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1. Introduction 

Let Co, cl, c~ . . . .  denote effectively computable positive absolute constants. In 1964 
[8], see also [9, 10], Roth studied the extent to which a sequence of integers can be 
well distributed in all arithmetical progressions. Let N be a positive integer and let 
el ..... eN be plus or minus ones. A special case of one of Roth's results [8], is that 
there exist Co and cl as above such that if N>co then 

max [~ ,+jq l>clN1/4 .  (1) 
a,q,t~Z + j = l  

In the above sum we take only those terms ea+iq for which 1 < a +jq < N. We shall 
observe this convention throughout this paper; equivalently we could suppose 
that e~=0 for i<  1 and i>N. It follows from (1) that no matter how we partition 
{1 ..... N} into two sets there will always be an arithmetical progression lying in 
{1 .... , N} which contains at least clN 1/4 more terms from one set than from the 
other. In 1977 S~rk6zy, see Corollary 4 of [12], improving slightly on another 
result of Roth I'9], showed that (1) still holds with the weaker hypothesis that 
el .... ,e~ are complex numbers of absolute value at least one. 

Roth suspected, see [4], that for any positive number c~ there exist positive 
numbers C0 (~) and C1 (6) such that if N > C0(c~) then (1) holds with c 1N 1/4 replaced 
by CI(~)NltZ-6. S~irkSzy [3] showed that this is not the case by constructing, for 
each integer N larger than one, a sequence el, . . . ,  eN of plus and minus ones such 
that 

~ F'a+jq max < c2Nl/3(logN) 2/3 . (2) 
a,q, teZ + j = l  

In 1981 Beck [1] proved, by a non-constructive argument, that for each integer N 
greater than one there is a sequence 81 . . . . .  eN of plus and minus ones for which (2) 
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holds with c2N1/3(logN) 2/3 replaced by caNl/4(logN) 5/2 and so (1) is best possible 
apart perhaps from a logarithmic factor. 

The goal of this series is to generalize Roth's result by studying, for any 
sequence of complex numbers e~ .. . . .  eN and any sequence of positive integers 
bl, b2 . . . . .  the quantity 

t 

max ~1 e~ + b~ �9 (3) 
aEZ, q,t~1+ j= 

We shall first show, by a slight modification of Roth's method, that if the sequence 
b~, b 2 . . . .  is strictly increasing but  is not increasing very quickly then we can obtain 
a lower bound for the quantity in (3) which yields Roth's result (1) in the special 
case b~ = j  for j = 1,2 . . . . .  

Theorem 1. Let N,  L and b l, ..., b~ be positive integers with b l < b2 <. . .  < bt < L and 
let ~1 . . . . .  ~N be complex numbers. Put Q = 14L. Then 

Q ~ , , , + b j 2  N 
E >=(tz/4) E I~jl 2. 

q=l  m = l - q L  j = l  j = l  
N 

Notice that if e~ .. . . .  ~N are of absolute value at least one then ~. [~jl 2 > N and so 
j = l  

as an immediate consequence of Theorem 1 we obtain the following result. 

Corollary 1. Let N, L and b l . . . .  , bt be positive integers with b l < b2 <. . .  < bt < Land 
L <  N ~/z. Let el . . . . .  ~N be complex numbers of absolute value at least one. Then 

max j=~ e,,+b~a] >t/(3OLl/~) �9 (4) 
l ~ q ~ 1 4 L  

-14L2<m<_N 

For any real number x denote the largest integer less than or equal to x by Ix]. 
If we take t = L =  IN 1/2] and b~=j for j = l  . . . .  , t in Corollary 1 we recover (1). 

We remark that (4) is trivial if t < L 1:2, in other words if the sequence b~, b2,... 
increases at least as quickly as the sequence of squares. However, in this context the 
most interesting sequence to consider after the sequence of consecutive integers is 
the sequence of squares, see for example Corollary 4. We are able to deal with the 
sequence of squares by means of a different argument from that employed in the 
proof  of Theorem 1. In fact we are able to treat much more general sequences. In 
particular we can obtain non-trivial lower bounds for (3) for any increasing 
sequence b 1, b2, ... of polynomial growth. However our general results when 
specialized to the sequence of squares do not yield as precise results as those 
obtained below and require more complicated arguments for their proof. Further 
they do not contain Theorem 1 when the sequence b~, b2 . . . .  grows sufficiently 
slowly. For  this reason, we shall deal with general sequences in a sequel to this 
paper and shall restrict our attention in the balance of this article to the sequence of 
squares. 

