

On S-unit equations in two unknowns

J.-H. Evertse^{1*}, K. Györy^{2**}, C.L. Stewart^{3***}, and R. Tijdeman⁴

¹ Department of Pure Mathematics, Centre for Mathematics and Computer Science, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

² Mathematical Institute, Kossuth Lajos University, H-4010 Debrecen, Hungary

³ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

⁴ Mathematical Institute, University of Leiden, NL-2333 CA Leiden, The Netherlands

§0. Introduction

Let K be an algebraic number field of degree d, with discriminant D_K and ring of integers \mathcal{O}_K . Let M_K be the set of places (i.e. equivalence classes of multiplicative valuations) on K. A place v is called finite if v contains only non-archimedean valuations, and infinite otherwise. K has only finitely many infinite places. Let S be a finite subset of M_K , containing all infinite places. A number $\alpha \in K$ is called an S-unit if $|\alpha|_v = 1$ for every valuation $|\cdot|_v$ from a place $v \in M_K \setminus S$. The S-units form a multiplicative group which is denoted by U_S . We shall deal with the S-unit equation

$$\alpha_1 x + \alpha_2 y = \alpha_3 \quad \text{in } x, y \in U_S, \tag{1}$$

where $\alpha_1, \alpha_2, \alpha_3 \in K^* (= K \setminus \{0\})$. Lang [9] proved that (1) has only finitely many solutions. Denote this number of solutions by $\nu_S(\alpha_1, \alpha_2, \alpha_3)$. We call two triples $(\alpha_1, \alpha_2, \alpha_3)$ and $(\beta_1, \beta_2, \beta_3)$ in $(K^*)^3$ (and their corresponding S-unit equations) S-equivalent if there exist a permutation σ of (1, 2, 3), a $\lambda \in K^*$ and S-units $\varepsilon_1, \varepsilon_2, \varepsilon_3$ such that

$$\beta_i = \lambda \varepsilon_i \, \alpha_{\sigma(i)} \quad \text{for } i = 1, 2, 3. \tag{2}$$

It is easy to check that if $(\alpha_1, \alpha_2, \alpha_3)$ and $(\beta_1, \beta_2, \beta_3)$ are S-equivalent, then $v_S(\alpha_1, \alpha_2, \alpha_3) = v_S(\beta_1, \beta_2, \beta_3)$ (cf. [6] § 1).

Evertse [3] proved that $v_s(\alpha_1, \alpha_2, \alpha_3) \leq 3 \times 7^{d+2s}$ for every $(\alpha_1, \alpha_2, \alpha_3) \in (K^*)^3$ where s denotes the cardinality of S. A general upper bound for v_s which is polynomial in s does not exist, since a result of Erdös, Stewart and Tijdeman

^{*} Research supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.); Current address: see R. Tijdeman

^{**} Research supported in part by Grant 273 from the Hungarian National Foundation for Scientific Research

^{***} Research supported in part by Grant A 3528 from the Natural Sciences and Engineering Research Council of Canada

[2] implies that in case $K = \mathbb{Q}$ there is a positive constant C and there are sets S of arbitrarily large cardinality for which $v_S(1, 1, 1) > \exp(C(s/\log s)^{1/2})$. On the other hand, for a large class of triples $(\alpha_1, \alpha_2, \alpha_3)$ specified below, Györy [7] derived an upper bound for $v_S(\alpha_1, \alpha_2, \alpha_3)$ which is linear in s. Let $\mathfrak{p}_1, ..., \mathfrak{p}_t$ be the prime ideals corresponding to the finite places in S. For any $\alpha \in K^*$ the principal ideal (α) can be written uniquely as a product of two (not necessarily principal) ideals a' and a'', where a' is composed of $\mathfrak{p}_1, ..., \mathfrak{p}_t$ and a'' is composed solely of prime ideals different from $\mathfrak{p}_1, ..., \mathfrak{p}_t$. We put $N_S(\alpha) = N_{K/\mathbb{Q}}(\mathfrak{a}')$. Györy proved the following.

For any ε with $0 < \varepsilon \leq 1$ there is an effectively computable number C depending only on ε , K and S such that $v_S(\alpha_1, \alpha_2, \alpha_3) \leq s + 3t$ for each triple $(\alpha_1, \alpha_2, \alpha_3) \in (\mathcal{O}_K \setminus \{0\})^3$ with

$$N_{\mathcal{S}}(\alpha_3) \ge C$$
 and $(N_{\mathcal{S}}(\alpha_3))^{1-\varepsilon} \ge \min(N_{\mathcal{S}}(\alpha_1), N_{\mathcal{S}}(\alpha_2)).$ (3)

If, moreover, $(\log N_S(\alpha_3))^{1-\varepsilon} \ge \max(\log N_S(\alpha_1), \log N_S(\alpha_2))$, then $v_S(\alpha_1, \alpha_2, \alpha_3) \le s+t$.

We remark that there are infinitely many S-equivalence classes which have a representative satisfying condition (3) and infinitely many S-equivalence classes which do not have such a representative (cf. [6], § 3).

In this paper we prove that almost all equivalence classes of S-unit equations in two unknowns have remarkably few solutions.

Theorem 1. Let S be a finite subset of M_K containing all infinite places. Then there exists a finite set \mathscr{A} of triples in $(K^*)^3$ with the following property: for each triple $(\alpha_1, \alpha_2, \alpha_3) \in (K^*)^3$ which is not S-equivalent to any of the triples from \mathscr{A} , the number of solutions of (1) is at most two.

For s > 1, the upper bound 'two' cannot be improved, since there are infinitely many S-equivalence classes of S-unit equations (1) with two solutions (cf. [6], § 1). The proof of Theorem 1 is based on the Main Theorem on S-Unit Equations (Lemma 1) which is proved by the p-adic analogue of the Thue-Siegel-Roth-Schmidt method and is therefore ineffective. Consequently, its proof does not enable one to describe triples $(\alpha_1, \alpha_2, \alpha_3)$ for which (1) has no more than two solutions. The following improvement of Györy's result is based on the effective method of Baker and its p-adic analogue. It provides the upper bound s+1 for the number of solutions of all S-unit equations with the exception of a finite set of S-equivalence classes which is, at least in principle, effectively determinable. For any non-zero algebraic number α with minimal polynomial

$$F(X) = a_0 \prod_{i=1}^{n} (X - \alpha_i) \in \mathbb{Z}[X], \qquad (4)$$

we define the height $h(\alpha)$ of α by

$$h(\alpha) = \left(|a_0| \prod_{i=1}^n \max(1, |\alpha_i|) \right)^{1/n}.$$
 (5)

For given $C \ge 1$, there are only finitely many $\alpha \in K^*$ with $h(\alpha) \le C$, and all these α can be effectively determined.

Theorem 2. Let S be a finite subset of M_K of cardinality s, containing all infinite places. Suppose that the rational primes corresponding to the finite places in S do not exceed $P(\geq 2)$. Let \mathscr{B} denote the set of triples $(\beta_1, \beta_2, \beta_3) \in (\mathcal{O}_K \setminus \{0\})^3$ with

$$\max(h(\beta_1), h(\beta_2), h(\beta_3)) \leq \exp\{(C_1 s)^{C_2 s} P^{d+1}\},\$$

where C_1 and C_2 are certain explicitly computed numbers depending only on d and $|D_K|$. Then for each triple $(\alpha_1, \alpha_2, \alpha_3) \in (K^*)^3$ which is not S-equivalent to any of the triples in \mathcal{B} , the number of solutions of (1) is at most s+1.

