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1 Introduction

Let x, y, and z be positive integers and define G=G(x, y,z) by
G=G(x,y,2)= p.

p 4 prime
Thus G is the greatest square-free factor of xyz. Oesterlé, motivated by a conjecture
of Szpiro concerning elliptic curves (cf. Frey [2], Oesterlé [5], Szpiro [8]), asked if
there exists a positive number ¢, such that for all positive integers x, y, and z with

(x,y,z2)=1 and x+y=z, 1)
z< G, 2

Masser [4] then conjectured, by analogy with a result of Mason [3] in the function
field case, that for each positive real number ¢ there is a positive number c,(g) which
depends on ¢ only such that in place of (2) we have

z<c,(e)G1 e, 3)

Both (2) and (3) are known as the abc conjecture. We refer the reader to Chap. 5 of
Vojta [9] for a generalization of (3) and the statement of several related
conjectures. Conjectures (2) and (3) have profound implications, in particular for
the study of Diophantine equations, cf. [7].
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In [7] Stewart and Tijdeman proved that there exists an effectively computable
constant ¢ such that for all positive integers x, y, and z satisfying (1),

logz<cyG*5.

The proof depends on a p-adic estimate for linear forms in the logarithms of
algebraic numbers due to van der Poorten [6]. (However, see Yu [11] for a
discussion of some defects in the proof of [6].) In this note we shall combine two
estimates proved by Baker’s method, a recent p-adic estimate for linear forms in the
logarithms of algebraic numbers due to Yu [12] and an earlier Archimedean
estimate due to Waldschmidt [10], to prove the following resuit.

Theorem. There exists an effectively computable positive constant ¢ such that for all
positive integers x, y, and z with (x,y,2)=1,z>2, and x+y=z,

IOgZ < GZ/3 +cfloglogG .

In particular, for each £¢>0 there exists a number c4(¢) which is effectively
computable in terms of ¢ such that for all positive integers x, y, and z with
(x,y,z)=1and x+y=z,

z<explcy(e)G*3HY).

2 Preliminary lemmas

Let p be a prime number and put ,
2 if p>2 {4 f p>2
= = 4
1 {3 it p=2 24 % {56 if p=2 @
where {,=e>"™ for m=1,2,3,.... Put K=Q(,) and let «,,...,a, be non-zero

algebraic integers in K with absolute values at most 4, ..., 4, respectively apd
with 4,24 fori=1,..,n. Put A= max A, Let by, ..., b, be rational integers with
KiZn

absolute values at most B(=3). Let g be a prime ideal of the ring of algebraic
integers of K lying above the prime p. For a € K\ {0}, write ord pa for the exponent
of @ in the prime factorization of the fractional ideal (o). Denote by e, the
ramification index of g and by f,, the residue class degree of p. Next put

O@=abt.. ofn—1.
Lemma 1. Suppose that [K(x3/%, ...,at/9): K]=¢"""!, ord ja;=0 for j=1,...,n, and

@ +0. Then
ord, @ <(csn)'p* -logB-loglogA -log4, - ... -log4,

where cs is an effectively computable positive number.

Proof. This follows from Corollary 2.3 of Yu [12] whenn2 2 and from Lemma 1.4
of [12] when n=1, on noting that K is an imaginary quadratic field and so f, = 2

and h(x;)=log|o;.
Lemma 2. If «,,...,a, are positive rational integers,
[Q@?, ...,a%):Q]=2" and b,loga,+...+b,loga,+0
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then

|b; loga, + ... +b,loga,| >exp(—(cen)"log Bloglog A)* log A4, ...logA4,),
where ¢4 is an effectively computable positive number.
Proof. This follows from Proposition 3.8 of Waldschmidt [10].

Lemma 3. Let o, ...,0, be prime numbers with a, <a,<...<a, Then
[@al?, ..., 0% Q] =2".
Let q=2 and ay={, or q=3 and ay="{¢ and put K=0Q)a,). Then
[K(axd4, a}f, ... 0l K]=q"*1
except when q=2, ay=(,, and o, =2 and in this case
[K(d2,(1+ )12 b3 .. a0k K] =211

Proof. We shall prove the result in the case when g=2, o0y ={, =i, and «; =2. The
other cases are proved in a similar fashion. For brevity we redefine «, to be 1+ifor
the balance of the argument. Since K = Qo) and o, =i we have [K(«d/?): K]=2.
Thus it suffices to prove that for each integer j with j=1,..,n that
[K{@}®):K;]1=2 where K;=K(a}/?,...,aj?). If for some integer j with 1<j<n
this is not the case then by Lemma 3 of Baker and Stark [1] we have

= ... okiyy? (5

for some y in K and some integers ko, ..., k;; with
0k<2 for I=0,...,j—1.

Let g be a prime ideal of the ring of algebraic integers of K which divides the ideal
generated by a;. Since 2(= —i(1+i)?), ay,...,«; are distinct prime numbers we
deduce from (5) that

ord,a;=2ord,y. (6)
The only prime number which ramifies in K =) is 2 and thus ord,a;=1. By (6)
this is a contradiction and the result follows.

