ON DIVISORS OF SUMS OF INTEGERS. I

A. SÁRKÖZY (Budapest) and C. L. STEWART* (Waterloo)

§1. Introduction. Let N be a positive integer and let A_{1}, \ldots, A_{k} be non-empty subsets of $\{1, \ldots, N\}$. Let $\left|A_{i}\right|$ denote the cardinality of A_{i}. For any integer n larger than one let $P(n)$ denote the greatest prime factor of n. In [1], Balog and Sárközy proved, by means of the large sieve inequality, that if $\left|A_{1}\right|\left|A_{2}\right|>100 N(\log N)^{2}$ and N is sufficiently large then there exist $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ such that

$$
P\left(a_{1}+a_{2}\right)>\frac{1}{16} \frac{\left(\left|A_{1}\right|\left|A_{2}\right|\right)^{1 / 2}}{\log N}
$$

In the same article they obtained a slightly weaker result by means of the HardyLittlewood method. We propose to employ the Hardy-Littlewood method in connection with this problem in a sequel to this article. However, the purpose of this note is to estimate $P\left(a_{1}+\ldots+a_{k}\right)$ where a_{1}, \ldots, a_{k} are chosen from the k sets A_{1}, \ldots, A_{k} respectively. Put

$$
T=\left(\prod_{j=1}^{k}\left|A_{i}\right|\right)^{1 / k}
$$

Theorem. Let A_{1}, \ldots, A_{k} be non-empty subsets of $\{1, \ldots, N\}$ with $\left|A_{1}\right|=\min _{i}\left|A_{i}\right|$ and $k>1$, and let ε be a positive real number. If

$$
\sum_{i=1}^{k}\left|A_{i}\right|>(1+\varepsilon) N
$$

then for any prime p with $N<p<\left(1+\frac{\varepsilon}{2}\right) N$, there exist $a_{i} \in A_{i}$, for $i=1, \ldots, k$, such that

$$
\begin{equation*}
P\left(a_{1}+\ldots+a_{k}\right)=p \tag{1}
\end{equation*}
$$

whenever $N>N_{0}(\varepsilon, k)$. If $T>8 N^{1 / 2} \log N$, then there exist $a_{i} \in A_{i}$, for $i=1, \ldots, k$, such that

$$
\begin{equation*}
P\left(a_{1}+\ldots+a_{k}\right)>\frac{k T}{14 \log T}, \tag{2}
\end{equation*}
$$

[^0]for $N>N_{1}(k)$. Further, there exist $a_{i} \in A_{i}$, for $i=1, \ldots, k$, such that
\[

$$
\begin{equation*}
P\left(a_{1}+\ldots+a_{k}\right)>\frac{\left|A_{1}\right|}{N^{1 / k+\varepsilon}}, \tag{3}
\end{equation*}
$$

\]

for $N>N_{2}(\varepsilon, k)$. Here $N_{0}(\varepsilon, k), N_{1}(k)$ and $N_{2}(\varepsilon, k)$ are numbers which are effectively computable in terms of ε and k, k, and ε and k respectively.

To prove (1) we appeal to the Cauchy-Davenport Lemma. Note that we are able to specify the greatest prime factor of $a_{1}+\ldots+a_{k}$ in this case. For the proof of (2) we use the large sieve inequality in conjunction with the Cauchy-Davenport Lemma. If $k=2$ then (2) yields the result of Balog and Sárközy referred to above. Finally, (3) is obtained using the Cauchy-Davenport Lemma and Gallagher's larger sieve.

In the following result, which is an immediate consequence of our theorem, we require that all the summands be taken from a single set.

Corollary. Let A be a non-empty subset of $\{1, \ldots, N\}$, let ε be a positive real number and let k be an integer larger than one. If $|A|>(1+\varepsilon) N / k$ and p is any prime number with $N<p<\left(1+\frac{\varepsilon}{2}\right) N$ then there exist a_{1}, \ldots, a_{k} in A such that

$$
P\left(a_{1}+\ldots+a_{k}\right)=p
$$

for N sufficiently large in terms of ε and k. Further, if $|A|>8 N^{1 / 2} \log N$ then there exist a_{1}, \ldots, a_{k} in A such that

