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I Introduction 

Let x, y, and z be positive integers and define G = G(x, y, z) by 

G=G(x,y,z)= p ~  p" 
p a prime 

Thus G is the greatest square-free factor ofxyz. Oesterl6, motivated by a conjecture 
of Szpiro concerning elliptic curves (cf. Frey [2], Oesterl6 [5], Szpiro [8]), asked if 
there exists a positive number cl such that for all positive integers x, y, and z with 

(x,y,z)=l and x + y = z ,  (i) 

z < Gcl . (2) 

Masser [4] then conjectured, by analogy with a result of Mason [3] in the function 
field case, that for each positive real number e there is a positive number c2(e) which 
depends on e only such that in place of (2) we have 

z < Cz(e)G 1 +~ (3) 

Both (2) and (3) are known as the abc conjecture. We refer the reader to Chap. 5 of 
Vojta I9] for a generalization of (3) and the statement of several related 
conjectures. Conjectures (2) and (3) have profound implications, in particular for 
the study of Diophantine equations, cf. l7]. 
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In [7] Stewart and Tijdeman proved that there exists an effectively computable 
constant ca such that for all positive integers x, y, and z satisfying (1), 

logz < c3 G15. 

The proof depends on a p-adic estimate for linear forms in the logarithms of 
algebraic numbers due to van der Poorten [6]. (However, see Yu [11] for a 
discussion of some defects in the proof of [6].) In this note we shall combine two 
estimates proved by Baker's method, a recent p-adic estimate for linear forms in the 
logarithms of algebraic numbers due to Yu [12] and an earlier Archimedean 
estimate due to Waldschmidt [10], to prove the following result. 

Theorem. There exists  an effectively computable positive constant c such that for  all 
positive integers x,  y, and z with (x, y, z )=  1, z > 2, and x + y = z, 

logz < G 2/3 + e/loglogG. 

In particular, for each e>0  there exists a number c4(e) which is effectively 
computable in terms of e such that for all positive integers x, y, and z with 
(x, y, z) = l and x + y = z, 

z < exp(c4(s)G 2/3 + ~). 

2 Preliminary lemmas 

Let p be a prime number and put 

{~ if p > 2  {~4 if p > 2  
q= if p = 2  and ~ (6 ff p = 2  (4) 

where ( m = e  2"~/m for m= 1, 2, 3 . . . . .  Put K =1~(~o) and let ~1 ..... ~t, be non-zero 
algebraic integers in K with absolute values at most A1 ..... A, respectively and 
with Ai>4 for i=  1 ..... n. Put A = max Ai. Let bl, ..., b, be rational integers with 

l~ i<n 

absolute values at most B(=> 3). Let ~ be a prime ideal of the ring of algebraic 
integers of K lying above the prime p. For ~ ~ K\{0}, write o r d ~  for the exponent 
of ~o in the prime factorization of the fractional ideal (~). Denote by e~, the 
ramification index of p and by f~ the residue class degree of ga. Next put 

Lenuna 1. Suppose that [K(~o 1/q ..... ~J '):  K] = q,+ 1, ord~,~j= 0 for  j = 1 . . . . .  n, and 
0 ~ O. Then 

ordp O < (csn)np 2. log B. log log A. log A l ' . - . "  log An 

where cs is an effectively computable positive number. 

Proof. This follows from Corollary 2.3 of Yu [12] when n > 2 and from Lemma 1.4 
of [12] when n = 1, on noting that K is an imaginary quadratic field and so f~ <- 2 
and h(~9) = logical. 

1.emma 2. I f  ~1,. . . ,  ~t, are positive rational integers, 

[r ..... ~t~/2):O]=2, and b l l o g c q + . . . + b ,  logcq~:0 
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then 

Ibl logcq + . . .  + bn log~ql > exp(-(%n)" log B(log logA) 2 logA1 ... logAn), 

where c6 is an effectively computable positive number. 

