, we may use the following statement.

Lemma 1. (Evertse, [4, Theorem 1]). There are only finitely many projective points $X=\left(X_{0}: X_{1}: \ldots: X_{n}\right) \in \mathbb{P}^{n}\left(U_{S}\right)$ such that

$$
\begin{equation*}
X_{0}+X_{1}+\ldots+X_{n}=0 \tag{8}
\end{equation*}
$$

with

$$
X_{i_{0}}+X_{i_{1}}+\ldots+X_{i_{m}} \neq 0
$$

for each proper, non-empty subset $\left\{i_{0}, i_{1}, \ldots, i_{m}\right\}$ of $\{0,1, \ldots, n\}$.
Proof of Theorem 1. Since $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\left(\alpha_{1} / \alpha_{3}, \alpha_{2} / \alpha_{3}, 1\right)$ are S-equivalent, we may assume without loss of generality that $\alpha_{3}=1$. Suppose

$$
\begin{equation*}
\alpha_{1} x+\alpha_{2} y=1 \tag{9}
\end{equation*}
$$

has three distinct solutions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ in $\left(U_{S}\right)^{2}$. Then we obtain, after eliminating α_{1} and α_{2},

$$
\begin{equation*}
x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{1}-x_{1} y_{3}=0 \tag{10}
\end{equation*}
$$

Note that the expression on the left-hand side does not change value if we interchange all x 's and y 's or if we permute the subscripts $\{1,2,3\}$ consistently. Furthermore,

$$
\begin{equation*}
x_{1} y_{2} \neq x_{2} y_{1}, \quad x_{2} y_{3} \neq x_{3} y_{2}, \quad x_{3} y_{1} \neq x_{1} y_{3}, \tag{11}
\end{equation*}
$$

since the solutions of (9) are distinct. We shall show that there are only finitely many possibilities for x_{2} / x_{1} and y_{2} / y_{1}. By the preceding considerations it suffices to prove this claim in each of the following cases:
(a) no proper, non-empty subsum of the left-hand side of (10) vanishes,
(b1) $x_{1} y_{2}+x_{2} y_{3}=0, x_{2} y_{1}+x_{3} y_{2}-x_{3} y_{1}+x_{1} y_{3}=0$,
(b2) $\quad x_{1} y_{2}-x_{3} y_{2}=0, x_{2} y_{1}-x_{2} y_{3}-x_{3} y_{1}+x_{1} y_{3}=0$,
(c1) $x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}=0, x_{3} y_{2}-x_{3} y_{1}+x_{1} y_{3}=0$,
(c2) $x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}=0, x_{2} y_{1}+x_{3} y_{2}+x_{1} y_{3}=0$,
(c3) $x_{1} y_{2}+x_{2} y_{3}-x_{1} y_{3}=0, x_{2} y_{1}+x_{3} y_{2}-x_{3} y_{1}=0$.
Case (a). By Lemma 1 there are only finitely many projective points $\left(x_{1} y_{2}: x_{2} y_{1}: x_{2} y_{3}: x_{3} y_{2}: x_{3} y_{1}: x_{1} y_{3}\right) \in \mathbb{P}^{5}\left(U_{S}\right)$. Hence there are only finitely many possibilities for x_{2} / x_{1} and y_{2} / y_{1}.
Case (b1). No subsum of $x_{2} y_{1}+x_{3} y_{2}-x_{3} y_{1}+x_{1} y_{3}$ can vanish by (11), $x_{2} \neq x_{3}$, $y_{1} \neq 0, x_{3} \neq 0, y_{1} \neq y_{2}$. By Lemma 1 there are only finitely many projective points $\left(x_{1} y_{2}: x_{2} y_{3}\right) \in \mathbb{P}^{1}\left(U_{S}\right)$ and $\left(x_{2} y_{1}: x_{3} y_{2}: x_{3} y_{1}: x_{1} y_{3}\right) \in \mathbb{P}^{3}\left(U_{S}\right)$. Hence there are only finitely many possibilities for $x_{1} y_{2} / x_{2} y_{3}, y_{2} / y_{1}, x_{2} y_{1} / x_{1} y_{3}$, whence for $x_{2} y_{3} / x_{1} y_{1}, x_{2} y_{1} / x_{1} y_{3}$, whence for x_{2}^{2} / x_{1}^{2}, whence for x_{2} / x_{1}.
Case (b2). This is impossible, since $y_{2} \neq 0, x_{1} \neq x_{3}$.
Case (c1). By Lemma 1 there are only finitely many projective points $\left(x_{1} y_{2}: x_{2} y_{1}: x_{2} y_{3}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$ and $\left(x_{3} y_{2}: x_{3} y_{1}: x_{1} y_{3}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$. Hence there are only finitely many possibilities for $y_{2} / y_{1}, x_{1} y_{2} / x_{2} y_{1}$, whence for x_{2} / x_{1}.

Case (c2). By Lemma 1 there are only finitely many projective points $\left(x_{1} y_{2}: x_{2} y_{3}: x_{3} y_{1}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$ and $\left(x_{2} y_{1}: x_{3} y_{2}: x_{1} y_{3}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$. Hence there are only finitely many possible values for $x_{2} y_{3} / x_{1} y_{2}, x_{1} y_{2} / x_{3} y_{1}, x_{3} y_{2} / x_{2} y_{1}, x_{2} y_{1} / x_{1} y_{3}$, whence for $x_{2}^{2} y_{1} / x_{1}^{2} y_{2}, x_{1} y_{2}^{2} / x_{2} y_{1}^{2}$, whence for x_{2}^{3} / x_{1}^{3} and y_{2}^{3} / y_{1}^{3}, whence for x_{2} / x_{1} and y_{2} / y_{1}.
Case (c3). By Lemma 1 there are only finitely many projective points $\left(x_{1} y_{2}: x_{2} y_{3}: x_{1} y_{3}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$ and $\left(x_{2} y_{1}: x_{3} y_{2}: x_{3} y_{1}\right) \in \mathbb{P}^{2}\left(U_{S}\right)$. Hence there are only finitely many possibilities for x_{2} / x_{1} and y_{2} / y_{1}.