For t>0, Theorem 2 implies Györy's result stated above. For let $(\alpha_1, \alpha_2, \alpha_3) \in (\mathcal{O}_K \setminus \{0\})^3$ be a triple satisfying (3) for some $\varepsilon > 0$ and some number C which will be chosen later. For any triple $(\beta_1, \beta_2, \beta_3) \in (\mathcal{O}_K \setminus \{0\})^3$ which is S-equivalent to $(\alpha_1, \alpha_2, \alpha_3)$ we have

$$\{\max(h(\beta_1), h(\beta_2), h(\beta_3))\}^d \ge \frac{N_S(\alpha_3)}{\min(N_S(\alpha_1), N_S(\alpha_2))}.$$
(6)

This can be proved easily by observing that the right hand side of (6) does not change if $\alpha_1, \alpha_2, \alpha_3$ are multiplied by the same number in K^* or by different S-units, that the left-hand side of (6) is invariant under permutations of $\beta_1, \beta_2, \beta_3$, and that for each β in $\mathcal{O}_K \setminus \{0\}$

$$1 \leq N_{\mathcal{S}}(\beta) \leq |N_{\mathcal{K}/\mathbb{Q}}(\beta)| \leq (h(\beta))^d.$$

By combining (6) with (3) we obtain that

$$\max(h(\beta_1), h(\beta_2), h(\beta_3)) \ge C^{\varepsilon/d}$$

for each triple $(\beta_1, \beta_2, \beta_3) \in (\mathcal{O}_K \setminus \{0\})^3$ which is S-equivalent to $(\alpha_1, \alpha_2, \alpha_3)$. Together with Theorem 2 this implies that (1) has at most s + 1 solutions if C is sufficiently large.

By combining Theorem 2 with an explicit upper bound for the heights of the solutions of (1), derived by Györy [7] (see also Lemma 7 in this paper) we obtain that any triple $(\beta_1, \beta_2, \beta_3) \in (K^*)^3$ for which $\beta_1 x' + \beta_2 y' = \beta_3$ has more than s+1 solutions in S-units x', y', is S-equivalent to a triple $(\alpha_1, \alpha_2, \alpha_3) \in (\mathcal{O}_K \setminus \{0\})^3$ such that the solutions of (1) have heights which do not exceed an effectively computable number independent of $\alpha_1, \alpha_2, \alpha_3$. More precisely we have the following result.

Theorem 3. Let K, S, s, P have the same meaning as in Theorem 2. Let $(\beta_1, \beta_2, \beta_3) \in (K^*)^3$ be a triple for which the equation $\beta_1 x' + \beta_2 y' = \beta_3$ in S-units x, y' has at least s+2 solutions. Then there is a triple $(\alpha_1, \alpha_2, \alpha_3) \in (\mathcal{O}_K \setminus \{0\})^3$, S-equivalent to $(\beta_1, \beta_2, \beta_3)$, such that all solutions (x, y) of (1) satisfy

$$\max(h(x), h(y)) \leq \exp\{(C_3 s)^{C_4 s} P^{2d+2}\},\$$

where C_3 and C_4 are effectively computable numbers depending only on d and $|D_k|$.

The special case $K = \mathbb{Q}$ of Theorem 1 has been considered in [6] § 5. On the other hand, it is possible to generalize Theorem 1 to the case that K is any subfield of \mathbb{C} and U_S is any finitely generated multiplicative subgroup of \mathbb{C}^* , or that U_S is just a subgroup of finite rank of \mathbb{C}^* . For the proofs it suffices to replace the Main Theorem on S-Unit Equations as we use it (Lemma 1) by the version due to van der Poorten and Schlickewei [14] in the first instance and the version of Laurent [12] in the second.

Suppose that we want to extend our results to S-unit equations

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = \alpha_{n+1} \quad \text{in } x_1, \ldots, x_n \in U_S, \tag{7}$$

where $(\alpha_1, \ldots, \alpha_{n+1}) \in (K^*)^{n+1}$ with n > 2. If U_S is infinite an equation of this type may have infinitely many solutions such that some non-empty proper subsum of $\alpha_1 x_1 + ... + \alpha_n x_n$ vanishes. Such solutions will be called degenerate. For example, let $\alpha_1, \ldots, \alpha_{n-1} \in K^*$ such that $\alpha_1 x'_1 + \ldots + \alpha_{n-1} x'_{n-1} = 0$ for some $x'_1, \ldots, x'_{n-1} \in U_S$. Then, for any $\varepsilon \in U_S$, Eq. (7) with $\alpha_{n+1} = \alpha_n$ has the degenerate solution $x_1 = \varepsilon x'_1, x_2 = \varepsilon x'_2, \dots, x_{n-1} = \varepsilon x'_{n-1}, x_n = 1$. However, as we shall show in § 5, the number of non-degenerate solutions can also be large. We shall prove that for $K = \mathbf{Q}$ and for any sufficiently large integer s there is a set S of cardinality s and infinitely many S-inequivalent n + 1-tuples $(\alpha_1, \ldots, \alpha_{n+1}) \in (\mathbb{Q}^*)^{n+1}$ for which the number of non-degenerate solutions of the S-unit Equation (7) is at least $\exp((4+o(1))(s/\log s)^{1/2})$ as $s \to \infty$. Thus the constant two in Theorem 1 and the number s+1 in Theorem 2 must be replaced by a number at least as large as $\exp((4+o(1))) (s/\log s)^{1/2}$ as $s \to \infty$. On the other hand, recently Evertse and Györy [5] have shown that apart from finitely many S-inequivalent n + 1-tuples $(\alpha_1, \ldots, \alpha_{n+1}) \in (K^*)^{n+1}$, the solutions of (7) are contained in at most $2^{(n+1)!}$ proper linear subspaces of K^n . For n=2, this gives a weaker version of our Theorem 1 with the upper bound 2^6 instead of 2.

For more background material and applications of results on S-unit equations, we refer the reader to our survey paper [6] in the Proceedings of the L.M.S. Conference on Transcendence Theory at Durham, England. At this conference, held in July, 1986, Theorem 1 was established.

§1. Proof of Theorem 1

Let *n* be an integer with $n \ge 1$. Points in the vector space K^{n+1} are denoted by $X = (X_0, X_1, ..., X_n)$. If we identify pairwise linearly dependent non-zero points in K^{n+1} , we obtain the *n*-dimensional projective space $\mathbb{P}^n(K)$. Points in $\mathbb{P}^n(K)$, so-called projective points, are denoted by $X = (X_0: X_1:...:X_n)$, where the homogeneous coordinates are in K and are determined up to a multiplicative constant in K. We denote the subset of $\mathbb{P}^n(K)$ of projective points with all the homogeneous coordinates in U_S by $\mathbb{P}^n(U_S)$. We shall apply the Main Theorem on S-Unit Equations which was first stated by van der Poorten and Schlickewei [14]. Evertse formulated his version of this theorem in terms of (c, d, S)-admissible points. Since $\mathbb{P}^n(U_S)$ consists precisely of all (1, 0, S)-admissible points, we may use the following statement. **Lemma 1.** (Evertse, [4, Theorem 1]). There are only finitely many projective points $X = (X_0; X_1; \ldots; X_n) \in \mathbb{P}^n(U_S)$ such that

$$X_0 + X_1 + \dots + X_n = 0 \tag{8}$$

with

$$X_{i_0} + X_{i_1} + \ldots + X_{i_m} \neq 0$$

for each proper, non-empty subset $\{i_0, i_1, ..., i_m\}$ of $\{0, 1, ..., n\}$.