For any non-zero integer n denote the number ofpositive integers which divide 
n by x(n). 

Theorem 2. Let N and K be positive inte#ers and let ~1 . . . . .  ~N be complex numbers. 
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Put T= 
1 <n<K 2 

effectively computable absolute constant c a such that if K > c a then 

N K 12 Q' N 

z r. q=lm=l-X~q =1%+~2~ + 8 T l o g K  ~. I q = l  m = l - ( K ' ) 2 q  

N 
=>200T3K 2 logK Y. I~12. 

j = l  

max z(n), Q=[IOaT3KIogK]  and Q" K '  1 =  = OTK. There exists an 

K=~l Em+ x2q 2 

(5) 

We remark that it can be shown by means of the Rudin-Shapiro construction, 
see [11], that the estimate given for the left hand side of inequality (5) is best 
possible apart from the constant factor 200. 

We are able to deduce from Theorem 2 an estimate, which we believe to be best 
possible up to a constant factor, for one of the quantities M and M'  defined below. 
Put 

M = max 
l_<q=<q x 

-QK2<m<=N 

and 

I M'  = max x2.,= em + :qll" 
l__<q__<Q' 

-Q'(K')2<ra<=N 

Corollary 2. Let ~ be a positive number, let N and K be positive integers and let 
~1 .... , eN be complex numbers. Define T, Q, Q', and K'  as in the statement of  
Theorem 2. There exists an effectively computable absolute constant c 5 and a number 
Cz(6) whfch is effectively computable in terms of  ~ such that / f  K > c5, N > C2(6) and 

then 

K < N 1/3 exp( - ( 1 + 6) (2 log 2 log N)/3 log log N) ,  (6) 

N ~,I12 
m a x ( M / K  1/2, M' / (K')  l/z) > (1/11) N -1 i~1 IcilY) " 

Let el .... .  eN be complex numbers of absolute value at least one and apply 
Corollary 2 with 

K = I N  1/a exp( - (1  + 6) (2 log2 logN)/3 loglogN)] .  

By Lernma 3, for N sufficiently large in terms of 6, there exists a sequence m + q, 
rn+4q .. . .  ,m+t2q  with 1 < m + q  and m + t Z q < N  satisfying 

and with 

Ix~=l e,n+~2q >tl/2/11 , 

N 1/6 exp( - (1 + 6) (log 2 log N)/3 log logN) < t < Nl/a.  
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We may also deduce from Corollary 2 an estimate for the quantity (3) when b~ =j2  

for j = 1,2 . . . . .  By again taking 

K = IN 1/3 exp( - (1 + 6) (2 log 2 log N)/3 log log N)] 

we obtain immediately the following result. 

Corollary 3. Let 6 be a positive real number, let N be a positive integer and let 
el . . . . .  e~ be complex numbers of absolute value at least one. There is a number C3(~ ) 
which is effectively computable in terms of ~ such tha t / f  N > C3(c5) then 

max • I 1 <-_q~_ T21v'/Slx = 1 F'm+x2e > N1/6 exp(-- (1 + 6) (log2 logN)/3 logiogN). (7) 
1 < t ~ N  a/3 
-N<ra<N 

We conjecture that we cannot replace the expression on the right hand side of 
(7) by N o with 0 > 1/6 even when we take the maximum of the quantity on the left 
hand side of(7) over all integers m and all positive integers q and t. Beck's result [1] 
seems to support this conjecture. 

Let u be a positive integer. We say that a sequence et, e z .... is periodic with 
period u if for all positive integers i and k we have ei=e~+k,. In [12] Sfirkrzy 
obtained a periodic analogue of Roth's results (1) and [9]. In a similar fashion we 
shall establish the following periodic analogue of Theorem 2. 

Theorem 3. Let u and K be positive integers and let ~ ,  e 2 . . . .  be an infinite periodic 
sequence of complex numbers with period u. Put T= max r(n), 

1 <<-n<K 2 

Q=[IO4T3KlogK] and Q ' = K ' = I O T K .  There exists an effectively computable 
absolute constant c 6 such that if K > c 6 then 

~+~2a + 8 T l o g g  E e~+~,~r >=200T3gZlogg ~ I~jI 2 
m = l  q 1 1 q = l  j = l  

From Theorem 3 we may derive lower bounds for character sums over shifts of 
the sequence of squares. We remark that Sfirkrzy [12] slightly improved upon 
results of Linnik and Renyi [6, 7] for character sums over consecutive integers by 
using his periodic analogue of Roth's theorem [9]; his results have since been 
somewhat sharpened by Sokolovskii [13] by a different argument, 