We conclude that there are indeed only finitely many possibilities for x_{2} / x_{1} and y_{2} / y_{1}. Since $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ satisfy (9), we have

$$
\alpha_{1} x_{1}=\frac{\left(y_{2} / y_{1}\right)-1}{y_{2} / y_{1}-x_{2} / x_{1}}, \quad \alpha_{2} y_{1}=\frac{\left(x_{2} / x_{1}\right)-1}{x_{2} / x_{1}-y_{2} / y_{1}}
$$

Hence there are only finitely many possibilities for α_{1} and α_{2} up to multiplicative factors from U_{s}.
Remark. Up to multiplicative factors from U_{S}, there are only finitely many elements of K^{*} which can be represented as sums of two S-units in two essentially different ways. This is an immediate consequence of Lemma 1. It means that in Theorem 1 'two' can be replaced by 'one' when $\alpha_{1}=\alpha_{2}$ and solutions (x, y) and (y, x) are not distinguished.

§ 2. Valuations and heights

Since the algebraic number field K has degree d, it has d different \mathbb{Q}-isomorphisms into $\mathbb{C}, \sigma_{1}, \ldots, \sigma_{r_{1}}, \sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+r_{2}}, \sigma_{r_{1}+r_{2}+1}, \ldots, \sigma_{r_{1}+2 r_{2}}=\sigma_{d}$ say, where σ_{i} maps K into \mathbb{R} for $i=1, \ldots, r_{1}, \sigma_{i}$ maps K into \mathbb{C} for $i=r_{1}+1, \ldots, d$ and $\overline{\sigma_{r_{1}+j}(\alpha)}=\sigma_{r_{1}+r_{2}+j}(\alpha)$ for $\alpha \in K$ and $j \in\left\{1, \ldots, r_{2}\right\} . K$ has exactly $r_{1}+r_{2}$ infinite places, and each infinite place v contains exactly one valuation of the type $\left|\sigma_{i(v)}()\right|$ where $i(v) \in\left\{1, \ldots, r_{1}+r_{2}\right\}$. In each infinite place v we choose the valuation

$$
\begin{equation*}
\left|\left.\right|_{v}=\left|\sigma_{i(v)}()\right|^{d_{v} / d}\right. \tag{12}
\end{equation*}
$$

where $d_{v}=1$ if $1 \leqq i(v) \leqq r_{1}$ and $d_{v}=2$ if $r_{1}+1 \leqq i(v) \leqq r_{1}+r_{2}$.
For each $\alpha \in K^{*}$ we have

$$
(\alpha)=\prod_{\mathfrak{p}} p^{\text {ord }_{p}(\alpha)},
$$

where (α) denotes the ideal generated by α, \mathfrak{p} runs through the set of prime ideals of $\mathcal{O}_{\boldsymbol{K}}$, and the exponents $\operatorname{ord}_{\mathfrak{p}}(\alpha)$ are integers of which at most finitely many are non-zero. If v is the finite place corresponding to the prime ideal \mathfrak{p}, then we put

$$
\begin{equation*}
|\alpha|_{v}=\left(N_{K / \mathbb{Q}}(\mathfrak{p})\right)^{- \text {ord }_{p}(x) / d} \quad \text { if } \alpha \neq 0, \quad|0|_{v}=0 . \tag{13}
\end{equation*}
$$

The valuations $\|_{v}\left(v \in M_{K}\right)$ chosen above satisfy the product formula

$$
\begin{equation*}
\prod_{v \in M_{K}}|\alpha|_{v}=1 \quad \text { for } \alpha \in K^{*} \tag{14}
\end{equation*}
$$

The set of infinite places on K is denoted by S_{∞}. If S is any finite subset of M_{K} containing S_{∞}, then we have

$$
\begin{equation*}
N_{S}(\alpha)=\left(\prod_{v \in S}|\alpha|_{v}\right)^{d} \quad \text { for } \alpha \in K \tag{15}
\end{equation*}
$$

where $N_{S}(\alpha)$ has the same meaning as in the Introduction. In particular, $N_{S_{\infty}}(\alpha)$ $=\left|N_{K / \mathbb{Q}}(\alpha)\right|$. Finally we have

$$
\begin{equation*}
N_{S}(\alpha)=1 \quad \text { for each } S \text {-unit } \alpha . \tag{16}
\end{equation*}
$$

If h is the height defined in (5), then (cf. [11], p. 54)

$$
\begin{equation*}
h(\alpha)=\prod_{\nu \in M_{K}} \max \left(1,|\alpha|_{v}\right) \quad \text { for } \alpha \in K^{*} \tag{17}
\end{equation*}
$$

We shall use frequently that

$$
\begin{equation*}
h\left(\alpha^{-1}\right)=h(\alpha), \quad h(\alpha \beta) \leqq h(\alpha) h(\beta) \quad \text { for } \alpha, \beta \in K^{*} . \tag{18}
\end{equation*}
$$

In the literature two other heights frequently appear, namely $H(\alpha)$, which is the maximum of the absolute values of the coefficients of the minimal polynomial of α over \mathbb{Z}, and $|\bar{\alpha}|$, which is the maximum of the absolute values of the conjugates of α over \mathbb{Q}. We have

$$
\begin{equation*}
|\bar{\alpha}|^{1 / n} \leqq h(\alpha) \leqq|\bar{\alpha}| \tag{19}
\end{equation*}
$$

if α is a non-zero algebraic integer of degree n, and

$$
\begin{equation*}
\frac{1}{2} H(\alpha)^{1 / n} \leqq h(\alpha) \leqq(n+1)^{1 /(2 n)} H(\alpha)^{1 / n} \tag{20}
\end{equation*}
$$

if α is a non-zero algebraic number of degree n. (19) is obvious, while the proof of (20) can be found, for instance, in [11], p. 60, Theorem 2.8.

§3. Lemmas for the proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular, s is the cardinality of S and the rational primes corresponding to the finite places in S do not exceed $P(\geqq 2)$. Let t denote the number of finite places in S, and define r such that $r+1$ is equal to the number of infinite places on K. Thus $s=r+t+1$. It is well known that the group U_{S} of S-units has rank $r+t=s-1$. In the remainder of the paper, c_{1}, c_{2}, \ldots, will denote effectively computable numbers >1, which depend only on d and the absolute value of the discriminant D_{K} of K. We shall use frequently the fact that the class number h_{K} of K and the regulator R_{K} of K can be estimated from above by effectively computable numbers depending only on d and $\left|D_{K}\right|$. This follows from an upper bound
for $h_{K} R_{K}$ derived by Siegel [16] and a lower bound for R_{K} due to Zimmert [17].

