On the $a b c$ conjecture

C. L. Stewart ${ }^{1, \star}$ and Kunrui Yu ${ }^{\text {2, } \star \star, \star \star \star}$

${ }^{1}$ Department of Pure Mathematics, Faculty of Mathematics, The University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
${ }^{2}$ Institute of Mathematics, Academia Sinica, Beijing 100080, People's Republic of China
Received September 12, 1990

1 Introduction

Let x, y, and z be positive integers and define $G=G(x, y, z)$ by

$$
G=G(x, y, z)=\prod_{\substack{p \mid x y z \\ p \text { aprime }}} p .
$$

Thus G is the greatest square-free factor of $x y z$. Oesterlé, motivated by a conjecture of Szpiro concerning elliptic curves (cf. Frey [2], Oesterlé [5], Szpiro [8]), asked if there exists a positive number c_{1} such that for all positive integers x, y, and z with

$$
\begin{gather*}
(x, y, z)=1 \quad \text { and } \quad x+y=z \tag{1}\\
z<G^{c_{1}} \tag{2}
\end{gather*}
$$

Masser [4] then conjectured, by analogy with a result of Mason [3] in the function field case, that for each positive real number ε there is a positive number $c_{2}(\varepsilon)$ which depends on ε only such that in place of (2) we have

$$
\begin{equation*}
z<c_{2}(\varepsilon) G^{1+\varepsilon} \tag{3}
\end{equation*}
$$

Both (2) and (3) are known as the $a b c$ conjecture. We refer the reader to Chap. 5 of Vojta [9] for a generalization of (3) and the statement of several related conjectures. Conjectures (2) and (3) have profound implications, in particular for the study of Diophantine equations, cf. [7].

[^0]In [7] Stewart and Tijdeman proved that there exists an effectively computable constant c_{3} such that for all positive integers x, y, and z satisfying (1),

$$
\log z<c_{3} G^{15} .
$$

The proof depends on a p-adic estimate for linear forms in the logarithms of algebraic numbers due to van der Poorten [6]. (However, see Yu [11] for a discussion of some defects in the proof of [6]. In this note we shall combine two estimates proved by Baker's method, a recent p-adic estimate for linear forms in the logarithms of algebraic numbers due to Yu [12] and an earlier Archimedean estimate due to Waldschmidt [10], to prove the following result.
Theorem. There exists an effectively computable positive constant c such that for all positive integers x, y, and z with $(x, y, z)=1, z>2$, and $x+y=z$,

$$
\log z<G^{2 / 3+c / \log \log G} .
$$

In particular, for each $\varepsilon>0$ there exists a number $c_{4}(\varepsilon)$ which is effectively computable in terms of ε such that for all positive integers x, y, and z with $(x, y, z)=1$ and $x+y=z$,

$$
z<\exp \left(c_{4}(\varepsilon) G^{2 / 3+\varepsilon}\right)
$$

2 Preliminary lemmas

Let p be a prime number and put

$$
q=\left\{\begin{array}{lll}
2 & \text { if } & p>2 \tag{4}\\
3 & \text { if } & p=2
\end{array} \text { and } \alpha_{0}=\left\{\begin{array}{lll}
\zeta_{4} & \text { if } & p>2 \\
\zeta_{6} & \text { if } & p=2
\end{array}\right.\right.
$$

where $\zeta_{m}=e^{2 \pi i / m}$ for $m=1,2,3, \ldots$ Put $K=\mathbb{Q}\left(\alpha_{0}\right)$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic integers in K with absolute values at most A_{1}, \ldots, A_{n} respectively and with $A_{i} \geqq 4$ for $i=1, \ldots, n$. Put $A=\max _{1 \leqq i \leqq n} A_{i}$. Let b_{1}, \ldots, b_{n} be rational integers with absolute values at most $B(\geqq 3)$. Let \wp be a prime ideal of the ring of algebraic integers of K lying above the prime p. For $\alpha \in K \backslash\{0\}$, write ord $_{\varphi} \alpha$ for the exponent of \wp in the prime factorization of the fractional ideal (α). Denote by e_{\wp} the ramification index of \wp and by f_{\wp} the residue class degree of \wp. Next put