Proof of Theorem 1. Since $(\alpha_1, \alpha_2, \alpha_3)$ and $(\alpha_1/\alpha_3, \alpha_2/\alpha_3, 1)$ are S-equivalent, we may assume without loss of generality that $\alpha_3 = 1$. Suppose

$$\alpha_1 x + \alpha_2 y = 1 \tag{9}$$

has three distinct solutions (x_1, y_1) , (x_2, y_2) , (x_3, y_3) in $(U_S)^2$. Then we obtain, after eliminating α_1 and α_2 ,

$$x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3 = 0.$$
(10)

Note that the expression on the left-hand side does not change value if we interchange all x's and y's or if we permute the subscripts $\{1, 2, 3\}$ consistently. Furthermore,

$$x_1 y_2 \neq x_2 y_1, \quad x_2 y_3 \neq x_3 y_2, \quad x_3 y_1 \neq x_1 y_3,$$
 (11)

since the solutions of (9) are distinct. We shall show that there are only finitely many possibilities for x_2/x_1 and y_2/y_1 . By the preceding considerations it suffices to prove this claim in each of the following cases:

(a) no proper, non-empty subsum of the left-hand side of (10) vanishes,

- (b1) $x_1 y_2 + x_2 y_3 = 0, x_2 y_1 + x_3 y_2 x_3 y_1 + x_1 y_3 = 0,$
- (b2) $x_1 y_2 x_3 y_2 = 0, x_2 y_1 x_2 y_3 x_3 y_1 + x_1 y_3 = 0,$
- (c1) $x_1 y_2 x_2 y_1 + x_2 y_3 = 0, x_3 y_2 x_3 y_1 + x_1 y_3 = 0,$
- (c2) $x_1 y_2 + x_2 y_3 + x_3 y_1 = 0, x_2 y_1 + x_3 y_2 + x_1 y_3 = 0,$
- (c3) $x_1 y_2 + x_2 y_3 x_1 y_3 = 0, x_2 y_1 + x_3 y_2 x_3 y_1 = 0.$

Case (a). By Lemma 1 there are only finitely many projective points $(x_1 y_2: x_2 y_1: x_2 y_3: x_3 y_2: x_3 y_1: x_1 y_3) \in \mathbb{P}^5(U_S)$. Hence there are only finitely many possibilities for x_2/x_1 and y_2/y_1 .

Case (b1). No subsum of $x_2 y_1 + x_3 y_2 - x_3 y_1 + x_1 y_3$ can vanish by (11), $x_2 \neq x_3$, $y_1 \neq 0, x_3 \neq 0, y_1 \neq y_2$. By Lemma 1 there are only finitely many projective points $(x_1 y_2: x_2 y_3) \in \mathbb{P}^1(U_S)$ and $(x_2 y_1: x_3 y_2: x_3 y_1: x_1 y_3) \in \mathbb{P}^3(U_S)$. Hence there are only finitely many possibilities for $x_1 y_2/x_2 y_3$, y_2/y_1 , $x_2 y_1/x_1 y_3$, whence for x_2^2/x_1^2 , whence for x_2/x_1 .

Case (b2). This is impossible, since $y_2 \neq 0$, $x_1 \neq x_3$.

Case (c1). By Lemma 1 there are only finitely many projective points $(x_1 y_2: x_2 y_1: x_2 y_3) \in \mathbb{P}^2(U_S)$ and $(x_3 y_2: x_3 y_1: x_1 y_3) \in \mathbb{P}^2(U_S)$. Hence there are only finitely many possibilities for y_2/y_1 , $x_1 y_2/x_2 y_1$, whence for x_2/x_1 .

Case (c2). By Lemma 1 there are only finitely many projective points $(x_1 y_2: x_2 y_3: x_3 y_1) \in \mathbb{P}^2(U_s)$ and $(x_2 y_1: x_3 y_2: x_1 y_3) \in \mathbb{P}^2(U_s)$. Hence there are only finitely many possible values for $x_2 y_3/x_1 y_2$, $x_1 y_2/x_3 y_1$, $x_3 y_2/x_2 y_1$, $x_2 y_1/x_1 y_3$, whence for $x_2^2 y_1/x_1^2 y_2$, $x_1 y_2^2/x_2 y_1^2$, whence for x_2^3/x_1^3 and y_2^3/y_1^3 , whence for x_2/x_1 and y_2/y_1 .

Case (c3). By Lemma 1 there are only finitely many projective points $(x_1 y_2: x_2 y_3: x_1 y_3) \in \mathbb{P}^2(U_S)$ and $(x_2 y_1: x_3 y_2: x_3 y_1) \in \mathbb{P}^2(U_S)$. Hence there are only finitely many possibilities for x_2/x_1 and y_2/y_1 .

We conclude that there are indeed only finitely many possibilities for x_2/x_1 and y_2/y_1 . Since (x_1, y_1) and (x_2, y_2) satisfy (9), we have

$$\alpha_1 x_1 = \frac{(y_2/y_1) - 1}{y_2/y_1 - x_2/x_1}, \quad \alpha_2 y_1 = \frac{(x_2/x_1) - 1}{x_2/x_1 - y_2/y_1}$$

Hence there are only finitely many possibilities for α_1 and α_2 up to multiplicative factors from U_s .

Remark. Up to multiplicative factors from U_s , there are only finitely many elements of K^* which can be represented as sums of two S-units in two essentially different ways. This is an immediate consequence of Lemma 1. It means that in Theorem 1 'two' can be replaced by 'one' when $\alpha_1 = \alpha_2$ and solutions (x, y) and (y, x) are not distinguished.

§ 2. Valuations and heights

Since the algebraic number field K has degree d, it has d different Q-isomorphisms into \mathbb{C} , $\sigma_1, \ldots, \sigma_r, \sigma_{r_1+1}, \ldots, \sigma_{r_1+r_2}, \sigma_{r_1+r_2+1}, \ldots, \sigma_{r_1+2r_2} = \sigma_d$ say, where σ_i maps K into \mathbb{R} for $i=1, \ldots, r_1$, σ_i maps K into \mathbb{C} for $i=r_1+1, \ldots, d$ and $\overline{\sigma_{r_1+j}(\alpha)} = \sigma_{r_1+r_2+j}(\alpha)$ for $\alpha \in K$ and $j \in \{1, \ldots, r_2\}$. K has exactly r_1+r_2 infinite places, and each infinite place v contains exactly one valuation of the type $|\sigma_{i(v)}(\cdot)|$ where $i(v) \in \{1, \ldots, r_1+r_2\}$. In each infinite place v we choose the valuation

$$||_{v} = |\sigma_{i(v)}(\cdot)|^{d_{v}/d}, \tag{12}$$

where $d_v = 1$ if $1 \le i(v) \le r_1$ and $d_v = 2$ if $r_1 + 1 \le i(v) \le r_1 + r_2$.