In the next three lemmas some estimates for S-units are given. We recall that d_{v} and the valuations $\mid \|_{v}$ were introduced in (12) and (13).
Lemma 2. If $r \geqq 1$, then there exist multiplicatively independent units $\eta_{1}, \ldots, \eta_{r}$ in \mathcal{O}_{K} with the following properties:
(i) $\max _{j} h\left(\eta_{j}\right) \leqq c_{1}$;
(ii) every unit η in \mathcal{O}_{K} can be written as $\eta=\eta^{\prime} \eta_{1}^{a_{1}} \ldots \eta_{r}^{a_{r}}$ with $a_{1}, \ldots, a_{r} \in \mathbb{Z}$ and $h\left(\eta^{\prime}\right) \leqq c_{2}$;
(iii) for each $v_{0} \in S_{\infty}$, the entries of the inverse of the matrix

Proof. Lemma 2 has been proved e.g. in [8] Lemma 2 and in [15] Corollaries A. 4 and A.5, however with $\left|\overline{\eta_{j}}\right|$ and $\left|\overline{\eta^{\prime}}\right|$ instead of $h\left(\eta_{j}\right), h\left(\eta^{\prime}\right)$, respectively. In view of (19) we may replace $\left|\bar{\eta}_{j}\right|,\left|\overline{\eta^{\prime}}\right|$ by $h\left(\eta_{j}\right)$ and $h\left(\eta^{\prime}\right)$, respectively.

Let $\eta_{1}, \ldots, \eta_{r}$ be a fixed system of independent units in \mathcal{O}_{K} with the properties specified in Lemma 2, and denote by U the multiplicative group generated by them.

Lemma 3. Let $\alpha \in K^{*}$ with $\left|N_{K / \mathbb{Q}}(\alpha)\right|=M$. Then there exists an $\eta \in U$ such that

$$
c_{4}^{-1} M^{d_{v} / d^{2}} \leqq|\eta \alpha|_{v} \leqq c_{5} M^{d_{v / /} / d^{2}} \quad \text { for every } v \in S_{\infty} .
$$

Proof. This follows e.g. from [8], Lemma 3 or [15], Lemma A.15, together with (12).

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the prime ideals corresponding to the finite places in S. Each of these prime ideals has norm at most P^{d}. Together with Lemma 3 this proves that there are $\pi_{1}, \ldots, \pi_{t} \in \mathcal{O}_{K}$ with

$$
\begin{equation*}
\left(\pi_{j}\right)=\mathfrak{p}_{j}^{h_{\mathrm{K}}} \quad \text { and } \quad h\left(\pi_{j}\right) \leqq c_{6} P^{h_{\mathrm{K}}} \quad \text { for } j=1, \ldots, t . \tag{21}
\end{equation*}
$$

We fix elements π_{1}, \ldots, π_{i} in \mathcal{O}_{K} with property (21). The number $\alpha \in K$ is called an S-integer if $|\alpha|_{v} \leqq 1$ for all $v \neq S$ (i.e. $v \in M_{K} \backslash S$). The S-integers form a ring which is denoted by \mathcal{O}_{S}. The group of units of \mathcal{O}_{S} is just U_{S}. The next lemma is a straightforward consequence of Lemmas 2 and 3.
Lemma 4. Every $\alpha \in \mathcal{O}_{S}$ can be written in the form

$$
\begin{equation*}
\alpha=\alpha^{\prime} \eta_{1}^{a_{1}} \ldots \eta_{r}^{a_{r}} \pi_{1}^{b_{1}} \ldots \pi_{t}^{b_{t}} \tag{22}
\end{equation*}
$$

with appropriate rational integers a_{i}, b_{j} and with $\alpha^{\prime} \in \mathcal{O}_{K}$ such that $\pi_{j} \nmid \alpha^{\prime}$ for j $=1, \ldots, t$ and

$$
\begin{equation*}
c_{7}^{-1} N_{S}(\alpha)^{d_{v} / d^{2}} \leqq\left|\alpha^{\prime}\right|_{v} \leqq c_{8} P^{d_{v} t h_{K} / d} N_{S}(\alpha)^{d_{v / 2} / d^{2}} \quad \text { for } v \in S_{\infty} . \tag{23}
\end{equation*}
$$

Remark. It is clear that in (22) $\alpha / \alpha^{\prime} \in U_{S}$.

Proof. Let $\alpha \in \mathcal{O}_{S}$. Then $(\alpha)=\mathfrak{a}^{\prime \prime} p_{1}^{d_{1}} \ldots \mathfrak{p}^{d_{t}}$, where $\mathfrak{a}^{\prime \prime}$ is an integral ideal relatively prime with $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ and d_{1}, \ldots, d_{t} are rational integers. Define rational integers $b_{j}, b_{j}^{\prime}(j=1, \ldots, t)$ by $d_{j}=h_{K} b_{j}+b_{j}^{\prime}$ and $0 \leqq b_{j}^{\prime}<h_{K}$. Then the ideal $\mathfrak{b}:=\mathfrak{a}^{\prime \prime} \mathfrak{p}_{1}^{b_{1}^{\prime}} \ldots \mathfrak{p}^{b_{i}^{\prime}}$ is principal, with norm M, say. Using the fact that $N_{K / \mathbb{Q}}\left(a^{\prime \prime}\right)=N_{S}(\alpha)$ and that each prime ideal p_{j} has norm at most P^{d}, it follows that

$$
N_{S}(\alpha) \leqq M \leqq P^{t d h_{K}} N_{S}(\alpha)
$$

Together with Lemma 3 and Lemma 2 (ii) this shows that b has a generator α^{\prime} for which $\pi_{j} \nmid \alpha^{\prime}$ for $j=1, \ldots, t$ and (22) and (23) hold.

We recall that two triples $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right),\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ in $\left(K^{*}\right)^{3}$ are called S-equivalent if there are $\lambda \in K^{*}, S$-units $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ and a permutation σ of $(1,2,3)$ such that

$$
\beta_{i}=\lambda \varepsilon_{i} \alpha_{\sigma(i)} \quad \text { for } i=1,2,3
$$

The next lemma shows that each S-equivalence class contains a triple with certain specified properties.

Lemma 5. Each S-equivalence class contains a triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ with the following properties:
(i) $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{O}_{K} \backslash\{0\}$;
(ii) $N_{S}\left(\alpha_{1}\right) \leqq N_{S}\left(\alpha_{2}\right) \leqq N_{S}\left(\alpha_{3}\right)$;
(iii) $\prod_{v \in S} \max \left(\left|\alpha_{1}\right|_{v},\left|\alpha_{2}\right|_{v},\left|\alpha_{3}\right|_{v}\right) \geqq c_{9}^{-1}$; $v \notin S$
(iv) $c_{7}^{-1} N_{S}\left(\alpha_{i}\right)^{d_{v} / d^{2}} \leqq\left|\alpha_{i}\right|_{v} \leqq c_{8} P^{d_{v} t h_{K} / d} N_{S}\left(\alpha_{i}\right)^{d_{v} / d^{2}}$ for $i=1,2,3$ and $v \in S_{\infty}$.
(v) $P^{-h_{K}}<\left|\alpha_{i}\right|_{v} \leqq 1$ for $i=1,2,3$ and $v \in S \backslash S_{\infty}$.