$$
P\left(a_{1}+\ldots+a_{k}\right)>\frac{k|A|}{14 \log |A|},
$$

for N sufficiently large in terms of k. Furthermore, there exist a_{1}, \ldots, a_{k} in A suck that

$$
P\left(a_{1}+\ldots+a_{k}\right)>\frac{|A|}{N^{1 / k+\varepsilon}},
$$

for N sufficiently large in terms of ε and k.
It would be interesting if one could obtain results of comparable strength to the above for subsets of $\{1, \ldots, N\}$ of cardinality less than $N^{1 / k}$. The only result of which we are aware in this connection is due to Erdős and Turán [4]. They showed, in 1934, by means of an elementary argument that for any finite set of positive integers A there exist integers a_{1} and a_{2} from A such that

$$
P\left(a_{1}+a_{2}\right)>c \log |A|
$$

for a positive constant c.
§2. Preliminary lemmas. Let \mathbf{Z} denote the set of integers.
Lemma 1 (Cauchy-Davenport [2], [3]). Let p be a prime number and let A and B be a subsets of $\mathbf{Z} \mid p \mathbf{Z}$. If $|A|=m$ and $|B|=n$ then $|A+B| \geqq \min \{m+n-1, p\}$; here $A+B=\{a+b \mid a \in A, b \in B\}$.

Lemma 2 (large sieve). Let \mathcal{N} be a set of integers in the interval $[M+1, M+N]$. For each prime p let $v(p)$ denote the number of residue classes modulo p that contain an element of \mathscr{N}. Then for any positive integer Q we have

$$
|\mathcal{N}| \leqq \frac{N+Q^{2}}{L}, \quad \text { for } \quad L=\sum_{q \leqq Q}^{\prime \prime} \prod_{p \mid q} \frac{p-v(p)}{v(p)}
$$

where the summation is taken over square-free positive integers q.
Proof. See Theorem 7.1 of [8].
Lemma 3 (Gallagher [5]). Let \mathscr{N} be a set of integers in the interval $[M+1, M+N]$. For each prime p let $v(p)$ denote the number of residue classes modulo p that contain an element of \mathscr{N}. Then for any finite set of primes S we have

$$
|\mathscr{N}| \equiv \frac{\sum_{p \in S} \log p-\log N}{\sum_{p \in S} \frac{\log p}{v(p)}-\log N}
$$

provided that the denominator is positive.
We shall also require the following result.
Lemma 4. Let p and k be integers with $k \geqq 2$ and $p-1 \geqq(k-1)^{k}$. Let $D=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k} \left\lvert\, x_{1}+\ldots+x_{k} \leqq 1+\frac{k-2}{p}\right.\right.$ and $\frac{1}{p} \leqq x_{i} \leqq \frac{p-1}{p}$ for $\left.i=1, \ldots, k\right\}$. Then

$$
\begin{equation*}
\min _{D} \prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)=\left(\frac{k}{1+\frac{k-2}{p}}-1\right)^{k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{D} \sum_{i=1}^{k} \frac{1}{x_{i}}=\frac{k^{2}}{1+\frac{k-2}{p}} \tag{5}
\end{equation*}
$$

Proof. First we shall establish (4) by induction on k. It is readily checked that (4) holds for $k=2$ and so we may assume that $k>2$. Our inductive hypothesis is that (4) holds with $k-1$ in place of k. We observe that the minimum of $\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)$ in D, occurs in D_{0} where $D_{0}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in D \left\lvert\, x_{1}+\ldots+x_{k}=1+\frac{k-2}{p}\right.\right\}$. Note also that $\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)$ and $\sum_{i=1}^{k} \log \left(\frac{1}{x_{i}}-1\right)$ achieve their minimum value in D_{0} at the same points. Applying the method of Lagrange multipliers we conclude that if $\sum_{i=1}^{k} \log \left(\frac{1}{x_{i}}-1\right)$ has a local minimum at $\left(x_{1}, \ldots, x_{k}\right)$ in the interior of D_{0} then for all
integers i and j with $1 \leqq i, j \leqq k$ either $x_{i}=x_{j}$ or $x_{i}=1-x_{j}$. If $x_{i}=x_{j}$ for all i and j then

$$
\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)=\left(-\frac{k}{1+\frac{k-2}{p}}-1\right)^{k}
$$