For each $\alpha \in K^*$ we have

 $(\alpha) = \prod_{\mathfrak{p}} \mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}}(\alpha)},$

where (α) denotes the ideal generated by α , p runs through the set of prime ideals of \mathcal{O}_K , and the exponents $\operatorname{ord}_p(\alpha)$ are integers of which at most finitely many are non-zero. If v is the finite place corresponding to the prime ideal p, then we put

$$|\alpha|_{\nu} = (N_{K/0}(\mathfrak{p}))^{-\operatorname{ord}_{\mathfrak{p}}(\alpha)/d} \quad \text{if } \alpha \neq 0, \quad |0|_{\nu} = 0.$$
⁽¹³⁾

The valuations $||_{v}(v \in M_{K})$ chosen above satisfy the product formula

On S-unit equations in two unknowns

$$\prod_{v \in M_K} |\alpha|_v = 1 \quad \text{for } \alpha \in K^*.$$
 (14)

The set of infinite places on K is denoted by S_{∞} . If S is any finite subset of M_K containing S_{∞} , then we have

$$N_{S}(\alpha) = (\prod_{v \in S} |\alpha|_{v})^{d} \quad \text{for } \alpha \in K,$$
(15)

where $N_S(\alpha)$ has the same meaning as in the Introduction. In particular, $N_{S_{\infty}}(\alpha) = |N_{K/\mathbb{Q}}(\alpha)|$. Finally we have

$$N_{\rm S}(\alpha) = 1$$
 for each S-unit α . (16)

If h is the height defined in (5), then (cf. [11], p. 54)

$$h(\alpha) = \prod_{v \in M_K} \max(1, |\alpha|_v) \quad \text{for } \alpha \in K^*.$$
(17)

We shall use frequently that

$$h(\alpha^{-1}) = h(\alpha), \quad h(\alpha\beta) \leq h(\alpha) h(\beta) \quad \text{for } \alpha, \beta \in K^*.$$
 (18)

In the literature two other heights frequently appear, namely $H(\alpha)$, which is the maximum of the absolute values of the coefficients of the minimal polynomial of α over \mathbb{Z} , and $|\overline{\alpha}|$, which is the maximum of the absolute values of the conjugates of α over \mathbb{Q} . We have

$$|\overline{\alpha}|^{1/n} \leq h(\alpha) \leq |\overline{\alpha}| \tag{19}$$

if α is a non-zero algebraic integer of degree *n*, and

$$\frac{1}{2}H(\alpha)^{1/n} \le h(\alpha) \le (n+1)^{1/(2n)} H(\alpha)^{1/n}$$
(20)

if α is a non-zero algebraic number of degree *n*. (19) is obvious, while the proof of (20) can be found, for instance, in [11], p. 60, Theorem 2.8.

§3. Lemmas for the proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular, s is the cardinality of S and the rational primes corresponding to the finite places in S do not exceed $P(\geq 2)$. Let t denote the number of finite places in S, and define r such that r+1 is equal to the number of infinite places on K. Thus s=r+t+1. It is well known that the group U_S of S-units has rank r+t=s-1. In the remainder of the paper, $c_1, c_2, ...,$ will denote effectively computable numbers > 1, which depend only on d and the absolute value of the discriminant D_K of K. We shall use frequently the fact that the class number h_K of K and the regulator R_K of K can be estimated from above by effectively computable numbers depending only on d and $|D_K|$. This follows from an upper bound for $h_K R_K$ derived by Siegel [16] and a lower bound for R_K due to Zimmert [17].

In the next three lemmas some estimates for S-units are given. We recall that d_v and the valuations $| \cdot |_v$ were introduced in (12) and (13).

Lemma 2. If $r \ge 1$, then there exist multiplicatively independent units $\eta_1, ..., \eta_r$ in \mathcal{O}_K with the following properties:

(i) $\max h(\eta_j) \leq c_1;$

(ii) every unit η in \mathcal{O}_K can be written as $\eta = \eta' \eta_1^{a_1} \dots \eta_r^{a_r}$ with $a_1, \dots, a_r \in \mathbb{Z}$ and $h(\eta') \leq c_2$;

(iii) for each $v_0 \in S_{\infty}$, the entries of the inverse of the matrix $(\log |\eta_j|_v)_{1 \leq j \leq r}$ have absolute values at most c_3 .

Proof. Lemma 2 has been proved e.g. in [8] Lemma 2 and in [15] Corollaries A.4 and A.5, however with $|\overline{\eta_j}|$ and $|\overline{\eta'}|$ instead of $h(\eta_j)$, $h(\eta')$, respectively. In view of (19) we may replace $|\overline{\eta_j}|, |\overline{\eta'}|$ by $h(\eta_j)$ and $h(\eta')$, respectively.

Let η_1, \ldots, η_r be a fixed system of independent units in \mathcal{O}_K with the properties specified in Lemma 2, and denote by U the multiplicative group generated by them.

Lemma 3. Let $\alpha \in K^*$ with $|N_{K/\mathbb{Q}}(\alpha)| = M$. Then there exists an $\eta \in U$ such that

$$c_4^{-1} M^{d_v/d^2} \leq |\eta \alpha|_v \leq c_5 M^{d_v/d^2}$$
 for every $v \in S_\infty$.

Proof. This follows e.g. from [8], Lemma 3 or [15], Lemma A.15, together with (12).

Let p_1, \ldots, p_t be the prime ideals corresponding to the finite places in S. Each of these prime ideals has norm at most P^d . Together with Lemma 3 this proves that there are $\pi_1, \ldots, \pi_t \in \mathcal{O}_K$ with

$$(\pi_i) = \mathfrak{p}_i^{h_{\kappa}} \quad \text{and} \quad h(\pi_i) \leq c_6 P^{h_{\kappa}} \quad \text{for } j = 1, \dots, t.$$
 (21)

We fix elements π_1, \ldots, π_t in \mathcal{O}_K with property (21). The number $\alpha \in K$ is called an S-integer if $|\alpha|_v \leq 1$ for all $v \neq S$ (i.e. $v \in M_K \setminus S$). The S-integers form a ring which is denoted by \mathcal{O}_S . The group of units of \mathcal{O}_S is just U_S . The next lemma is a straightforward consequence of Lemmas 2 and 3.

Lemma 4. Every $\alpha \in \mathcal{O}_S$ can be written in the form

$$\alpha = \alpha' \eta_1^{a_1} \dots \eta_r^{a_r} \pi_1^{b_1} \dots \pi_t^{b_t} \tag{22}$$

with appropriate rational integers a_i, b_j and with $\alpha' \in \mathcal{O}_K$ such that $\pi_j \not\mid \alpha'$ for j = 1, ..., t and

$$c_{7}^{-1} N_{S}(\alpha)^{d_{\nu}/d^{2}} \leq |\alpha'|_{\nu} \leq c_{8} P^{d_{\nu}th_{K}/d} N_{S}(\alpha)^{d_{\nu}/d^{2}} \quad \text{for } \nu \in S_{\infty}.$$
⁽²³⁾

Remark. It is clear that in (22) $\alpha/\alpha' \in U_s$.

Proof. Let $\alpha \in \mathcal{O}_S$. Then $(\alpha) = \alpha'' \mathfrak{p}_1^{d_1} \dots \mathfrak{p}^{d_t}$, where α'' is an integral ideal relatively prime with $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ and d_1, \dots, d_t are rational integers. Define rational integers $b_j, b'_j (j=1, \dots, t)$ by $d_j = h_K b_j + b'_j$ and $0 \le b'_j < h_K$. Then the ideal $\mathfrak{b} := \alpha'' \mathfrak{p}_1^{b_1} \dots \mathfrak{p}^{b'_t}$ is principal, with norm M, say. Using the fact that $N_{K/\mathbb{Q}}(\alpha'') = N_S(\alpha)$ and that each prime ideal \mathfrak{p}_i has norm at most P^d , it follows that

$$N_{\mathcal{S}}(\alpha) \leq M \leq P^{tdh_{\mathcal{K}}} N_{\mathcal{S}}(\alpha).$$

Together with Lemma 3 and Lemma 2 (ii) this shows that b has a generator α' for which $\pi_i \not\mid \alpha'$ for j = 1, ..., t and (22) and (23) hold. \Box

We recall that two triples $(\alpha_1, \alpha_2, \alpha_3)$, $(\beta_1, \beta_2, \beta_3)$ in $(K^*)^3$ are called S-equivalent if there are $\lambda \in K^*$, S-units $\varepsilon_1, \varepsilon_2, \varepsilon_3$ and a permutation σ of (1, 2, 3) such that

$$\beta_i = \lambda \varepsilon_i \alpha_{\sigma(i)}$$
 for $i = 1, 2, 3$.