We shall call such triples S-normalized.
Proof. Let $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(K^{*}\right)^{3}$. We shall prove that $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ is S-equivalent with an S-normalized triple. We suppose that $N_{S}\left(\beta_{1}\right) \leqq N_{S}\left(\beta_{2}\right) \leqq N_{S}\left(\beta_{3}\right)$. This can be achieved by permuting β_{1}, β_{2} and β_{3}. Let \mathfrak{d} be the inverse of the ideal generated by β_{1}, β_{2}, and β_{3}. Then there exists a $\delta \in 0$ with $\left|N_{K / Q}(\delta)\right| \leqq\left|D_{K}\right|^{1 / 2} N_{K / \mathbb{Q}}$ (d) (cf. [10], p. 119 for a sharper estimate). Put $\beta_{i}^{\prime}=\delta \beta_{i}$ for $i=1,2,3$. Then $\beta_{i}^{\prime} \in \mathcal{O}_{K} \backslash\{0\}$ for $i=1,2,3, N_{S}\left(\beta_{1}^{\prime}\right) \leqq N_{S}\left(\beta_{2}^{\prime}\right) \leqq N_{S}\left(\beta_{3}^{\prime}\right)$ and

$$
\begin{align*}
& N_{K / \mathbb{Q}}\left(\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)\right)=N_{K / \mathbb{Q}}(\delta) N_{K / \mathbb{Q}}\left(\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\right) \\
& \quad \leqq\left|D_{K}\right|^{1 / 2} N_{K / \mathbb{Q}}(\mathrm{D}) N_{K / \mathbb{Q}}\left(\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\right)=\left|D_{K}\right|^{1 / 2} . \tag{24}
\end{align*}
$$

Moreover, by (13),

$$
\begin{aligned}
& N_{K / \mathbb{Q}}\left(\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)\right)=\left(\prod_{v \notin S_{\infty}} \max \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v},\left|\beta_{3}^{\prime}\right|_{v}\right)\right)^{-d} \\
& \quad \geqq\left(\prod_{v \notin S} \max \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v},\left|\beta_{3}^{\prime}\right|_{v}\right)\right)^{-d}
\end{aligned}
$$

Together with (24) this implies that

$$
\prod_{v \notin S} \max \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v},\left|\beta_{3}^{\prime}\right|_{v}\right) \geqq c_{9}^{-1} .
$$

Hence the triple ($\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}$) satisfies (i), (ii), (iii). By Lemma 4 there are S-units $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ such that for $\alpha_{i}=\varepsilon_{i} \beta_{i}^{\prime}$ we have $\alpha_{i} \in \mathcal{O}_{K} \backslash\{0\}, \pi_{j} \nmid \alpha_{i}$ for $i=1,2,3, j=1, \ldots, t$, and

$$
\begin{equation*}
c_{7}^{-1} N_{S}\left(\beta_{i}^{\prime}\right)^{d_{v} / d^{2}} \leqq\left|\alpha_{i}\right|_{v} \leqq c_{8} P^{d_{v} t h_{K} / d} N_{S}\left(\beta_{i}^{\prime}\right)^{d_{v} / d^{2}} \text { for } v \in S_{\infty} \tag{25}
\end{equation*}
$$

Thus (i) holds. (v) follows from $\pi_{j} \nmid \alpha_{i}$ and (i), while (25) and $N_{S}\left(\beta_{i}^{\prime}\right)=N_{S}\left(\alpha_{i}\right)$ for $i=1,2,3$ imply (iv). Since $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are S-units, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ also satisfy (ii) and (iii).

The main tools in the proofs of Theorems 2 and 3 are lower bounds for linear forms in logarithms, both in the archimedean and the p-adic case.
Lemma 6. Let $v \in S$. Let $\gamma_{1}, \ldots, \gamma_{k} \in K^{*}$ with $h\left(\gamma_{i}\right) \leqq A_{i}\left(3 \leqq A_{1} \leqq \ldots \leqq A_{k}\right)$ for i $=1, \ldots, k$ and let b_{1}, \ldots, b_{k} be rational integers with $\max _{i}\left|b_{i}\right| \leqq B(B \geqq 3)$. Put

$$
\Lambda=\gamma_{1}^{b_{1}} \ldots \gamma_{k}^{b_{k}}-1, \quad \Omega=\prod_{i=1}^{k} \log A_{i}, \quad \Omega^{\prime}=\prod_{i=1}^{k-1} \log A_{i}
$$

Then either $A=0$ or

$$
|A|_{v} \geqq \exp \left\{-\left(c_{10} k\right)^{c_{11} k} \Omega \log \Omega^{\prime} \log B\right\} \quad \text { if } v \text { is infinite }
$$

and

$$
|\Lambda|_{v} \geqq \exp \left\{-\left(c_{12} k\right)^{c_{13} k} P^{d}(\log P) \Omega(\log B)^{2}\right\} \quad \text { if } v \text { is finite. }
$$

Proof. This follows easily from results of Baker [1] (in case that v is infinite) and van der Poorten [13] (in case that v is finite), by taking (20) into consideration.

The next lemma gives an effective upper bound for the heights of the solutions of the S-unit Equation (1). It is an easy consequence of a result of Györy [7].
Lemma 7. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be non-zero elements of \mathcal{O}_{K} with $\max _{i} h\left(\alpha_{i}\right) \leqq A(A \geqq 3)$ and let $x, y \in U_{S}$ such that

$$
\alpha_{1} x+\alpha_{2} y=\alpha_{3}
$$

Then $\max (h(x), h(y)) \leqq \exp \left\{\left(c_{14} s\right)^{c_{15} s} P^{d+1 / 2} \log A\right\}$.
Proof. Let x_{3} be an S-unit such that $x x_{3}, y x_{3}$ and x_{3} are all algebraic integers and put $x_{1}=x x_{3}$ and $x_{2}=y x_{3}$. Then $\alpha_{1} x_{1}+\alpha_{2} x_{2}=\alpha_{3} x_{3}$. By a result of Györy [7] there are $\kappa \in U_{S} \cap \mathcal{O}_{K}$ and $\rho_{1}, \rho_{2}, \rho_{3} \in \mathcal{O}_{K}$ such that