$$
\Theta=\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1
$$

Lemma 1. Suppose that $\left[K\left(\alpha_{0}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): K\right]=q^{n+1}, \operatorname{ord}_{\wp} \alpha_{j}=0$ for $j=1, \ldots$, , and $\Theta \neq 0$. Then

$$
\operatorname{ord}_{\mathfrak{p}} \Theta<\left(c_{5} n\right)^{n} p^{2} \cdot \log B \cdot \log \log A \cdot \log A_{1} \cdot \ldots \cdot \log A_{n}
$$

where c_{5} is an effectively computable positive number.
Proof. This follows from Corollary 2.3 of Yu [12] when $n \geqq 2$ and from Lemma 1.4 of [12] when $n=1$, on noting that K is an imaginary quadratic field and so $f_{\wp} \leqq 2$ and $h\left(\alpha_{j}\right)=\log \left|\alpha_{j}\right|$.
Lemma 2. If $\alpha_{1}, \ldots, \alpha_{n}$ are positive rational integers,

$$
\left[\mathbb{Q}\left(\alpha_{1}^{1 / 2}, \ldots, \alpha_{n}^{1 / 2}\right): \mathbb{Q}\right]=2^{n} \text { and } b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n} \neq 0
$$

then

$$
\left|b_{1} \log \alpha_{1}+\ldots+b_{n} \log \alpha_{n}\right|>\exp \left(-\left(c_{6} n\right)^{n} \log B(\log \log A)^{2} \log A_{1} \ldots \log A_{n}\right)
$$

where c_{6} is an effectively computable positive number.
Proof. This follows from Proposition 3.8 of Waldschmidt [10].
Lemma 3. Let $\alpha_{1}, \ldots, \alpha_{n}$ be prime numbers with $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}$. Then

$$
\left[\mathbb{Q}\left(\alpha_{1}^{1 / 2}, \ldots, \alpha_{n}^{1 / 2}\right): \mathbb{Q}\right]=2^{n}
$$

Let $q=2$ and $\alpha_{0}=\zeta_{4}$ or $q=3$ and $\alpha_{0}=\zeta_{6}$ and put $K=\mathbb{Q}\left(\alpha_{0}\right)$. Then

$$
\left[K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): K\right]=q^{n+1}
$$

except when $q=2, \alpha_{0}=\zeta_{4}$, and $\alpha_{1}=2$ and in this case

$$
\left[K\left(\alpha_{0}^{1 / 2},(1+i)^{1 / 2}, \alpha_{2}^{1 / 2}, \ldots, \alpha_{n}^{1 / 2}\right): K\right]=2^{n+1}
$$

Proof. We shall prove the result in the case when $q=2, \alpha_{0}=\zeta_{4}=i$, and $\alpha_{1}=2$. The other cases are proved in a similar fashion. For brevity we redefine α_{1} to be $1+i$ for the balance of the argument. Since $K=\mathbb{Q}\left(\alpha_{0}\right)$ and $\alpha_{0}=i$ we have $\left[K\left(\alpha_{0}^{1 / 2}\right): K\right]=2$. Thus it suffices to prove that for each integer j with $j=1, \ldots, n$ that $\left[K_{j}\left(\alpha_{j}^{1 / 2}\right): K_{j}\right]=2$ where $K_{j}=K\left(\alpha_{0}^{1 / 2}, \ldots, \alpha_{j-1}^{1 / 2}\right)$. If for some integer j with $1 \leqq j \leqq n$ this is not the case then by Lemma 3 of Baker and Stark [1] we have

$$
\begin{equation*}
\alpha_{j}=\alpha_{0}^{k_{0}} \ldots \alpha_{j-1}^{k_{j}-1} \gamma^{2} \tag{5}
\end{equation*}
$$

for some γ in K and some integers k_{0}, \ldots, k_{j-1} with

$$
0 \leqq k_{l}<2 \text { for } l=0, \ldots, j-1
$$

Let \wp be a prime ideal of the ring of algebraic integers of K which divides the ideal generated by α_{j}. Since $2\left(=-i(1+i)^{2}\right), \alpha_{2}, \ldots, \alpha_{j}$ are distinct prime numbers we deduce from (5) that

$$
\begin{equation*}
\operatorname{ord}_{\wp} \alpha_{j}=2 \operatorname{ord}_{\wp \gamma} \gamma \tag{6}
\end{equation*}
$$

The only prime number which ramifies in $K=\mathbb{Q}(i)$ is 2 and thus ord $_{\wp} \alpha_{j}=1$. By (6) this is a contradiction and the result follows.