Lemma 4. Let 2=p,,p,, ... be the sequence of prime numbers in increasing order.
Then there is an effectively computable positive constant c, such that for every

positive integer r we have
r+3
r . r+3
H pJ > <j_) .
j=1 logp; Cq

Proof. By the prime number theorem with error term, or indeed by the Chebyshev
estimates for n(x), there exists an effectively computable positive number ¢4 for
which

/P

logp; cs

We now apply the inequality r!>(r/e) to conclude that

rop r! r\ r+3 "3
Mn>Cz(Z)>1)
j=1logp; = c§ cge Cy
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3 Proof of main theorem

Letcyq,¢y1, ... denote effectively computable positive constants. We may suppose,
without loss of generality, that x<y. Since x+y=z, (x,,z)=1 and z>2 we se¢
that x <y<z and that G=6. We write

x=ght gt y=qit... gk, z=hTr.. H™, 0

where g,,...,25 41> -+, 40 By, - .-, B, are distinct prime numbers with s20, 21, and
uz1 and ky, ...k, 1y,..., 1, my,...,m, are positive integers. Denote the largest
prime dividing x by p, except when x=1 and in that case put p.=1. Similarly
denote the largest primes dividing y and z by p, and p, respectively. Plainly for any
prime p,

logz
max {ord,x, ord,y, ord,z} < Tog2’ 8)
Observe that we have
logz= %: (ord,z)logp< (max ordpz) -logG. 9
plz plz

Since (x, y,z)=1 and x + y=z we have (x, y)=(x, z) =(y, z) = 1. Thus for each prime
p which divides z,

4
o) ) o ()

We now estimate

x\* 4k 4k, -4l
ord, ; —1)=ord,(gt* ... gt=qy " ... g7 ¥ —1)

for each prime p which divides z by means of Lemma 1. Put @ =(x/y)*—1.If p=2
we put K=0QX{,) while if p>2 we put K=Q(( 4) Further we define g and o, as in
(4). We then take @ to be a prime ideal of the ring of algebraic integers of K lying
above the prime p. We have

ord, @ <ord,®

and we may estimate ordy @ from above by applying Lemma 1 with n=s+1¢ and
ay, ..., %, given by the primes gi,...,g, 44, ....4; arranged in increasing order,
except in the case when p>2 and o, =2, and in that case we take o, =1 + i in place
of o, = 2. In this connection, note that 24 = (1 + ). Since p|z and (x, z) =(y, z) =1 we
have ord, a;=0 for i=1,...,5+¢. Certainly ©+0 and by Lemma 3,

[K(g/% 1%, ..., a5 8): K]=¢q""* 1.
Further, we may take
B=max{8ky,...,8k, 81, ...,81}
hence, by (8), B<8logz/log2. Thus by Lemma 1
ord,z<ord, 0 <(c;o(s+ 1) *'p? - loglogz - loglog G - [] logp. (10)

plxy
Similarly if p|y then, by considering ord,((z/x)*— 1) we find that
ord,y<(c, (s+u)**“p?-loglogz - loglogG - H logp (11

plxz
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and if p|x then by considering ord,(z/y)*— 1) we find that
ord,x <(cy,(t+u)) "“p?-loglogz - loglogG - H logp. (12)

plyz

If follows from (9) and (10) that

log:z +
_ S 2
ioglogs <(C1o6+ 07" 72- 11 logp-(log G (13)
Since y>z/2 and 223,
logz

4

But (9) holds with z replaced by y and so from (11)

logy>logz—log2> ——

logz
e S (T CE ) logp-(logG)*. 14
410g10g 11( )) py pr}z gp( g ) ( )
Next, either x = y*/2 in which case
logz
>
logx> 2logy> e

Y2 in which case

log( " )—log<1+y)<log<1+y ) y—T —I[T 15

In the former case we may appeal to (9), with z replaced by x, and (12) to conclude
that

orx<y

logz

— t*upl. [1 logp - (log G)*. 16
Sloglogz <(cya(t+u)f " p; ,,IJ, ogp-(logG) (16)
In the latter case,
0<log<§> =log(§—-—;~¥) =m, logh,+...+m,logh,—1, logq, —...—1,1oggq,.

By Lemma 3 we may apply Lemma 2 to obtain a lower bound for log(z/y).
Comparing this with the upper bound given by (15) we again obtain (16) with c,,
replaced by c, ;. Put r=t+s+u. From (13), (14), and (16), we deduce that

logz \? 2 2 2 6
_— T lo logG)®. 17
(4loglogz) <(c14") ¥ (pxPyP5) (,,Qy gp) (logG) 17
By Lemma 4,

rY _"q P p

—\ < <2 —_

<Cl 5) il=—[1 logp; plgyz logp

pé{px: Py Pz}

with the usual convention that the empty product is 1. Thus, by (17),

3
_logz V' r Gol0gG)2. (18)
4loglog:z
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‘

Again by Lemma 4 we see that

C’16 < Gcn/loglogG ,

and the result now follows from (18).
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