$$
x_{i}=\kappa \rho_{i} \quad \text { for } i=1,2,3
$$

and

$$
\max _{i}\left|\widetilde{\rho_{i}}\right| \leqq \exp \left\{\left(c_{16} s\right)^{c_{17} s} P^{d}(\log P)^{t+5} \log A^{\prime}\right\}
$$

where $A^{\prime}=\max \left(3,\left|\overline{\alpha_{1}}\right|,\left|\overline{\alpha_{2}}\right|,\left|\overline{\alpha_{3}}\right|\right)$. We may now deduce Lemma 7 from this result by employing (19), the inequalities

$$
h(x)=h\left(\frac{x_{1}}{x_{3}}\right)=h\left(\frac{\rho_{1}}{\rho_{3}}\right) \leqq h\left(\rho_{1}\right) h\left(\rho_{3}\right),
$$

and

$$
h(y)=h\left(\frac{x_{2}}{x_{3}}\right)=h\left(\frac{\rho_{2}}{\rho_{3}}\right) \leqq h\left(\rho_{2}\right) h\left(\rho_{3}\right),
$$

which hold in view of (18), and the estimate $(\log P)^{t+5} \leqq P^{1 / 2}\left(c_{18} s\right)^{c_{19} s}$ which applies for appropriate constants c_{18} and c_{19}.

§4. Proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular, c_{20}, c_{21}, \ldots are explicitly computable numbers, depending on d and $\left|D_{K}\right|$ only.

Proof of Theorem 2. Let $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(K^{*}\right)^{3}$ be an S-normalized triple for which the equation $\beta_{1} x+\beta_{2} y=\beta_{3}$ in S-units x, y has at least $s+2$ solutions. Put m $=\max \left(h\left(\beta_{1}\right), h\left(\beta_{2}\right), h\left(\beta_{3}\right)\right)$. We shall prove that

$$
\begin{equation*}
m \leqq \exp \left\{\left(c_{20} s\right)^{c_{21} s} P^{d+1}\right\} . \tag{26}
\end{equation*}
$$

This proves Theorem 2, since by Lemma 5, each triple in $\left(K^{*}\right)^{3}$ is S-equivalent to an S-normalized triple.

Put $\beta_{1}^{\prime}=\beta_{1} / \beta_{3}, \beta_{2}^{\prime}=\beta_{2} / \beta_{3}$. By assumption, the equation

$$
\beta_{1}^{\prime} x+\beta_{2}^{\prime} y=1 \quad \text { in } x, y \in U_{S}
$$

has $s+2$ different solutions $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{s+1}, y_{s+1}\right)$, say, ordered such that

$$
\begin{align*}
\prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{0}\right|_{v}\right) & \leqq \prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{1}\right|_{v}\right) \leqq \ldots \leqq \\
& \leqq \prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{s+1}\right|_{v}\right) . \tag{27}
\end{align*}
$$

First we show that for $i=1, \ldots, s+1$, there is a place $w(i)$ in S with

$$
\begin{equation*}
\left|\beta_{1}^{\prime} x_{i}\right|_{w(i)} \leqq P^{c_{22} / s} m^{-1 /\left(c_{23} s^{2}\right)} \tag{28}
\end{equation*}
$$

This estimate will play a key role in our proof. To prove (28) we distinguish two cases: (a) $N_{s}\left(\beta_{1}^{\prime}\right) \leqq m^{-d / 4}$ and (b) $N_{s}\left(\beta_{1}^{\prime}\right)>m^{-d / 4}$.

We note that the case (a) can essentially be found in Györy [7]. The new aspect of Theorem 2 and its proof is that we can now prove (28), hence the
theorem, in case (b). Further, we shall obtain a slight improvement of Györy [7] in case (a) by treating infinite and finite places uniformly.

Suppose first that $N_{S}\left(\beta_{1}^{\prime}\right) \leqq m^{-d / 4}$. Then, by the fact that x_{i} is an S-unit for $i=1, \ldots, s+1$, and by (16), (15), we have $\prod_{v \in S}\left|\beta_{1}^{\prime} x_{i}\right|_{v} \leqq m^{-1 / 4}$ for $i=1, \ldots, s+1$. But this implies at once that for each i in $\{1, \ldots, s+1\}$ there is a $w(i) \in S$ with $\left|\beta_{1}^{\prime} x_{i}\right|_{w(i)} \leqq m^{-1 /(4 s)}$.

Now suppose that $N_{S}\left(\beta_{1}^{\prime}\right)>m^{-d / 4}$. Then also $N_{S}\left(\beta_{2}^{\prime}\right)>m^{-d / 4}$, by Lemma 5 (ii). Let $i \geqq 1$ and take $v \in M_{K} \backslash S$. By $\beta_{1}^{\prime} x_{j}+\beta_{2}^{\prime} y_{j}=1$ for $j=0,1, \ldots, s+1$, we have

$$
\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v}=\left|\beta_{2}^{\prime}\left(y_{0}-y_{i}\right)\right|_{v}
$$

whence

$$
\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v} \leqq \min \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v}\right) \quad \text { for } v \in M_{K} \backslash S
$$

Together with the product formula (14) this implies that

$$
\begin{equation*}
\prod_{v \in S}\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v} \geqq A \tag{29}
\end{equation*}
$$

where

$$
A=\left\{\prod_{v \notin S} \min \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v}\right)\right\}^{-1}
$$

By applying the product formula and (15) we obtain

$$
\begin{aligned}
A & =\left(\prod_{v \notin S}\left|\beta_{1}^{\prime} \beta_{2}^{\prime}\right|_{v}\right)^{-1} \prod_{v \notin S} \max \left(\left|\beta_{1}^{\prime}\right|_{v},\left|\beta_{2}^{\prime}\right|_{v}\right) \\
& =N_{S}\left(\beta_{1}^{\prime} \beta_{2}^{\prime}\right)^{1 / d} \prod_{v \notin S} \max \left(\left|\frac{\beta_{1}}{\beta_{3}}\right|_{v},\left|\frac{\beta_{2}}{\beta_{3}}\right|_{v}\right)
\end{aligned}
$$

Another application of the product formula yields that

$$
\begin{equation*}
A=N_{S}\left(\beta_{1}^{\prime} \beta_{2}^{\prime}\right)^{1 / d} N_{S}\left(\beta_{3}\right)^{1 / d} \prod_{v \notin S} \max \left(\left|\beta_{1}\right|_{v},\left|\beta_{2}\right|_{v}\right) . \tag{30}
\end{equation*}
$$