Lemma 4. Let $2=p_{1}, p_{2}, \ldots$ be the sequence of prime numbers in increasing order. Then there is an effectively computable positive constant c_{7} such that for every positive integer r we have

$$
\prod_{j=1}^{r} \frac{p_{j}}{\log p_{j}}>\left(\frac{r+3}{c_{7}}\right)^{r+3}
$$

Proof. By the prime number theorem with error term, or indeed by the Chebyshev estimates for $\pi(x)$, there exists an effectively computable positive number c_{8} for which

$$
\frac{p_{j}}{\log p_{j}}>\frac{j}{c_{8}}
$$

We now apply the inequality $r!\geqq(r / e)^{r}$ to conclude that

$$
\prod_{j=1}^{r} \frac{p_{j}}{\log p_{j}}>\frac{r!}{c_{8}^{r}} \geqq\left(\frac{r}{c_{8} e}\right)^{r}>\left(\frac{r+3}{c_{9}}\right)^{r+3} .
$$

3 Proof of main theorem

Let c_{10}, c_{11}, \ldots denote effectively computable positive constants. We may suppose, without loss of generality, that $x \leqq y$. Since $x+y=z,(x, y, z)=1$ and $z>2$ we see that $x<y<z$ and that $G \geqq 6$. We write

$$
\begin{equation*}
x=g_{1}^{k_{1}} \ldots g_{s}^{k_{s}}, \quad y=q_{1}^{l_{1}} \ldots q_{t}^{l_{t}}, \quad z=h_{1}^{m_{1}} \ldots h_{u}^{m_{u}} \tag{7}
\end{equation*}
$$

where $g_{1}, \ldots, g_{s}, q_{1}, \ldots, q_{t}, h_{1}, \ldots, h_{u}$ are distinct prime numbers with $s \geqq 0, t \geqq 1$, and $u \geqq 1$ and $k_{1}, \ldots, k_{s}, l_{1}, \ldots, l_{v}, m_{1}, \ldots, m_{u}$ are positive integers. Denote the largest prime dividing x by p_{x} except when $x=1$ and in that case put $p_{x}=1$. Similarly denote the largest primes dividing y and z by p_{y} and p_{z} respectively. Plainly for any prime p,

$$
\begin{equation*}
\max \left\{\operatorname{ord}_{p} x, \operatorname{ord}_{p} y, \operatorname{ord}_{p} z\right\} \leqq \frac{\log z}{\log 2} \tag{8}
\end{equation*}
$$

Observe that we have

$$
\begin{equation*}
\log z=\sum_{p \mid z}\left(\operatorname{ord}_{p} z\right) \log p \leqq\left(\max _{p \mid z} \operatorname{ord}_{p} z\right) \cdot \log G \tag{9}
\end{equation*}
$$

Since $(x, y, z)=1$ and $x+y=z$ we have $(x, y)=(x, z)=(y, z)=1$. Thus for each prime p which divides z,

$$
\operatorname{ord}_{p} z=\operatorname{ord}_{p}\left(\frac{z}{-y}\right)=\operatorname{ord}_{p}\left(\frac{x}{-y}-1\right) \leqq \operatorname{ord}_{p}\left(\left(\frac{x}{y}\right)^{4}-1\right) .
$$

We now estimate

$$
\operatorname{ord}_{p}\left(\left(\frac{x}{y}\right)^{4}-1\right)=\operatorname{ord}_{p}\left(g_{1}^{4 k_{1}} \ldots g_{s}^{4 k_{s}} q_{1}^{-4 l_{1}} \ldots q_{t}^{-4 l_{t}}-1\right)
$$

for each prime p which divides z by means of Lemma 1. Put $\Theta=(x / y)^{4}-1$. If $p=2$ we put $K=\mathbb{Q}\left(\zeta_{6}\right)$ while if $p>2$ we put $K=\mathbb{Q}\left(\zeta_{4}\right)$. Further we define q and α_{0} as in (4). We then take \wp to be a prime ideal of the ring of algebraic integers of K lying above the prime p. We have