On the other hand if $x_{i}=1-x_{j}$ for some i and j then $x_{i}+x_{j}=1$ and by the definition of D_{0} we have $x_{t}=\frac{1}{p}$ for some integer l. Similarly if $\left(x_{1}, \ldots, x_{k}\right)$ is on the boundary of D_{0} then we again have $x_{l}=\frac{1}{p}$ for some integer l. However, if $x_{l}=\frac{1}{p}$ and $\left(x_{1}, \ldots, x_{k}\right)$ is in D_{0} then

$$
\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)=(p-1) \prod_{\substack{i=1 \\ i \neq l}}^{k}\left(\frac{1}{x_{i}}-1\right) \supseteqq(p-1) \min _{\substack{D^{\prime}}} \prod_{\substack{i=1 \\ i \neq l}}^{k}\left(\frac{1}{x_{i}}-1\right)
$$

where

$$
\begin{gathered}
D^{\prime}=\left\{\left(x_{1}, \ldots, x_{l-1}, x_{l+1}, \ldots, x_{k}\right) \in \mathbf{R}^{k-1} \left\lvert\, x_{1}+\ldots+x_{l-1}+x_{l+1}+\ldots+x_{k} \leqq 1+\frac{k-3}{p}\right.\right. \\
\text { and } \left.\frac{1}{p} \leqq x_{i} \leqq \frac{p-1}{p} \text { for } i=1, \ldots, l-1, l+1, \ldots, k\right\}
\end{gathered}
$$

By our inductive hypothesis the minimum over D^{\prime} of $\prod_{\substack{i=1 \\ i \neq l}}^{k}\left(\frac{1}{x_{i}}-1\right)$ is $\left(\frac{k-1}{1+\frac{k-3}{p}}-1\right)^{k-1}$, which is at least 1 since $k>2$. Therefore if $\left(x_{1}, \ldots, x_{k}\right)$ is a point in D_{0} with $x_{l}=\frac{1}{p}$ then

$$
\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right) \geqq p-1 \geqq(k-1)^{k}>\left(\frac{k}{1+\frac{k-2}{p}}-1\right)^{k}
$$

consequently the minimum of $\prod_{i=1}^{k}\left(\frac{1}{x_{i}}-1\right)$ on D occurs with

$$
x_{1}=\ldots=x_{k}=\frac{1+\frac{k-2}{p}}{k}
$$

Thus (4) holds and this completes the induction.
To establish (5) requires only a routine application of the method of Lagrange multipliers. Alternatively (5) can be deduced from the arithmetic-harmonic mean inequality.
§3. Proof of the main theorem. We shall first prove (1). Let p be a prime with $N<p<\left(1+\frac{\varepsilon}{2}\right) N$. Assume that $N>\max \left\{\frac{2(k-1)}{\varepsilon}, k\right\}$ and put $A_{i}(p)=$ $=\left\{a+p \mathbf{Z} \mid a \in A_{i}\right\}$ for $i=1, \ldots, k$. By repeated application of Lemma 1 we find that

$$
\begin{equation*}
\left|A_{\mathrm{I}}(p)+\ldots+A_{k}(p)\right| \geqq \min \left\{\sum_{i=1}^{k}\left|A_{i}(p)\right|-(k-1), p\right\} . \tag{6}
\end{equation*}
$$

Since $A_{i} \subseteq\{1, \ldots, N\}$ and $p>N,\left|A_{i}(p)\right|=\left|A_{i}\right|$. Therefore

$$
\sum_{i=1}^{k}\left|A_{i}(p)\right|>(1+\varepsilon) N
$$

and, since $\frac{\varepsilon}{2} N>k-1$, the minimum on the right hand side of (6) is p. Accordingly, $\left|A_{1}(p)+\ldots+A_{k}(p)\right|=p$, hence $A_{1}(p)+\ldots+A_{k}(p)=\mathbf{Z} / p \mathbf{Z}$. Therefore there exist $a_{i} \in A_{i}$, for $i=1, \ldots, k$, with $p \mid a_{1}+\ldots+a_{k}$. Since $a_{1}+\ldots+a_{k} \leqq k N, k<N$ and $p>N, \quad P\left(a_{1}+\ldots+a_{k}\right)=p$ as required.