In view of $\beta_{1} x_{0}+\beta_{2} y_{0}=\beta_{3}$ we have $\left|\beta_{3}\right|_{v} \leqq \max \left(\left|\beta_{1}\right|_{v},\left|\beta_{2}\right|_{v}\right)$ for $v \in M_{K} \backslash S$. Hence by Lemma 5 (iii),

$$
\begin{equation*}
\prod_{v \notin S} \max \left(\left|\beta_{1}\right|_{v},\left|\beta_{2}\right|_{v}\right)=\prod_{v \notin S} \max \left(\left|\beta_{1}\right|_{v},\left|\beta_{2}\right|_{v},\left|\beta_{3}\right|_{v}\right) \geqq c_{9}^{-1} \tag{31}
\end{equation*}
$$

By Lemma 5 (iv), (v) and the fact that $P \geqq 2$ and $N_{\mathrm{S}}\left(\beta_{i}\right) \geqq 1$ for $i=1,2,3$ we have

$$
\left|\beta_{i}\right|_{v} \geqq P^{-c_{24}} \max \left(1,\left|\beta_{i}\right|_{v}\right) \quad \text { for } i=1,2,3 \text { and } v \in S
$$

Therefore, by (15) and Lemma 5 (ii), we have, for $i=1,2,3$,

$$
N_{S}\left(\beta_{3}\right) \geqq N_{S}\left(\beta_{i}\right) \geqq P^{-c_{24} d s}\left\{\prod_{v \in S} \max \left(1,\left|\beta_{i}\right|_{v}\right)\right\}^{d}=P^{-c_{24} d s}\left\{h\left(\beta_{i}\right)\right\}^{d}
$$

Hence

$$
N_{S}\left(\beta_{3}\right) \geqq P^{-c_{24} d s} m^{d}
$$

Together with (15), (30) and (31) and $N_{S}\left(\beta_{2}^{\prime}\right) \geqq N_{S}\left(\beta_{1}^{\prime}\right) \geqq m^{-d / 4}$ this yields

$$
A \geqq P^{-c_{25} s} m^{1 / 2}
$$

By combining this with (29) we obtain

$$
\begin{equation*}
\prod_{v \in S}\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v} \geqq P^{-c_{25} s} m^{1 / 2} \quad \text { for } i=1, \ldots, s+1 \tag{32}
\end{equation*}
$$

Using

$$
\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v} \leqq 2 \max \left(1,\left|\beta_{1}^{\prime} x_{0}\right|_{v}\right) \max \left(1,\left|\beta_{1}^{\prime} x_{i}\right|_{v}\right) \quad \text { for } v \in S \text {, }
$$

we obtain, in view of (27),

$$
\begin{aligned}
\prod_{v \in S}\left|\beta_{1}^{\prime}\left(x_{i}-x_{0}\right)\right|_{v} & \leqq 2^{s}\left\{\prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{0}\right|_{v}\right)\right\}\left\{\prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{i}\right|_{v}\right)\right\} \\
& \leqq 2^{s}\left\{\prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{i}\right|_{v}\right)\right\}^{2}
\end{aligned}
$$

Together with (32) this yields

$$
\begin{equation*}
\prod_{v \in S} \max \left(1,\left|\beta_{1}^{\prime} x_{i}\right|_{v}\right) \geqq P^{-c_{26} s} m^{1 / 4} . \tag{33}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
m>P^{4 c_{26} s} \tag{34}
\end{equation*}
$$

since otherwise (26) holds for appropriate c_{20}, c_{21}. Now (33) implies that there is a $v(i) \in S$ with

$$
\left|\beta_{1}^{\prime} x_{i}\right|_{v(i)} \geqq P^{-c_{26}} m^{1 /(4 s)}
$$

Further, since $\prod_{v \in S}\left|\beta_{1}^{\prime} x_{i}\right|_{v} \geqq 1$, there is a $w(i) \in S$ with

$$
\left|\beta_{1}^{\prime} x_{i}\right|_{w(i)} \leqq P^{c_{26} / s} m^{-1 /\left(4 s^{2}\right)}
$$

This implies (28) for sufficiently large c_{22}.
By using (28) we now prove that for appropriate $i, j(i \neq j)$ and $w,\left|1-y_{i} / y_{j}\right|_{w}$ is quite small in terms of m. Then, a standard application of Baker's inequality and its p-adic analogue will yield a lower bound for $\left|1-y_{i} / y_{j}\right|_{w}$ in terms of m which immediately provides inequality (26).

By the box principle, there are distinct i, j in $\{1, \ldots, s+1\}$ with $w(i)=w(j)=w$, say. Hence

$$
\begin{equation*}
\left|\beta_{1}^{\prime} x_{i}\right|_{w} \leqq P^{c_{22} / s} m^{-1 /\left(c_{23} s^{2}\right)}, \quad\left|\beta_{1}^{\prime} x_{j}\right|_{w} \leqq P^{c_{22} / s} m^{-1 /\left(c_{23} s^{2}\right)} \tag{35}
\end{equation*}
$$

While proving (26) we assume that

$$
\begin{equation*}
m \geqq\left(4^{s^{2}} P^{c_{22} s}\right)^{2 c_{23}} \tag{36}
\end{equation*}
$$

which is obviously no restriction. Then $\left|\beta_{1}^{\prime} x_{i}\right|_{w} \leqq \frac{1}{2}$ and $\left|\beta_{1}^{\prime} x_{j}\right|_{w} \leqq \frac{1}{2}$. Together with (35) and $\beta_{1}^{\prime} x_{i}+\beta_{2}^{\prime} y_{i}=\beta_{1}^{\prime} x_{j}+\beta_{2}^{\prime} y_{j}=1$ this shows that

$$
\left|\beta_{2}^{\prime} y_{j}\right|_{w} \geqq \frac{1}{2}, \quad\left|\beta_{2}^{\prime}\left(y_{i}-y_{j}\right)\right|_{w}=\left|\beta_{1}^{\prime}\left(x_{j}-x_{i}\right)\right|_{w} \leqq 2 P^{c_{22} / s} m^{-1 /\left(c_{23} s^{2}\right)} .
$$

By combining this with (36) we obtain

$$
\begin{equation*}
\left|1-\frac{y_{i}}{y_{j}}\right|_{w}=\frac{\left|\beta_{2}^{\prime}\left(y_{i}-y_{j}\right)\right|_{w}}{\left|\beta_{2}^{\prime} y_{j}\right|_{w}} \leqq m^{-1 /\left(2 c_{\left.23 s^{2}\right)}\right.} \leqq m^{-1 /\left(c_{27} s^{2}\right)} . \tag{37}
\end{equation*}
$$