Corollary 4. Let ~ be a positive real number, let p be a prime number and let Z be a 
character modulo p. There is a number C4(6) which is effectively computable in terms 
of 6 such that if p > C4(6) then 

3 
max I E x(m+x2)] >Plt2exp(--( l~176176 l~ (8) 

l < m < P [  x = l  I 
l ~ j < p  

It follows from a result of Weil [15] that if X is a non-principal character 
modulo p with p a prime then for any integer m coprime with p, 

max ~ ] (9) z ( m  + x :z) < c 7 P  1/2 logp, 
l ~ j < p l x = l  
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and thus (8) is close to best possible. To deduce (9) from the work of Weil one must 
estimate incomplete exponential sums modulo p in terms of complete sums and 
this is accomplished by a standard argument, see for instance [2] or [16]. Notice 
that if we take Z in Corollary 4 to be the Legendre symbol, with the usual 

convention that (p )  = 0 whenever p divides a, we find that 

max l ~  ( m ~ )  >p~/2exp(-(log2+6)logp/loglogp).  (10) 
l~_rn<p x = l  
l < - j < p  

We remark that it is easy to show that ifp is an odd prime then for any integer m 
which is coprime to p, 

x = l \  p //  

We are not aware of any lower bounds comparable to (10). 

2. Preliminary Lemmas 

For any real number x denote by [] x [I the distance from x to the nearest integer. 
Thus Ilxll =min{x - Ix], I-x] + 1 -x} .  Further we put e(x) = e 2~x. 

We first record two standard results from the theory of exponential sums. For 
proofs of these two lemmas we refer to [14, pp. 23, 24]. 

l_emma 1. Let U and V be integers with U < V and let ~ be a real number. Then 

,~v  e(n~) < min(V -- U, 1/(2 I I till)) 

(where we put m i n ( V -  U, 1/0) = V -  U). 
, <  Lemma 2. Let r, a, q" and q be integers with 0 < q = q and (a, q) = 1 and let X be a 

real number with X >  1. Then for any real number ct with Ig-(a/q)[ < 1/q 2 we have 
r "t" q' 

E min(X, 1/(2 I lygll)) < 4X + q logq. 
y=r  

We also record an upper estimate for z(n), the number of positive divisors of n. 
For a proof see [5, Theorem 317]. 

Lemma 3. Let ~ be a positive real number. There exists a number C5(5), which is 
effectively computable in terms of  fi, such that if n> C5(t5) then 

z(n) < exp((log 2 + 6) log n/loglog n). 

3. Proof of Theorem 1 

For all real g, we put 

N 
S(0t)= Z 8he(not), 

n = l  

t 
F(~)= E e(bj~) 

j = l  
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and Q 
G(~) = Z IF(qa)l 2. 

q = l  

Following Roth's method, we shall compare estimates for the integral J given 
by 1 

: = [ Is(~)l 2 6 ( -  ~)da. 
0 

We first establish an upper bound for J. We have 

Q Q .~1-- - bjq)a) 2 da J= ~, i lS(a)F(-qa)12da= ~ ] ~ e.e((n 
q = l  0 q = l  0 ./=1 

) )r = Z ' e,~+b:~ e(ma da, 
q = l  j 

where the dash indicates that the sum above is taken over all integers m which can 
be expressed in the form n-b)q  with 1 <_n<N and 1 <__j<__t. Thus by Parseval's 
identity, 

Q Y" ~ ~m+b~q2 ,~1 N z 2 (11) 

q = l  m j = l  = m =  qL j 

We shall now establish a lower bound for J. By Dirichlet's theorem, for any real 
number a there exist integers u and v with 1 ~ v =< Q, (u, v) = 1 and 

Certainly we have 

]or --(u/v)[ < lj(vQ). (12) 

t 2 .  

G(~)_-> IF(w)l 2 = j=~ e(b:v~) 

For every real number # we have I1 -e(P)l < 2n I1#11 and so 

t -  ~ e(bjv~) ' t t < E II-e(bjw)l  < Z 2nllbjv~ll=2~ E [Ibjva-bju]l. 
.i=1 j = l  j = l  j = l  

By (12), 

hence 

t t t 

2~t E I]bjva-bjulJ <7 Y'. bj lv~-ul<7 .E L/Q=t/2,  
1=1 j = l  j = l  

Thus, from (13), 
G(a) ~_ t2/4, 

for all real numbers a. Plainly 

1 

(13) 

04) 
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Thus, by Parsevars identity and (14), 

N 

J-> (t2/4) E I~jl 2 , 
j = l  

and Theorem 1 follows from (11) and (15). 