To prove (2) we assume that $T \geqq 8 N^{1 / 2} \log N$ and we put $Q=\frac{k T}{7 \log T}$. Further, we shall suppose that N is chosen sufficiently large for the subsequent argument; in particular, large enough that $\frac{Q}{2}>(k-1)^{k}, T^{1 / 7}>k$ and $N^{1 / 2}>8 \log N$. We shall now show that the assumption that $P\left(a_{1}+\ldots+a_{k}\right)<\frac{Q}{2}$ whenever $a_{i} \in A_{i}, i=1, \ldots, k$, leads to a contradiction and this will establish (2).

Applying Lemma 2 with $M=0$, we find that

$$
\left|A_{i}\right|<\frac{N+Q^{2}}{\sum_{Q / 2<p<Q} \frac{p-v_{i}(p)}{v_{i}(p)}},
$$

where the summation in the denominator is taken over primes p and where $v_{i}(p)$ is the number of residue classes modulo p that contain an element of A_{i}. Thus

$$
\begin{equation*}
T<\frac{N+Q^{2}}{H} \tag{7}
\end{equation*}
$$

where

$$
H=\left(\prod_{i=1}^{k} \sum_{Q / 2<p<Q} \frac{p-v_{i}(p)}{v_{i}(p)}\right)^{1 / k}
$$

By a generalization of the Cauchy-Schwarz inequality (see 81.3, page 68 of [7]),

$$
\begin{equation*}
H \cong \sum_{Q / 2<p<Q}\left(\prod_{i=1}^{k} \frac{p-v_{i}(p)}{v_{i}(p)}\right)^{1 / k} \tag{8}
\end{equation*}
$$

Define $A_{i}(p)$ as above and notice that, by Lemma 1, we again obtain (6). However, for each prime p with $\frac{Q}{2}<p<Q, A_{1}(p)+\ldots+A_{k}(p)$ does not contain the zero
residue class hence $\left|A_{1}(p)+\ldots+A_{k}(p)\right| \leqq p-1$. Further, $v_{i}(p)=\left|A_{i}(p)\right|$ and therefore

$$
\begin{equation*}
v_{1}(p)+\ldots+v_{k}(p) \leqq p+k-2 \tag{9}
\end{equation*}
$$

Certainly $1 \leqq v_{i}(p) \leqq p-1$ and thus putting $\frac{v_{i}(p)}{p}=x_{i}$ and applying (4) of Lemma 4 we find, since $p>\frac{Q}{2}>(k-1)^{k}$, that

$$
\begin{equation*}
\left(\prod_{i=1}^{k}\left(\frac{p}{v_{i}(p)}-1\right)\right)^{1 / k} \geqq \frac{k}{1+\frac{k-2}{p}}-1 \geqq \frac{k}{2} \tag{10}
\end{equation*}
$$

By the prime number theorem,

$$
\begin{equation*}
\sum_{Q / 2<p<Q} \frac{k}{2}>\frac{k Q}{5 \log Q}, \tag{11}
\end{equation*}
$$

for N sufficiently large. Combining (7), (8) (10) and (11) we obtain

$$
T<\frac{N+Q^{2}}{\frac{k Q}{5 \log Q}}
$$

By assumption $N^{1 / 2}>8 \log N$ and so $N<\frac{1}{5} Q^{2}$. Thus

$$
\frac{k T}{6}<Q \log Q \leqq \frac{k T}{7 \log T} \log k T
$$

and, since $T^{1 / 7}>k$,

$$
\frac{k T}{7 \log T} \log k T<\frac{k T}{6}
$$

This gives the required contradiction.
Finally, we shall prove (3). We may assume without loss of generality that ε is less than one. Put

$$
Q=\frac{\left|A_{1}\right|}{N^{1 / k+\ell / 2}} \quad \text { and } \quad Q_{1}=\left|A_{1}\right|
$$