Further, $y_{i} / y_{j} \neq 1$, since $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are distinct solutions. By Lemma 4 and $y_{i} / y_{j} \in U_{s}$, there are rational integers $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{t}$ such that

$$
\begin{equation*}
\frac{y_{i}}{y_{j}}=z \prod_{k=1}^{r} \eta_{k}^{a_{k}} \prod_{l=1}^{t} \pi_{l}^{b_{i}}, \tag{38}
\end{equation*}
$$

where $\eta_{1}, \ldots, \eta_{t}$ satisfy the conditions of Lemma $2, \pi_{1}, \ldots, \pi_{t}$ satisfy the conditions of (21) and

$$
\begin{equation*}
z \in \mathcal{O}_{K}, \quad h(z) \leqq c_{28} P^{c_{29} s} . \tag{39}
\end{equation*}
$$

By combining this with Lemma 6, (38), Lemma 2 (i) and (21) we obtain

$$
\begin{equation*}
\left|1-\frac{y_{i}}{y_{j}}\right|_{w} \geqq \exp \left\{-\left(c_{30} s\right)^{c_{11} s} P^{d+1 / 4}(\log 2 B)^{2}\right\}, \tag{40}
\end{equation*}
$$

where $B=\max \left(3,\left|a_{1}\right|, \ldots,\left|a_{r}\right|,\left|b_{1}\right|, \ldots, b_{t} \mid\right)$.
We shall now estimate B from above. By (18) and Lemma 7 we have

$$
\begin{equation*}
h\left(\frac{y_{i}}{y_{j}}\right) \leqq h\left(y_{i}\right) h\left(y_{j}\right) \leqq \exp \left\{\left(c_{32} s\right)^{c_{33} s} P^{d+1 / 2} \log (4 m)\right\} . \tag{41}
\end{equation*}
$$

For $l=1, \ldots, t$, let v_{l} be the finite place in S for which $\left|\pi_{l}\right|_{v_{l}}<1$. By (38), the product formula, (17) and (18) we have

$$
\begin{aligned}
2^{\left|b_{l}\right| / d} & \leqq \max \left(| | b_{l}^{b_{l}}\left|v_{l},\left|\pi_{l}^{-b_{l}}\right|_{v_{l}}\right)=\max \left(\left|\frac{y_{i}}{y_{j}} z^{-1}\right|_{v_{l}},\left|\frac{y_{i}}{y_{j}} z^{-1}\right|_{v_{l}}^{-1}\right)\right. \\
& =\max \left(\prod_{v \neq v_{l}}\left|\frac{y_{j}}{y_{i}} z\right|_{v},\left|\frac{y_{j}}{y_{i}} z\right|_{v_{l}}\right) \\
& \leqq \prod_{v \in M_{\mathrm{K}}} \max \left(1,\left|\frac{y_{j}}{y_{i}} z\right|_{v}\right)=h\left(\frac{y_{j}}{y_{i}} z\right) \leqq h\left(\frac{y_{j}}{y_{i}}\right) h(z),
\end{aligned}
$$

for $l=1, \ldots, t$. Put $B^{\prime}=\max _{1 \leqq l \leq t}\left|b_{l}\right|$. Together with (39) and (41) this yields

$$
\begin{equation*}
B^{\prime} \leqq\left(c_{34} s\right)^{c_{3 s} s} P^{d+3 / 4} \log (4 m) . \tag{42}
\end{equation*}
$$

Note that, by (38) and (18),

$$
\begin{aligned}
h\left(\eta_{1}^{a_{1}} \ldots \eta_{r}^{a_{r}}\right)= & h\left(\frac{y_{i}}{y_{j}} z^{-1} \prod_{t=1}^{t} \pi_{i}^{-b_{i}}\right) \\
& \leqq h\left(\frac{y_{i}}{y_{j}}\right) h(z)\left(\prod_{l=1}^{t} h\left(\pi_{l}\right)\right)^{\boldsymbol{B}^{\prime}} .
\end{aligned}
$$

Together with (41), (39), (21) and (42) this implies

$$
h\left(\eta_{1}^{a_{1}} \ldots \eta_{r}^{a_{r}}\right) \leqq \exp \left\{\left(c_{36} s\right)^{c_{37} s} P^{d+1} \log (4 m)\right\} .
$$

By (17) and (18) we have $h(\alpha) \geqq|\alpha|_{v}, h(\alpha) \geqq|\alpha|_{v}^{-1}$ for $\alpha \in \mathcal{O}_{K} \backslash\{0\}, v \in M_{K}$. Hence

$$
\left.\left|\sum_{i=1}^{r} a_{i} \log \right| \eta_{i}\right|_{v} \mid \leqq\left(c_{36} s\right)^{c_{37} s} P^{d+1} \log (4 m) \quad \text { for } v \in S_{\infty}
$$

Together with Lemma 2 (iii) this yields

$$
\max _{1 \leqq k \leqq r}\left|a_{k}\right| \leqq\left(c_{38} s\right)^{c_{39} s} P^{d+1} \log (4 m)
$$

By combining this with (42) we obtain

$$
2 B \leqq\left(c_{40} s\right)^{c_{41} s} P^{d+1} \log (4 m)
$$

A substitution of this into (40) yields that

$$
\left|1-\frac{y_{i}}{y_{j}}\right|_{w} \geqq \exp \left\{-\left(c_{42} s\right)^{c_{43} s} P^{d+1 / 2}\{\log \log (4 m)\}^{2}\right\}
$$

By comparing this with (37) we obtain

$$
\frac{\log (4 m)}{\{\log \log (4 m)\}^{2}} \leqq\left(c_{44} s\right)^{c_{45} s} P^{d+1 / 2}
$$

It is easy to check that this implies (26).
Proof of Theorem 3. Let $\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in\left(K^{*}\right)^{3}$ and suppose that the equation $\beta_{1} x^{\prime}+\beta_{2} y^{\prime}=\beta_{3}$ in $x^{\prime}, y^{\prime} \in U_{\mathrm{S}}$ has at least $s+2$ solutions. Then there exists, by Theorem 2, a triple $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\left(\mathcal{O}_{K} \backslash\{0\}\right)^{3}, S$-equivalent to $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ such that

$$
\log \left\{\max \left(h\left(\alpha_{1}\right), h\left(\alpha_{2}\right), h\left(\alpha_{3}\right)\right)\right\} \leqq\left(C_{1} s\right)^{c_{2 s} s} P^{d+1}
$$

With the C_{1} and C_{2} specified in Theorem 2. By combining this with Lemma 7, we obtain that each pair of S-units (x, y) with $\alpha_{1} x+\alpha_{2} y=\alpha_{3}$ satisfies

$$
\max (h(x), h(y)) \leqq \exp \left\{\left(C_{3} s\right)^{C_{4} s} P^{2 d+2}\right\}
$$

Where C_{3} and C_{4} are effectively computable positive numbers depending only on d and $\left|D_{K}\right|$.