(15) 

4. Proof of Theorem 2 

For aU real ot, we put 
N g K '  

S(ot)= E ~e(not), Fl(ot)= E e(x2ot), F2(ot)= ~ e(x2~), 
n--1 x = l  x = l  

~2 12' 
Gt(ot)= E IFl(qot)l 2, G2(:z)=8Tlog K E IFz(qot)l 2 

q = l  q = l  

and 

 (ot) = G (ot) + 

Our proof depends upon a comparison of estimates for J where 

1 

J= [. IS(ot)12G(-ot)d~. 
o 

We have 

Q I Q' t 
J = Y J" IS(ot)Fl(- qot)12dot + 8 Tlog K ~, [ IS(ot)F2(- qot)l 2d~ 

q = l O  q = 1 0  

~ ~ ~ r )T2dot+8TloggQ' i ]s  r' 2 = E E ene((n- x2q)ot E ~1 x ~= ~,e((n- xZq)e) dot 
q = l O  n = l  x = l  = 1 0  n 1 

= E * ~.+:,2~ e(moO ~1I E' E 8,,,+:q 
= 0 m \ x = l  / q = l  x = l  

where ~* indicates the summation over all integers m such that m = n -  xeq with 
ra 

t 6 n =< N and 1 < x < K and ~ '  indicates the summation over all integers m such 
rtl 

that m = n -  x2q with 1 < n < N and 1 __ x < K'. Therefore, by Parsevars identity 

Q N K 12 t2' N r' 12 
d-< E E Z em+x2,l +8T1ogK E X , X *'~+'2ql " (16) 

q = l r a = l - q K  2 x = l  q = l m = t - q ( K )  x= . t  

We shall now derive a lower bound for J. As a first step we shall establish a 
lower bound for min G(~). Put R =4.4(K') :. By Dirichlet's theorem, for any real 

~t 

number ~ there exist integers u and v with 1 _< v < R, (u, v) = 1 and 

Io~- (u/v)l < 1/(vR ) . (17) 

Let x be a real number for which (17) holds with 

K ' < v < R .  (18) 
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Then 

Since 

G(~)>GI(a)= E IFl(q~)l 2= ~ e(--Y2q ct) 
q=l.  q 1 y = l  

g K Q 
= E Y, Y'. e((xe-y2)q ~) 

x = l  ),=3_ ~/=I 
Q 

= KQ + ~ ~, e ( ( x  2 - -  y2)qGt)  
l.~_x,y~K q= 1 

x ~ y  

f2 

= KQ + E ( < ~.,< 1"~ 2 e(qncO. 
O<lnl<K2 / l = x , y = K  ]q=1. 

\ x 2 - r2=n  / 

Y. < z(n) we see that 
l <=x,y~_r 
X2--y2~n 

=Q e(qnot) G(ct) > K Q -  ~, z(n) qE 
0<lnl<K 2 1 

K 2 Q 

I 
Therefore, by Lemma 1, 

K 2 

G ( ~ ) > K Q - 2 T  • min(Q, 1I(2 IIn=ll)) 
I1=1 

[K2/v] (j+ liv 
>KQ--2T  ~., E min(Q, 1/(2llno~ll)). 

j = 0  n = j v +  1 

Since v < R  we have, by (17), I~t-(utv)l<llv 2. Thus, by Lemma 2, 

G(tx) > K Q -  2 T([KZlo] + 1) (4Q + v log v) 

>- K Q-2T(4K2Qtv+4Q + K2 l ogv + vlogo). 

Since R =4.4(K3 z we have, by (18), 

G(ot) >= KQ(1 - (8 TKtK') - (8 T/K) - (2 TK log(4.4(K'):))/O 

--(8.8T(K') 2 log(4.4(K')2))/KQ). 

On recalling that K '=  IOTK and using Lemma 3 we see that for K sufficiently 

large G(ot) > K QI 49 . (19) 

Now suppose that ct is a real number for which (17) holds with 1 < v < K'. Then 
plainly 

Q, 

G(ot)~_G2(ot)=STlogK ~. IF2(q~)l 2 
q = l  

~ 8 TlogKIF2(w)I 2 =8r logK e(x2w . 
=1 
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As in the proof of Theorem 1 we may employ the inequality 11 - e(]~)l < 27t [l]/ll to 
deduce that 

[ ~, e(x2vtz) K" K' -  <21t ~ x2lva-ul<(2~/R) x 2. 
:1:=1 X = I  %=1 

Thus, for K sufficiently large, 

l K ' -  ,~=le(xZvot) <2.2(K')S/R=K'/2. 