$$
\operatorname{ord}_{p} \Theta \leqq \operatorname{ord}_{\varphi} \Theta
$$

and we may estimate $\operatorname{ord}_{\rho} \Theta$ from above by applying Lemma 1 with $n=s+t$ and $\alpha_{1}, \ldots, \alpha_{n}$ given by the primes $g_{1}, \ldots, g_{s}, q_{1}, \ldots, q_{t}$ arranged in increasing order, except in the case when $p>2$ and $\alpha_{1}=2$, and in that case we take $\alpha_{1}=1+i$ in place of $\alpha_{1}=2$. In this connection, note that $2^{4}=(1+i)^{8}$. Since $p \mid z$ and $(x, z)=(y, z)=1$ we have $\operatorname{ord}_{p} \alpha_{i}=0$ for $i=1, \ldots, s+t$. Certainly $\Theta \neq 0$ and by Lemma 3,

$$
\left[K\left(\alpha_{0}^{1 / q}, \alpha_{1}^{1 / q}, \ldots, \alpha_{s+t}^{1 / q}\right): K\right]=q^{s+t+1} .
$$

Further, we may take

$$
B=\max \left\{8 k_{1}, \ldots, 8 k_{s}, 8 l_{1}, \ldots, 8 l_{t}\right\}
$$

hence, by (8), $B \leqq 8 \log z / \log 2$. Thus by Lemma 1

$$
\begin{equation*}
\operatorname{ord}_{p} z \leqq \operatorname{ord}_{\wp} \Theta<\left(c_{10}(s+t)\right)^{s+t} p^{2} \cdot \log \log z \cdot \log \log G \cdot \prod_{p \mid x \gamma} \log p \tag{10}
\end{equation*}
$$

Similarly if $p \mid y$ then, by considering $\operatorname{ord}_{p}\left((z / x)^{4}-1\right)$ we find that

$$
\begin{equation*}
\operatorname{ord}_{p} y<\left(c_{11}(s+u)\right)^{s+u} p^{2} \cdot \log \log z \cdot \log \log G \cdot \prod_{p \mid x z} \log p \tag{11}
\end{equation*}
$$

and if $p \mid x$ then by considering $\left.\operatorname{ord}_{p}(z / y)^{4}-1\right)$ we find that

$$
\begin{equation*}
\operatorname{ord}_{p} x<\left(c_{12}(t+u)\right)^{t+u} p^{2} \cdot \log \log z \cdot \log \log G \cdot \prod_{p \mid y z} \log p \tag{12}
\end{equation*}
$$

If follows from (9) and (10) that

$$
\begin{equation*}
\frac{\log z}{\log \log z}<\left(c_{10}(s+t)\right)^{s+t} p_{z}^{2} \cdot \prod_{p \mid x y} \log p \cdot(\log G)^{2} \tag{13}
\end{equation*}
$$

Since $y>z / 2$ and $z \geqq 3$,

$$
\log y>\log z-\log 2>\frac{\log z}{4}
$$

But (9) holds with z replaced by y and so from (11)

$$
\begin{equation*}
\frac{\log z}{4 \log \log z}<\left(c_{11}(s+u)\right)^{s+u} p_{y}^{2} \cdot \prod_{p \mid x z} \log p \cdot(\log G)^{2} \tag{14}
\end{equation*}
$$

Next, either $x \geqq y^{1 / 2}$ in which case

$$
\log x \geqq \frac{1}{2} \log y>\frac{\log z}{8}
$$

or $x<y^{1 / 2}$ in which case

$$
\begin{equation*}
\log \left(\frac{x+y}{y}\right)=\log \left(1+\frac{x}{y}\right)<\log \left(1+\frac{1}{y^{1 / 2}}\right)<\frac{1}{y^{1 / 2}}<\frac{\sqrt{2}}{z^{1 / 2}} \tag{15}
\end{equation*}
$$

In the former case we may appeal to (9), with z replaced by x, and (12) to conclude that

$$
\begin{equation*}
\frac{\log z}{8 \log \log z}<\left(c_{12}(t+u)\right)^{t+u} p_{x}^{2} \cdot \prod_{p \mid y z} \log p \cdot(\log G)^{2} \tag{16}
\end{equation*}
$$