We shall assume that N is sufficiently large in terms of ε and k for the validity of the argument to follow. Further we shall assume that $Q>N^{\varepsilon / 2}$ and that $P\left(a_{1}+\ldots\right.$ $\left.\ldots+a_{k}\right) \leqq Q$, whenever $a_{i} \in A_{i}, i=1, \ldots, k$. Let $v_{i}(p)$ denote the number of residue classes modulo p that contain an element of A_{i}. By Lemma 3,

$$
\begin{equation*}
\left|A_{i}\right| \leqq \frac{\sum_{Q<p<Q_{1}} \log p-\log N}{\sum_{Q<p<Q_{1}} \frac{\log p}{v_{i}(p)}-\log N} \tag{12}
\end{equation*}
$$

for $i=1, \ldots, k$, whenever the denominator is positive; here the summations are taken over all primes p between Q and Q_{1}. We shall show that for at least one integer i the denominator in (12) is at least $\frac{\varepsilon}{2} \log N$. As before we find that (9) holds for each prime p with $Q<p<Q_{1}$. Since $1 \leqq v_{i}(p) \leqq p-1$, on putting $\frac{v_{i}(p)}{p}=x_{i}$ and applying (5) of Lemma 4 we find that

$$
\frac{1}{k} \sum_{i=1}^{k} \frac{\log p}{v_{i}(p)} \geqq \frac{\log p}{p} \frac{k}{1+\frac{k-2}{p}}
$$

Since $p>Q \geqq N^{\varepsilon / 2}$,

$$
\frac{k}{1+\frac{k-2}{p}}>k-\frac{\varepsilon}{8}
$$

for N sufficiently large. Thus

$$
\begin{gathered}
\frac{1}{k} \sum_{i=1}^{k}\left(\sum_{Q<p<Q_{1}} \frac{\log p}{v_{i}(p)}-\log N\right)=\sum_{Q<p<Q_{1}}\left(\frac{1}{k} \sum_{i=1}^{k} \frac{\log p}{v_{i}(p)}\right)-\log N \geqq \\
\geqq \sum_{Q<p<Q_{i}}\left(k-\frac{\varepsilon}{8}\right) \frac{\log p}{p}-\log N .
\end{gathered}
$$

By Theorem 425 of [6] there is a constant C such that the right hand side of the above inequality is

$$
\geqq\left(k-\frac{\varepsilon}{8}\right)\left(\log Q_{1}-\log Q-C\right)-\log N \geqq\left(k-\frac{\varepsilon}{4}\right) \log \left(Q_{1} / Q\right)-\log N .
$$

This in turn is $>\frac{\varepsilon}{2} \log N$, since $k \geqq 2, \varepsilon<1$ and $Q_{1} / Q=N^{1 / k+z / 2}$. Since the average of the denominators in (12) is at least $\varepsilon / 2 \log N$, for at least one integer i,

$$
\left|A_{i}\right| \leqq \frac{\sum_{Q<p<Q_{i}} \log p-\log N}{\frac{\varepsilon}{2} \log N}
$$

Hence, by the prime number theorem,

$$
\left|A_{i}\right| \leqq \frac{4 Q_{1}}{\varepsilon \log N}=\frac{4\left|A_{1}\right|}{\varepsilon \log N},
$$

for N sufficiently large. But $\left|A_{1}\right| \leqq\left|A_{i}\right|$ and so we have a contradiction for N sufficiently large. Therefore either $P\left(a_{1}+\ldots+a_{k}\right)>Q$ for some $a_{1} \in A_{i}, i=1, \ldots, k$ or $Q<N^{\varepsilon / 2}$. Consequently, for some $a_{i} \in A_{i}, i=1, \ldots, k$,

$$
P\left(a_{1}+\ldots+a_{k}\right)>\frac{Q}{N^{z / 2}}=\frac{\left|A_{i}\right|}{N^{1 / k+\varepsilon}}
$$

as required.

References

[1] A. Balog and A. Sárközy, On sums of sequences of integers, II, to appear.
[2] H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32.
[3] H. Davenport, A historical note, J. London Math. Soc., 22 (1947), 100-101.
[4] P. Erdős and P. Turán, On a problem in the elementary theory of numbers, American Math. Monthly, 41 (1934), 608-611.
[5] P. X. Gallagher, A larger sieve, Acta Arith., 18 (1971), 77-81.
[6] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed. (Oxford, 1979).
[7] G. Pólya and G. Szegó, Problems and theorems in analysis, Vol. I, Springer-Verlag (Berlin, 1972).
[8] H. E. Richert, Lectures on sieve methods, Tata Institute of Fundamental Research (Bombay, 1976).
(Received August 2, 1984)
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
1053 BUDAPEST, REÁLTANODA U. 13-15
HUNGARY
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO
CANADA
N2L 3G1

[^0]: * This research was supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