Therefore 

- -  / K' 

and consequently, by (20), 

G(ct) > (8 TlogK) (K72) 2 = 200T3K 2 logK. (21) 

Acomparison of(19) and (21) reveals that (21) holds for all real numbers ~. Thus, by 
Parseval's identity and (21), 

1 

J> (min G(~)) ! [S(~)12do: 

N 
>(200T3K 2 logg)  ~ I~yl 2 . (22) 

j = l  

Theorem 2 now follows from (16) and (22). 

5. Proof of Corollary 2 

By Theorem 2 we have 

iv Q, N N 

~.. M2+8TIogK ~ Z (M')2~200T3K21~ K ~. [ei[ 2" (23) 
q = l  m = l - K 2 q  q = l  m = l - ( K ' ) 2 q  j = l  

For N>C2(~) we have, by (6) and Lemma 3, K2Q<IO4T3K31ogK<N and 
(K')2Q "-< 103T3K 3 < N .  Thus, from (23), 

2QM 2 + 16(TlogK)Q'(M') 2 >= 200T3K 2 logK N -  1 2 [~[2 , 
\ j=l 

and so 

N 
100M2/K + 8(M')2/K'> N- ~ ~, [~jI = . 

j = l  

Our result now follows directly. 
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6. Proof of Theorem 3 

We shall derive Theorem 3 from Theorem 2. Put N = Hu where H is a positive 
integer and apply Theorem 2 to the finite sequence (e~ . . . .  , eN)- Then (5) holds so 

Q N r 12 Q' " I x '  12 

= r q x=l  

_-> (200TaK 2 IogK)H ~ lejI 2 (23) 
)=1 

where * indicates that the inner sums on the left hand side of inequality (23) are 
taken over those terms em+~q with 1 <=m+x2q<=N. Thus there exists a real 
number C which is effectively computable in terms of K and el . . . . .  eu such that the 
left hand side of inequality (23) is at most 

~ N I ~ 12 qQ~-~.l N x~=l,~m+x2q 2 E E e,~+~24 + 8 T l o g K  E + C ,  (24) 
q = l m = l  x=l  = m=l 

where now we have no restriction on the inner sums above. The expression (24) is 
equal to 

+ 8 T l o g K  ~ _ e,~+x2 a + C ,  (25) 
m=l q=l  q=l x=l  

Thus, from (23) and (25), 

m=l q=l x= l  q=l 

C " 
+ ~ > 200T3K 2 logK ~. lejI 2 

j = l  

and our result now follows on letting H tend to infinity. 

7. Proof of Corollary 4 

We apply Theorem 3 with u=p, K the largest positive integer for which p-1 
> 4 0 0 T K  and e.=x(n)  for n =  1, 2 . . . . .  We obtain, for K>c~, 

I I ~. x(m+xZq) + 8 T l o g K  ~ z(m+xZq) 
m=l q=l  q=l x=l  

200T3 K2(logK) ( p -  1). 

Thus 

12 ~. x(m+x2q) + 8 T I o g K  ~ z(m+x2q) 
m=l q-----I x--1 

> 200T3K2(logK) ( p -  1) - QK z - 8 T(IogK)Q'(K') 2 - p[Q/p]K ~ 

- 8 T(logK)p[Q'/p] (K')2 > 200T3KZ(logK)(p- 1) 

- 2. 104T3K 3 l o g K -  16.103 TaK 3 l o g K ,  
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which, since p -  1 >400TK,  is 

> IOOT3K2(logK) (p-  1). (26) 

For each integer q which is coprime with p let q* denote the integer with 1 __< q* 
< p -  1 such that q*q = l(modp). Then for any integer q coprime with p and any 
integer m 

L~lx(m+x2q)l= z(q') ~= z(m+x2q) = ~=tz(q'm+x2) ]. 

Thus by (26) 

+ 8 r l o g K  ~ x(q*m+x 2) 
m = l  q = l  x = l  

> IOOT3K2(logK) (p-  1). (27) 

max ~1= x(k + x2)l'l Then, by (27), Put M =  
I ~j'<p 
l < k < p  

QM 2 + 8 T(log K)Q'M 2 > 1 O0 T3K 2 log K ,  

and so M > (K/101) ~/2. Therefore, by our choice of K and by Lemma 3, for each 
positive real number 6 there is a real number C4(6), which is effectively computable 
in terms of 6 such that if p > C4(6) then 

M > pl/2 exp(-( log2 + 6) logp/loglogp), 

as required. 
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