The next lemma shows that each S-equivalence class contains a triple with certain specified properties.

Lemma 5. Each S-equivalence class contains a triple $(\alpha_1, \alpha_2, \alpha_3)$ with the following properties:

- (i) $\alpha_1, \alpha_2, \alpha_3 \in \mathcal{O}_K \setminus \{0\};$
- (ii) $N_S(\alpha_1) \leq N_S(\alpha_2) \leq N_S(\alpha_3);$
- (iii) $\prod_{v \notin S} \max(|\alpha_1|_v, |\alpha_2|_v, |\alpha_3|_v) \ge c_9^{-1};$
- (iv) $c_7^{-1} N_S(\alpha_i)^{d_v/d^2} \leq |\alpha_i|_v \leq c_8 P^{d_v \iota h_K/d} N_S(\alpha_i)^{d_v/d^2} \text{ for } i=1, 2, 3 \text{ and } v \in S_{\infty}.$
- (v) $P^{-h_{\kappa}} < |\alpha_i|_{v} \leq 1$ for i = 1, 2, 3 and $v \in S \setminus S_{\infty}$.

We shall call such triples S-normalized.

Proof. Let $(\beta_1, \beta_2, \beta_3) \in (K^*)^3$. We shall prove that $(\beta_1, \beta_2, \beta_3)$ is S-equivalent with an S-normalized triple. We suppose that $N_S(\beta_1) \leq N_S(\beta_2) \leq N_S(\beta_3)$. This can be achieved by permuting β_1, β_2 and β_3 . Let \mathfrak{d} be the inverse of the ideal generated by β_1, β_2 , and β_3 . Then there exists a $\delta \in \mathfrak{d}$ with $|N_{K/\mathbb{Q}}(\delta)| \leq |D_K|^{1/2} N_{K/\mathbb{Q}}(\mathfrak{d})$ (cf. [10], p. 119 for a sharper estimate). Put $\beta'_i = \delta \beta_i$ for i = 1, 2, 3. Then $\beta'_i \in \mathcal{O}_K \setminus \{0\}$ for $i = 1, 2, 3, N_S(\beta'_1) \leq N_S(\beta'_2) \leq N_S(\beta'_3)$ and

$$N_{K/\mathbb{Q}}((\beta_1', \beta_2', \beta_3')) = N_{K/\mathbb{Q}}(\delta) N_{K/\mathbb{Q}}((\beta_1, \beta_2, \beta_3))$$

$$\leq |D_K|^{1/2} N_{K/\mathbb{Q}}(\mathfrak{d}) N_{K/\mathbb{Q}}((\beta_1, \beta_2, \beta_3)) = |D_K|^{1/2}.$$
(24)

Moreover, by (13),

$$N_{K/\mathbb{Q}}((\beta'_{1},\beta'_{2},\beta'_{3})) = (\prod_{v \notin S_{\infty}} \max(|\beta'_{1}|_{v},|\beta'_{2}|_{v},|\beta'_{3}|_{v}))^{-d}$$

$$\geq (\prod_{v \notin S} \max(|\beta'_{1}|_{v},|\beta'_{2}|_{v},|\beta'_{3}|_{v}))^{-d}.$$

Together with (24) this implies that

$$\prod_{v \notin S} \max(|\beta'_1|_v, |\beta'_2|_v, |\beta'_3|_v) \ge c_9^{-1}.$$

Hence the triple $(\beta'_1, \beta'_2, \beta'_3)$ satisfies (i), (ii), (iii). By Lemma 4 there are S-units $\varepsilon_1, \varepsilon_2, \varepsilon_3$ such that for $\alpha_i = \varepsilon_i \beta'_i$ we have $\alpha_i \in \mathcal{O}_K \setminus \{0\}, \pi_j \not\models \alpha_i$ for i = 1, 2, 3, j = 1, ..., t, and

$$c_{7}^{-1} N_{\mathbf{S}}(\beta_{i}')^{d_{v}/d^{2}} \leq |\alpha_{i}|_{v} \leq c_{8} P^{d_{v}th_{\mathbf{K}}/d} N_{\mathbf{S}}(\beta_{i}')^{d_{v}/d^{2}} \text{ for } v \in S_{\infty}.$$
 (25)

Thus (i) holds. (v) follows from $\pi_i \not\models \alpha_i$ and (i), while (25) and $N_S(\beta_i) = N_S(\alpha_i)$ for i=1, 2, 3 imply (iv). Since $\varepsilon_1, \varepsilon_2, \varepsilon_3$ are S-units, $\alpha_1, \alpha_2, \alpha_3$ also satisfy (ii) and (iii).

The main tools in the proofs of Theorems 2 and 3 are lower bounds for linear forms in logarithms, both in the archimedean and the p-adic case.

Lemma 6. Let $v \in S$. Let $\gamma_1, \ldots, \gamma_k \in K^*$ with $h(\gamma_i) \leq A_i$ $(3 \leq A_1 \leq \ldots \leq A_k)$ for $i = 1, \ldots, k$ and let b_1, \ldots, b_k be rational integers with $\max_i |b_i| \leq B(B \geq 3)$. Put

$$\Lambda = \gamma_1^{b_1} \dots \gamma_k^{b_k} - 1, \qquad \Omega = \prod_{i=1}^k \log A_i, \qquad \Omega' = \prod_{i=1}^{k-1} \log A_i.$$

Then either $\Lambda = 0$ or

$$|\Lambda|_v \ge \exp\{-(c_{10}k)^{c_{11}k}\Omega \log \Omega' \log B\} \quad \text{if } v \text{ is infinite}$$

and

$$|\Lambda|_{v} \geq \exp\left\{-(c_{12}k)^{c_{13}k}P^{d}(\log P)\Omega(\log B)^{2}\right\} \quad \text{if } v \text{ is finite.}$$

Proof. This follows easily from results of Baker [1] (in case that v is infinite) and van der Poorten [13] (in case that v is finite), by taking (20) into consideration.

The next lemma gives an effective upper bound for the heights of the solutions of the S-unit Equation (1). It is an easy consequence of a result of Györy [7].