Proof. This follows from Proposition 3.8 of Waldschmidt [10]. 

L e m m a  3. Let ~t~ . . . .  ,~, be prime numbers with cq <~2 < ... <%. Then 

E~od I~' .... ,o~r ' ) :03 =2" .  

Let q = 2 and % = ~4 or q = 3 and % = (6 and put K = (~(%). Then 

~ ] ~ / N 1 / q  ~ l / q  N 1 / q ~ .  ~ ' ]  __  zTn+ I 

except when q=2,  0to=~ 4, and oq =2  and in this case 

[ K ( %  I/2 , ( I  + 0 I/2, 0~2 u2 . . . . .  od12) : K ]  = 2" + I .  

Proof. We shall prove the result in the case when q = 2, % = ~4 = i, and 0 h = 2. The 
other cases are proved in a similar fashion. For brevity we redefine ~ to be 1 + i for 
the balance of the argument. Since K = (I~(%) and o% = i we have EK(0t~/2) : K ]  = 2. 
Thus it suffices to prove that for each integer j with j = l , . . . , n  that 
[K~(ctJ/2):Kj]=2 where Ki=K(ct~/2, ...,~j-1,."1/2 ~ If for some integer j with 1 =<j<n= 
this is not the case then by Lemma 3 of Baker and Stark [1] we have 

~j = ~o ... ~'J-, , " ~ -  ~,~ (5) 

for some ~ in K and some integers ko,..., kj_ ~ with 

0___<kt<2 for l = O , . . . , j - l .  

Let ~ be a prime ideal of the ring of algebraic integers of K which divides the ideal 
generated by ~j. Since 2 ( = -  i(1 + i)2), ~2, . . . ,  0~/ are distinct prime numbers we 
deduce from (5) that 

ord~, ~j = 2 ord ~ 7. (6) 

The only prime number which ramifies in K --(l~(i) is 2 and thus ord~0tj = 1. By (6) 
this is a contradiction and the result follows. 

Lemraa 4. Let 2 =Pl,  P2 . . . .  be the sequence of prime numbers in increasing order. 
Then there is an effectively computable positive constant c7 such that for every 
positive integer r we have 

]= l l~gpj \ c7 / " 

Proof. By the prime number theorem with error term, or indeed by the Chebyshev 
estimates for ~(x), there exists an effectively computable positive number c 8 for 
which 

J PJ > 
logpj cs" 

We now apply the inequality r!__>(r/e)" to conclude that 

r, C r , 3 r  3 
/=,. logpj > c~ >- c-~ > - -  

- -  - - _  \ %  / " 
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3 Proof of main theorem 

Let clo, cl 1 . . . .  denote effectively computable positive constants. We may suppose, 
without loss of generality, that x-< y. Since x + y = z, (x, y, z) = 1 and z > 2 we see 
that x < y < z and that G > 6. We write 

x =  ~ 1 .  . . ~ ,  , y = q~, . . . qt/ , z = h~l . . . h ~  , (7) 

where g ~ , . . . ,  g, ,  q ~ , . . . ,  qt, h~ . . . . .  hu are distinct prime numbers with s > 0, t > 1, and 
u >  1 and k~ . . . . .  k,, 11 . . . .  ,l,, m~, ...,mu are positive integers. Denote the largest 
prime dividing x by Px except when x = 1 and in that case put p~ = 1. Similarly 
denote the largest primes dividing y and z by Pr and p, respectively. Plainly for any 
prime p, 

max {ordpx, ordpy, ordpz} < logz 
= log2" (8) 

Observe that we have 

l o g z = ~ z ( o r d v z ) l o g p <  (max ordpz) �9 logG. (9) 

Since (x, y, z) = 1 and x + y = z we have (x, y) = (x, z) = (y, z) = 1. Thus for each prime 
p which divides z, 

ordvz= o r d , ( ~ - - ~ ) = o r d , ( Z - ~ - 1 )  < o r d p ( ( y ) ' - 1 ) .  