In the latter case,

$$
0<\log \left(\frac{z}{y}\right)=\log \left(\frac{x+y}{y}\right)=m_{1} \log h_{1}+\ldots+m_{u} \log h_{u}-l_{1} \log q_{1}-\ldots-l_{t} \log q_{t}
$$

By Lemma 3 we may apply Lemma 2 to obtain a lower bound for $\log (z / y)$. Comparing this with the upper bound given by (15) we again obtain (16) with c_{12} replaced by c_{13}. Put $r=t+s+u$. From (13), (14), and (16), we deduce that

$$
\begin{equation*}
\left(\frac{\log z}{4 \log \log z}\right)^{3}<\left(c_{14} r\right)^{2 r}\left(p_{x} p_{y} p_{z}\right)^{2}\left(\prod_{p \mid x y z} \log p\right)^{2}(\log G)^{6} \tag{17}
\end{equation*}
$$

By Lemma 4,

$$
\left(\frac{r}{c_{15}}\right)^{r}<\prod_{i=1}^{r-3} \frac{p_{i}}{\log p_{i}}<2 \prod_{\substack{p \mid x, y z \\ p \nmid\left(p_{x}, p_{y}, p_{z}\right\}}} \frac{p}{\log p}
$$

with the usual convention that the empty product is 1 . Thus, by (17),

$$
\begin{equation*}
\left(\frac{\log z}{4 \log \log z}\right)^{3}<c_{16}^{r} G^{2}(\log G)^{12} \tag{18}
\end{equation*}
$$

Again by Lemma 4 we see that

$$
c_{16}^{r}<G^{c_{1} 7 \log \log G}
$$

and the result now follows from (18).

References

1. Baker, A., Stark, H.M.: On a fundamental inequality in number theory. Ann. Math. 94, 190-199 (1971)
2. Frey, G.: Elliptic curves and solutions of $A-B=C$. In: Goldstein, C. (ed.) Séminaire de Théorie des Nombres Paris 1985-86. (Prog. Math., vol. 71, pp. 39-51) Boston Basel Stuttgart: Birkhäuser 1987
3. Mason, R.C.: Diophantine equations over function fields. (Lond. Math. Soc. Lect. Note Ser., vol. 96). Cambridge: Cambridge University Press 1984
4. Masser, D.W.: Open problems. In: Chen, W.W.L. (ed.) Proc. Symp. Analytic Number Theory. London: Imperial College 1985
5. Oesterlé, J.: Nouvelles approches du "Théorème" de Fermat: Séminaire Bourbaki, 1987-88, no. 694. (Astérisque, vols. 161-162, pp. 165-186) Paris: Soc. Math. Fr. 1988
6. Van der Poorten, A.J.: Linear forms in logarithms in the p-adic case. In: Baker, A., Masser, D.W. (ed.) Transcendence Theory: Advances and Applications, pp. 29-57. London: Academic Press 1977
7. Stewart, C.L., Tijdeman, R.: On the Oesterlé-Masser conjecture. Monatsh. Math. 102, 251-257 (1986)
8. Szpiro, L.: La conjecture de Mordell [d’après Faltings]. Séminaire Bourbaki, 1983-84, no. 619. (Astérisque, vols. 121-122, pp. 93-103) Paris: Soc. Math. Fr. 1985
9. Vojta, P.: Diophantine approximations and value distribution theory. (Lect. Notes Math, vol. 1239) Berlin Heidelberg New York: Springer 1987
10. Waldschmidt, M.: A lower bound for linear forms in logarithms. Acta Arith. 37, 257-283 (1980)
11. Yu, Kunrui: Linear forms in p-adic logarithms. Acta Arith. 53, 107-186 (1989)
12. Yu, Kunrui: Linear forms in p-adic logarithms. II. Compos. Math. 74, 15-113 (1990)

[^0]: * Research supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada by a Killam Research Fellowship
 ** Member of Institute for Advanced Study, Princeton, 1989-90, supported by NSF grant DMS8610730. The second author would like to express his cordial gratitude to IAS, Princeton for the hospitality
 *** Current address: School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