Lemma 7. Let $\alpha_1, \alpha_2, \alpha_3$ be non-zero elements of \mathcal{O}_K with $\max_i h(\alpha_i) \leq A(A \geq 3)$ and let $x, y \in U_S$ such that

$$\alpha_1 x + \alpha_2 y = \alpha_3.$$

Then $\max(h(x), h(y)) \leq \exp\{(c_{14}s)^{c_{15}s}P^{d+1/2}\log A\}.$

Proof. Let x_3 be an S-unit such that xx_3 , yx_3 and x_3 are all algebraic integers and put $x_1 = xx_3$ and $x_2 = yx_3$. Then $\alpha_1 x_1 + \alpha_2 x_2 = \alpha_3 x_3$. By a result of Györy [7] there are $\kappa \in U_S \cap \mathcal{O}_K$ and $\rho_1, \rho_2, \rho_3 \in \mathcal{O}_K$ such that

$$x_i = \kappa \rho_i$$
 for $i = 1, 2, 3,$

and

$$\max_{i} |\overline{\rho_{i}}| \leq \exp\{(c_{16}s)^{c_{17}s} P^{d}(\log P)^{t+5} \log A'\},\$$

where $A' = \max(3, |\overline{\alpha_1}|, |\overline{\alpha_2}|, |\overline{\alpha_3}|)$. We may now deduce Lemma 7 from this result by employing (19), the inequalities

$$h(x) = h\left(\frac{x_1}{x_3}\right) = h\left(\frac{\rho_1}{\rho_3}\right) \leq h(\rho_1) h(\rho_3),$$

and

$$h(y) = h\left(\frac{x_2}{x_3}\right) = h\left(\frac{\rho_2}{\rho_3}\right) \leq h(\rho_2) h(\rho_3),$$

which hold in view of (18), and the estimate $(\log P)^{t+5} \leq P^{1/2} (c_{18}s)^{c_{19}s}$ which applies for appropriate constants c_{18} and c_{19} .

§4. Proofs of Theorems 2 and 3

We shall use the same notation as in the previous sections. In particular, c_{20}, c_{21}, \ldots are explicitly computable numbers, depending on d and $|D_K|$ only.

Proof of Theorem 2. Let $(\beta_1, \beta_2, \beta_3) \in (K^*)^3$ be an S-normalized triple for which the equation $\beta_1 x + \beta_2 y = \beta_3$ in S-units x, y has at least s+2 solutions. Put $m = \max(h(\beta_1), h(\beta_2), h(\beta_3))$. We shall prove that

$$m \leq \exp\{(c_{20}s)^{c_{21}s}P^{d+1}\}.$$
(26)

This proves Theorem 2, since by Lemma 5, each triple in $(K^*)^3$ is S-equivalent to an S-normalized triple.

Put $\beta'_1 = \beta_1 / \beta_3$, $\beta'_2 = \beta_2 / \beta_3$. By assumption, the equation

$$\beta'_1 x + \beta'_2 y = 1$$
 in $x, y \in U_S$

has s+2 different solutions (x_0, y_0) , (x_1, y_1) , ..., (x_{s+1}, y_{s+1}) , say, ordered such that

$$\prod_{v \in S} \max(1, |\beta'_{1} x_{0}|_{v}) \leq \prod_{v \in S} \max(1, |\beta'_{1} x_{1}|_{v}) \leq \dots \leq \leq \prod_{v \in S} \max(1, |\beta'_{1} x_{s+1}|_{v}).$$
(27)

First we show that for i = 1, ..., s + 1, there is a place w(i) in S with

$$|\beta'_1 x_i|_{w(i)} \leq P^{c_{22}/s} m^{-1/(c_{23}s^2)}.$$
(28)

This estimate will play a key role in our proof. To prove (28) we distinguish two cases: (a) $N_{\rm S}(\beta_1') \leq m^{-d/4}$ and (b) $N_{\rm S}(\beta_1') > m^{-d/4}$.

We note that the case (a) can essentially be found in Györy [7]. The new aspect of Theorem 2 and its proof is that we can now prove (28), hence the

theorem, in case (b). Further, we shall obtain a slight improvement of Györy [7] in case (a) by treating infinite and finite places uniformly.

Suppose first that $N_{\mathcal{S}}(\beta'_1) \leq m^{-d/4}$. Then, by the fact that x_i is an S-unit for $i=1, \ldots, s+1$, and by (16), (15), we have $\prod_{v \in S} |\beta'_1 x_i|_v \leq m^{-1/4}$ for $i=1, \ldots, s+1$.

But this implies at once that for each *i* in $\{1, ..., s+1\}$ there is a $w(i) \in S$ with $|\beta'_1 x_i|_{w(i)} \leq m^{-1/(4s)}$.

Now suppose that $N_{\mathcal{S}}(\beta'_1) > m^{-d/4}$. Then also $N_{\mathcal{S}}(\beta'_2) > m^{-d/4}$, by Lemma 5 (ii). Let $i \ge 1$ and take $v \in M_K \setminus S$. By $\beta'_1 x_j + \beta'_2 y_j = 1$ for j = 0, 1, ..., s+1, we have

$$|\beta'_1(x_i - x_0)|_v = |\beta'_2(y_0 - y_i)|_v$$

whence

$$|\beta_1'(x_i-x_0)|_v \leq \min(|\beta_1'|_v, |\beta_2'|_v) \quad \text{for } v \in M_K \setminus S.$$

Together with the product formula (14) this implies that

$$\prod_{v \in S} |\beta'_1(x_i - x_0)|_v \ge A, \tag{29}$$

where

$$A = \{\prod_{v \neq S} \min(|\beta'_1|_v, |\beta'_2|_v)\}^{-1}.$$

By applying the product formula and (15) we obtain

$$A = (\prod_{v \notin S} |\beta'_1 \beta'_2|_v)^{-1} \prod_{v \notin S} \max(|\beta'_1|_v, |\beta'_2|_v)$$
$$= N_S (\beta'_1 \beta'_2)^{1/d} \prod_{v \notin S} \max\left(\left|\frac{\beta_1}{\beta_3}\right|_v, \left|\frac{\beta_2}{\beta_3}\right|_v\right).$$

Another application of the product formula yields that

$$A = N_{S}(\beta_{1}' \beta_{2}')^{1/d} N_{S}(\beta_{3})^{1/d} \prod_{v \notin S} \max(|\beta_{1}|_{v}, |\beta_{2}|_{v}).$$
(30)

In view of $\beta_1 x_0 + \beta_2 y_0 = \beta_3$ we have $|\beta_3|_v \le \max(|\beta_1|_v, |\beta_2|_v)$ for $v \in M_K \setminus S$. Hence by Lemma 5 (iii),

$$\prod_{v \notin S} \max(|\beta_1|_v, |\beta_2|_v) = \prod_{v \notin S} \max(|\beta_1|_v, |\beta_2|_v, |\beta_3|_v) \ge c_9^{-1}.$$
(31)

By Lemma 5 (iv), (v) and the fact that $P \ge 2$ and $N_S(\beta_i) \ge 1$ for i = 1, 2, 3 we have

$$|\beta_i|_v \ge P^{-c_{24}} \max(1, |\beta_i|_v)$$
 for $i = 1, 2, 3$ and $v \in S$.

Therefore, by (15) and Lemma 5 (ii), we have, for i = 1, 2, 3,

$$N_{S}(\beta_{3}) \geq N_{S}(\beta_{i}) \geq P^{-c_{24}ds} \{ \prod_{v \in S} \max(1, |\beta_{i}|_{v}) \}^{d} = P^{-c_{24}ds} \{ h(\beta_{i}) \}^{d}.$$

Hence

$$N_{\rm S}(\beta_3) \geq P^{-c_{24}ds} m^d.$$

Together with (15), (30) and (31) and $N_S(\beta'_2) \ge N_S(\beta'_1) \ge m^{-d/4}$ this yields

 $A \ge P^{-c_{25}s}m^{1/2}$.