We now estimate 

ord, ( ( y )  4 - 1 ) =  ordp (g: '~ . . .g~k 'O~'~"  . . .  qt--4"-- 1) 

for each prime p which divides z by means of Lemma 1. Put O = ( x / y )  4 - 1 .  If p = 2 
we put K = r while if p > 2 we put K = Q((4). Further we define q and ao as in 
(4). We then take ~ to be a prime ideal of the ring of algebraic integers of K lying 
above the prime p. We have 

ordpO -<: ordoO 

and we may estimate ordoO from above by applying Lemma 1 with n =  s + t and 
~1 . . . .  , ~, given by the primes g~, ...,g~, q~ ... . .  qt arranged in increasing order, 
except in the case when p > 2 and ~ ~ = 2, and in that case we take ~ = 1 + i in place 

4 8 o f ~  = 2. In this connection, note that 2 = (1 + i) .  Since p lz  and (x, z) = (y, z) = 1 we 
have ordp ~ = 0 for i = 1, ..., s + t. Certainly O ,  0 and by Lemma 3, 

[ T,r{,vl/q N 1 / q  ~l /q ' l .  ~ ' -I__as+t+ l 
~ t ' ~ O  , ~ 1  , �9 �9 " ,  u ~ s + t P  �9 ~ . 1  - -  " /  

Further, we may take 

B=max{8kl  . . . . .  8k~, 811 . . . .  ,8/z} 

hence, by (8), B<81ogz/log2. Thus by Lemma 1 

o r d p z ~ o r d ~ , O < ( c l o ( s + t ) ) ' + t p  2.  log logz . log logG,  l-I logp. (10) 
pixy 

Similarly if PlY then, by considering ordp( ( z / x )  "~-  1) we find that 

ordpy < (c 1 l(s + u))S+UP 2" log logz. log logG. YI logp (11) 
plxz 
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and if p[x then by considering ordv(z/y) 4 - 1 )  we find that 

ordv x < (cl 2( t + u)) t + UpZ . log logz. log log G. I-I logp. 
plyz 

If follows from (9) and (10) that 
logz 

log log z < (cl o(S + t))" + tp2. I] logp. (log G) 2 . 
pixy 

(12) 

03) 

Since y > z/2 and z > 3, 
logz 

logy > l o g z - l o g 2 >  4 

But (9) holds with z replaced by y and so from (11) 

logz <(c11(s+u))~+Up 2. ~ logp-(logG) 2. (14) 
4 log logz plxz 

Next, either x > yU2 in which case 

1 logz 
logx>~logy>  8 

or x < yU2 in which case 

< 1 <F2 (15) l o g ( ~  --~) = l o g ( l +  y ) < l o g ( l +  y l ~ )  y-~  z,/2" 

In the former case we may appeal to (9), with z replaced by x, and (12) to conclude 
that 

logz 
<(c12(t + u))t+Up~ �9 I-I logp. (log G) 2 . (16) 

8 log logz vly~ 

In the latter case, 

0<log =log ~---f-- ] =m,  loght + . . . + m ,  l o g h , - l ,  l o g q t - . . . - l ,  logq,. 

By Lemma 3 we may apply Lemma 2 to obtain a lower bound for log(z/y). 
Comparing this with the upper bound given by (15) we again obtain (16) with c~2 
replaced by c~a. Put r = t + s + u .  From (13), (14), and (16), we deduce that 

logz ~3<(Cl,ff)2~(pxpyp~)2(pll--[ylogp)2(logG)6. (17) 
41oglogz] 

By Lemma 4, 

< ~ logp' i = p]xyz 
pr py, p.} 

with the usual convention that the empty product is t. Thus, by (17), 

1 o g z  ~3 < ~16G2(logG)12 " 
41oglogz] 

(18) 
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Again by Lemma 4 we see that 

Crl 6 < GCt'r/l~176 a , 

and the result now follows from (18). 

C. L. Stewart and K. Yu 
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