§ 5. An example of an S-unit equation in more than two variables with many solutions

At the end of the Introduction we mentioned that for the case of unit equations in $n>2$ variables there do not exist such small upper bounds for the numbers of solutions as those of Theorems 1 and 2 for the case $n=2$. In this section we shall prove this claim by showing that for $K=\mathbb{Q}$ and for any sufficiently large integer s there is a set S of cardinality s and infinitely many pairwise S-inequivalent $n+1$-tuples $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in\left(\mathbb{Q}^{*}\right)^{n+1}$ for which (7) has at least $\exp \left((4+o(1))(s / \log s)^{1 / 2}\right)$ non-degenerate solutions as $s \rightarrow \infty$.

To see this, observe that, by Theorem 3 of [2], for s sufficiently large there is a set W of $s-1$ prime numbers, and a positive integer c such that the equation $x_{1}-x_{2}=c$ has at least $\exp \left((4+o(1))(s / \log s)^{1 / 2}\right)$ solutions in positive integers x_{1} and x_{2} all of whose prime factors are from W. Let S consist of the infinite place together with those places associated with a prime number from W. Next let $q_{1}, q_{2} \ldots$ be a sequence of prime numbers such that q_{1} is larger than all of the prime numbers in W and also larger than $c+n-3$ and such that

$$
q_{i+1}>q_{i}+c+n-3 \quad \text { for } i=1,2, \ldots
$$

Then, for $j=1,2, \ldots$, the S-unit equation

$$
x_{1}-x_{2}+q_{j} x_{3}+x_{4}+\ldots+x_{n}=c+q_{j}+n-3
$$

has at least $\exp \left((4+o(1))(s / \log s)^{1 / 2}\right)$ solutions in S-units, since we may take $x_{3}=\ldots=x_{n}=1$ and choose x_{1} and x_{2} so that $x_{1}-x_{2}=c$. Among them at most $2 n$ solutions are degenerate, since in any vanishing subsum x_{1} does not occur, $-x_{2}$ has to occur and the number of possible values for x_{2} in a vanishing subsum is at most $2 n$. Observe by (2) that if $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right)$ and ($\beta_{1}, \ldots, \beta_{n+1}$) are S-equivalent $n+1$-tuples then there is a permutation σ of $\{1, \ldots, n+1\}$ such that for all pairs (i, j) with $1 \leqq i \leqq n, 1 \leqq j \leqq n$ we have

$$
\frac{\beta_{i}}{\beta_{j}}=\varepsilon_{i, j} \frac{\alpha_{\sigma(i)}}{\alpha_{\sigma(j)}}
$$

with $\varepsilon_{i, j}$ an S-unit. Let $k>l \geqq 1$. If the $n+1$-tuples $\left(\beta_{1}, \ldots, \beta_{n+1}\right)=\left(1,-1, q_{k}\right.$. $\left.1, \ldots, 1, c+q_{k}+n-3\right)$ and $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right)=\left(1,-1, q_{l}, 1, \ldots, 1, c+q_{i}+n-3\right)$ are S-equivalent then

$$
\begin{equation*}
q_{k}=\varepsilon \frac{\alpha_{\sigma(3)}}{\alpha_{\sigma(j)}} \beta_{j} \tag{43}
\end{equation*}
$$

where ε is an S-unit, $\beta_{j} \in\left\{1,-1, c+q_{k}+n-3\right\}$ and $\alpha_{\sigma(3)}, \alpha_{\sigma(j)}$ are from $\{1,-1$. $\left.q_{l}, c+q_{l}+n-3\right\}$. But by construction the q_{k}-adic value of the right-hand side of (43) is 1 which is a contradiction. Thus $\left(1,-1, q_{k}, 1, \ldots, 1, c+q_{k}+n-3\right)$ and $\left(1,-1, q_{l}, 1, \ldots, 1, c+q_{l}+n-3\right)$ are S-inequivalent for $k \neq l$.

References

1. Baker, A.: The theory of linear forms in logarithms. Transcendence theory: advances and applications, pp. 1-27. London: Academic Press 1977
2. Erdös, P., Stewart, C.L., Tijdeman, R.: Some diophantine equations with many solutions. Compos. Math. to appear
3. Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation. Invent Math. 75, 561-584 (1984)
4. Evertse, J.-H.: On sums of S-units and linear recurrences. Compos. Math. 53, 225-244 (1984)
S. Evertse, J.-H., Györy, K.: On the numbers of solutions of weighted unit equations. Compos. Math (to appear)
5. Evertse, J.-H., Györy, K., Stewart, C.L., Tijdeman, R.: S-unit equations and their applications. New advances in transcendence theory. Cambridge University Press (to appear)
6. Györy, K.: On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv. 54, 583-600 (1979)
7. Györy, K.: On the solutions of linear diophantine equations in algebraic integers of bounded norm. Ann. Univ. Budapest Eötvös, Sect. Math, 22-23, 225-233 (1979-80)
8. Lang, S.: Integral points on curves. Publ. Math. Inst. Hautes Etudes Sci. 6, 27-43 (1960)
9. Lang, S.: Algebraic number theory. Reading, Mass: Addison-Wesley 1970
10. Lang, S.: Fundamentals of diophantine geometry. New York: Springer 1983
11. Laurent, M.: Equations diophantiennes exponentielles. Invent. Math. 78, 299-327 (1984)
12. Poorten, A.J., van der: Linear forms in logarithms in the p-adic case. Transcendence theory: advances and applications, pp. 29-57. London: Academic Press 1977
13. Poorten, A.J., van der, Schlickewei, H.P.: The growth conditions for recurrence sequences. Macquarie Univ. Math. Rep. 82-0041, North. Ryde, Australia, 1982
14. Shorey, T.N., Tijdeman, R.: Exponential diophantine equations. Cambridge University Press 1986
15. Siegel, C.L.: Abschätzung von Einheiten. Nachr. Akad. Wiss. Gött., II, Math.-Phys. K1 71-86, 1969
16. Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62, 367-380 (1981)

[^0]: ${ }^{*}$ Research supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.); Current address: see R. Tijdeman
 ** Research supported in part by Grant 273 from the Hungarian National Foundation for Scientific Research
 *** Research supported in part by Grant A 3528 from the Natural Sciences and Engineering Research Council of Canada