By combining this with (29) we obtain

$$\prod_{v \in S} |\beta'_1(x_i - x_0)|_v \ge P^{-c_{25}s} m^{1/2} \quad \text{for } i = 1, \dots, s+1.$$
(32)

Using

$$|\beta_1'(x_i - x_0)|_v \leq 2 \max(1, |\beta_1' x_0|_v) \max(1, |\beta_1' x_i|_v) \quad \text{for } v \in S,$$

we obtain, in view of (27),

$$\prod_{v \in S} |\beta'_1(x_i - x_0)|_v \leq 2^s \{ \prod_{v \in S} \max(1, |\beta'_1 x_0|_v) \} \{ \prod_{v \in S} \max(1, |\beta'_1 x_i|_v) \}$$
$$\leq 2^s \{ \prod_{v \in S} \max(1, |\beta'_1 x_i|_v) \}^2.$$

Together with (32) this yields

$$\prod_{v \in S} \max(1, |\beta'_1 x_i|_v) \ge P^{-c_{26}s} m^{1/4}.$$
(33)

We may assume that

$$m > P^{4c_{26}s}, \tag{34}$$

since otherwise (26) holds for appropriate c_{20}, c_{21} . Now (33) implies that there is a $v(i) \in S$ with

 $|\beta'_1 x_i|_{v(i)} \ge P^{-c_{26}} m^{1/(4s)}.$

Further, since $\prod_{v \in S} |\beta'_1 x_i|_v \ge 1$, there is a $w(i) \in S$ with

$$|\beta'_1 x_i|_{w(i)} \leq P^{c_{26}/s} m^{-1/(4s^2)}.$$

This implies (28) for sufficiently large c_{22} .

By using (28) we now prove that for appropriate i, j $(i \neq j)$ and $w, |1 - y_i/y_j|_w$ is quite small in terms of m. Then, a standard application of Baker's inequality and its *p*-adic analogue will yield a lower bound for $|1 - y_i/y_j|_w$ in terms of m which immediately provides inequality (26).

By the box principle, there are distinct i, j in $\{1, ..., s+1\}$ with w(i) = w(j) = w, say. Hence

$$|\beta_1' x_i|_w \leq P^{c_{22}/s} m^{-1/(c_{23}s^2)}, \quad |\beta_1' x_j|_w \leq P^{c_{22}/s} m^{-1/(c_{23}s^2)}.$$
(35)

While proving (26) we assume that

$$m \ge (4^{s^2} P^{c_{22}s})^{2c_{23}} \tag{36}$$

which is obviously no restriction. Then $|\beta'_1 x_i|_w \leq \frac{1}{2}$ and $|\beta'_1 x_j|_w \leq \frac{1}{2}$. Together with (35) and $\beta'_1 x_i + \beta'_2 y_i = \beta'_1 x_j + \beta'_2 y_j = 1$ this shows that

$$|\beta'_2 y_j|_w \ge \frac{1}{2}, \qquad |\beta'_2 (y_i - y_j)|_w = |\beta'_1 (x_j - x_i)|_w \le 2P^{c_{22}/s} m^{-1/(c_{23}s^2)}.$$

By combining this with (36) we obtain

$$\left|1 - \frac{y_i}{y_j}\right|_{w} = \frac{|\beta'_2(y_i - y_j)|_{w}}{|\beta'_2 y_j|_{w}} \le m^{-1/(2c_{23}s^2)} \le m^{-1/(c_{27}s^2)}.$$
(37)

Further, $y_i/y_j \neq 1$, since (x_i, y_i) and (x_j, y_j) are distinct solutions. By Lemma 4 and $y_i/y_j \in U_s$, there are rational integers $a_1, \ldots, a_r, b_1, \ldots, b_t$ such that

$$\frac{y_i}{y_j} = z \prod_{k=1}^r \eta_k^{a_k} \prod_{l=1}^t \pi_l^{b_l},$$
(38)

where η_1, \ldots, η_t satisfy the conditions of Lemma 2, π_1, \ldots, π_t satisfy the conditions of (21) and

$$z \in \mathcal{O}_K, \quad h(z) \leq c_{28} P^{c_{29}s}. \tag{39}$$

By combining this with Lemma 6, (38), Lemma 2 (i) and (21) we obtain

$$\left|1 - \frac{y_i}{y_j}\right|_w \ge \exp\{-(c_{30}s)^{c_{31}s}P^{d+1/4}(\log 2B)^2\},\tag{40}$$

where $B = \max(3, |a_1|, ..., |a_r|, |b_1|, ..., b_t|)$.

We shall now estimate B from above. By (18) and Lemma 7 we have

$$h\left(\frac{y_i}{y_j}\right) \leq h(y_i) h(y_j) \leq \exp\{(c_{32}s)^{c_{33}s} P^{d+1/2} \log(4m)\}.$$
(41)

For l=1, ..., t, let v_l be the finite place in S for which $|\pi_l|_{v_l} < 1$. By (38), the product formula, (17) and (18) we have

$$2^{|b_{l}|/d} \leq \max\left(\left|\pi_{l}^{b_{l}}\right|_{v_{l}}, \left|\pi_{l}^{-b_{l}}\right|_{v_{l}}\right) = \max\left(\left|\frac{y_{i}}{y_{j}}z^{-1}\right|_{v_{l}}, \left|\frac{y_{i}}{y_{j}}z^{-1}\right|_{v_{l}}^{-1}\right)$$
$$= \max\left(\prod_{v \neq v_{l}}\left|\frac{y_{j}}{y_{i}}z\right|_{v}, \left|\frac{y_{j}}{y_{i}}z\right|_{v_{l}}\right)$$
$$\leq \prod_{v \in \mathcal{M}_{K}} \max\left(1, \left|\frac{y_{j}}{y_{i}}z\right|_{v}\right) = h\left(\frac{y_{j}}{y_{i}}z\right) \leq h\left(\frac{y_{j}}{y_{i}}\right)h(z),$$

for l=1, ..., t. Put $B' = \max_{1 \le l \le t} |b_l|$. Together with (39) and (41) this yields

$$B' \leq (c_{34}s)^{c_{35}s} P^{d+3/4} \log(4m).$$
⁽⁴²⁾

.

Note that, by (38) and (18),

$$h(\eta_1^{a_1}\dots\eta_r^{a_r}) = h\left(\frac{y_i}{y_j}z^{-1}\prod_{l=1}^t\pi_l^{-b_l}\right)$$
$$\leq h\left(\frac{y_i}{y_j}\right)h(z)\left(\prod_{l=1}^th(\pi_l)\right)^{B'}.$$

Together with (41), (39), (21) and (42) this implies

$$h(\eta_1^{a_1}...\eta_r^{a_r}) \leq \exp\{(c_{36}s)^{c_{37}s}P^{d+1}\log(4m)\}.$$

By (17) and (18) we have $h(\alpha) \ge |\alpha|_v$, $h(\alpha) \ge |\alpha|_v^{-1}$ for $\alpha \in \mathcal{O}_K \setminus \{0\}$, $v \in M_K$. Hence

$$\left|\sum_{i=1}^{r} a_i \log |\eta_i|_v\right| \leq (c_{36}s)^{c_{37}s} P^{d+1} \log(4m) \quad \text{for } v \in S_{\infty}.$$

Together with Lemma 2 (iii) this yields

$$\max_{1 \le k \le r} |a_k| \le (c_{38}s)^{c_{39}s} P^{d+1} \log(4m).$$

By combining this with (42) we obtain

$$2B \leq (c_{40}s)^{c_{41}s} P^{d+1} \log(4m).$$

A substitution of this into (40) yields that

$$\left|1 - \frac{y_i}{y_j}\right|_{w} \ge \exp\left\{-(c_{42}s)^{c_{43}s}P^{d+1/2}\left\{\log\log(4m)\right\}^2\right\}.$$

By comparing this with (37) we obtain

$$\frac{\log(4m)}{\{\log\log(4m)\}^2} \leq (c_{44}s)^{c_{45}s} P^{d+1/2}.$$

It is easy to check that this implies (26). \Box

Proof of Theorem 3. Let $(\beta_1, \beta_2, \beta_3) \in (K^*)^3$ and suppose that the equation $\beta_1 x' + \beta_2 y' = \beta_3$ in $x', y' \in U_S$ has at least s+2 solutions. Then there exists, by Theorem 2, a triple $(\alpha_1, \alpha_2, \alpha_3) \in (\mathcal{O}_K \setminus \{0\})^3$, S-equivalent to $(\beta_1, \beta_2, \beta_3)$ such that

$$\log \{\max(h(\alpha_1), h(\alpha_2), h(\alpha_3))\} \leq (C_1 s)^{C_2 s} P^{d+1}$$

with the C_1 and C_2 specified in Theorem 2. By combining this with Lemma 7, we obtain that each pair of S-units (x, y) with $\alpha_1 x + \alpha_2 y = \alpha_3$ satisfies

$$\max(h(x), h(y)) \leq \exp\{(C_3 s)^{C_4 s} P^{2d+2}\}$$

where C_3 and C_4 are effectively computable positive numbers depending only on d and $|D_K|$.

§ 5. An example of an S-unit equation in more than two variables with many solutions

At the end of the Introduction we mentioned that for the case of unit equations in n > 2 variables there do not exist such small upper bounds for the numbers of solutions as those of Theorems 1 and 2 for the case n=2. In this section we shall prove this claim by showing that for $K = \mathbb{Q}$ and for any sufficiently large integer s there is a set S of cardinality s and infinitely many pairwise S-inequivalent n+1-tuples $(\alpha_1, \ldots, \alpha_{n+1}) \in (\mathbb{Q}^*)^{n+1}$ for which (7) has at least $\exp((4+o(1))(s/\log s)^{1/2})$ non-degenerate solutions as $s \to \infty$.

To see this, observe that, by Theorem 3 of [2], for s sufficiently large there is a set W of s-1 prime numbers, and a positive integer c such that the equation $x_1-x_2=c$ has at least $\exp((4+o(1)) (s/\log s)^{1/2})$ solutions in positive integers x_1 and x_2 all of whose prime factors are from W. Let S consist of the infinite place together with those places associated with a prime number from W. Next let $q_1, q_2...$ be a sequence of prime numbers such that q_1 is larger than all of the prime numbers in W and also larger than c+n-3 and such that

$$q_{i+1} > q_i + c + n - 3$$
 for $i = 1, 2, ...$

Then, for j = 1, 2, ..., the S-unit equation

$$x_1 - x_2 + q_i x_3 + x_4 + \dots + x_n = c + q_i + n - 3$$

has at least $\exp((4+o(1)) (s/\log s)^{1/2})$ solutions in S-units, since we may take $x_3 = \ldots = x_n = 1$ and choose x_1 and x_2 so that $x_1 - x_2 = c$. Among them at most 2n solutions are degenerate, since in any vanishing subsum x_1 does not occur, $-x_2$ has to occur and the number of possible values for x_2 in a vanishing subsum is at most 2n. Observe by (2) that if $(\alpha_1, \ldots, \alpha_{n+1})$ and $(\beta_1, \ldots, \beta_{n+1})$ are S-equivalent n+1-tuples then there is a permutation σ of $\{1, \ldots, n+1\}$ such that for all pairs (i, j) with $1 \le i \le n$, $1 \le j \le n$ we have

$$\frac{\beta_i}{\beta_j} = \varepsilon_{i,j} \frac{\alpha_{\sigma(i)}}{\alpha_{\sigma(j)}}$$

with $\varepsilon_{i,j}$ an S-unit. Let $k > l \ge 1$. If the n+1-tuples $(\beta_1, ..., \beta_{n+1}) = (1, -1, q_k, 1, ..., 1, c+q_k+n-3)$ and $(\alpha_1, ..., \alpha_{n+1}) = (1, -1, q_l, 1, ..., 1, c+q_l+n-3)$ are S-equivalent then

$$q_k = \varepsilon \frac{\alpha_{\sigma(3)}}{\alpha_{\sigma(i)}} \beta_j \tag{43}$$

where ε is an S-unit, $\beta_j \in \{1, -1, c+q_k+n-3\}$ and $\alpha_{\sigma(3)}, \alpha_{\sigma(j)}$ are from $\{1, -1, q_l, c+q_l+n-3\}$. But by construction the q_k -adic value of the right-hand side of (43) is 1 which is a contradiction. Thus $(1, -1, q_k, 1, ..., 1, c+q_k+n-3)$ and $(1, -1, q_l, 1, ..., 1, c+q_l+n-3)$ are S-inequivalent for $k \neq l$.

Acknowledgement. We thank the referee for his suggestions and comments.

References

- 1. Baker, A.: The theory of linear forms in logarithms. Transcendence theory: advances and applications, pp. 1-27. London: Academic Press 1977
- 2. Erdös, P., Stewart, C.L., Tijdeman, R.: Some diophantine equations with many solutions. Compos. Math. to appear
- 3. Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation. Invent Math. 75, 561-584 (1984)
- 4. Evertse, J.-H.: On sums of S-units and linear recurrences. Compos. Math. 53, 225-244 (1984)
- 5. Evertse, J.-H., Györy, K.: On the numbers of solutions of weighted unit equations. Compos. Math. (to appear)
- 6. Evertse, J.-H., Györy, K., Stewart, C.L., Tijdeman, R.: S-unit equations and their applications. New advances in transcendence theory. Cambridge University Press (to appear)
- 7. Györy, K.: On the number of solutions of linear equations in units of an algebraic number field. Comment. Math. Helv. 54, 583-600 (1979)
- Györy, K.: On the solutions of linear diophantine equations in algebraic integers of bounded norm. Ann. Univ. Budapest Eötvös, Sect. Math. 22-23, 225-233 (1979-80)
- 9. Lang, S.: Integral points on curves. Publ. Math. Inst. Hautes Etudes Sci. 6, 27-43 (1960)
- 10. Lang, S.: Algebraic number theory. Reading, Mass: Addison-Wesley 1970
- 11. Lang, S.: Fundamentals of diophantine geometry. New York: Springer 1983
- 12. Laurent, M.: Equations diophantiennes exponentielles. Invent. Math. 78, 299-327 (1984)
- 13. Poorten, A.J., van der: Linear forms in logarithms in the *p*-adic case. Transcendence theory: advances and applications, pp. 29-57. London: Academic Press 1977
- 14. Poorten, A.J., van der, Schlickewei, H.P.: The growth conditions for recurrence sequences. Macquarie Univ. Math. Rep. 82-0041, North. Ryde, Australia, 1982
- 15. Shorey, T.N., Tijdeman, R.: Exponential diophantine equations. Cambridge University Press 1986
- 16. Siegel, C.L.: Abschätzung von Einheiten. Nachr. Akad. Wiss. Gött., II, Math.-Phys. Kl 71-86, 1969
- Zimmert, R.: Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62, 367–380 (1981)

Oblatum 12-V-1987&3-XII-1987