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ON DIVISORS OF SUMS OF INTEGERS. I

A. SARKOZY (Budapest) and C. L. STEWART* (Waterloo)

§ 1. Introduction. Let N be a positive integer and let A4, ..., 4, be non-empty
subsets of {1, ..., N}. Let |4;| denote the cardinality of 4;. For any integer n larger
than one let P(n) denote the greatest prime factor of ». In [1], Balog and Sarkozy
proved, by means of the large sieve inequality, that if |4,||4:|>100N(log N)?* and
N is sufficiently large then there exist a;€4, and 4,64, such that

1 ([l 4™
16 logN °

In the same article they obtained a slightly weaker result by means of the Hardy—
Littlewood method. We propose to employ the Hardy-—Littlewood method in connec-
tion with this problem in a sequel to this article. However, the purpose of this note is
to estimate P(a;+...+a,) where a,, ..., a; are chosen from the k sets 4., ..., 4,
respectively. Put

Pla;+a,) > —

k
T = ( [T 14
THEOREM. Let A, ..., Ay be non-empty subsets of {1, ..., N} with |4;|=min |4;|
i
and k=1, and let ¢ be a positive real number. If

14l = (140N,

i=1

then for any prime p with N<p<(l +%]N, there exist a,€A;, for i=1, ..k,
such that
¢y P(ay+...+a) = p,

whenever N>Ny(e, k). If T=>8NV2log N, then there exist a,€A;, for i=1, ..k,
such that

@ P(ay+...+a) = —FL

14log T’
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148 A. SARKOZY and C. L. STEWART

Jor N=Ny(k). Further, there exist a,CA;, for i=1, ..., k, such that
|4,]

3) Pa,+...+a) > e NkFe 2
Jor N>N,(s, k). Here Ny(z, k), Ny(k) and Ny(e, k) are numbers which are effectively
computable in terms of ¢ and k, k, and ¢ and k respectively.

To prove (1) we appeal to the Cauchy—Davenport Lemma. Note that we are able
to specify the greatest prime factor of @; +... -+a, in this case. For the proof of (2) we
use the large sieve inequality in conjunction with the Cauchy—Davenport Lemma. If
k=2 then (2) yields the result of Balog and Sirkdzy referred to above. Finally, (3)
is obtained using the Cauchy—Davenport Lemma and Gallagher’s larger sieve.

In the following result, which is an immediate consequence of our theorem, we
require that all the summands be taken from a single set.

COROLLARY. Let A be a non-empty subset of {1, ..., N}, let ¢ be a positive real
number and let k be an integer larger than one. If |A|=>=(1+&)Nfk and p is any prime

€ . .
—) N then there exist ay, ..., & in A such that

number with N<p<(1+ )

Play+...+a) = p,

for N sufficiently large in terms of ¢ and k. Further, if |A|>8N'2log N then there
exist ay, ..., a4 in A such that

klA|

P(al+..-+ak) = W’

for N sufficiently large in terms of k. Furthermore, there exist ay, ..., &, in A such
that
141

P(a;+...4a) > —r NiET

JSor N sufficiently large in terms of ¢ and k.

1t would be interesting if one could obtain results of comparable strength to the
above for subsets of {1, ..., N} of cardinality less than N, The only result of which
we are aware in this connection is due to Erd8s and Turén [4]. They showed, in 1934,
by means of an elementary argument that for any finite set of positive integers A there
exist integers a, and a; from A4 such that

P(a;+ay) > clog 4],

for a positive constant c.

§2. Preliminary lemmas. Let Z denote the set of integers.

Lemma 1 (Cauchy—Davenport [2), [3]). Let p be a prime number and let A and B
be a subsets of Z[pZ. If |Al=m and |B|=n then |A+B]>mm {m+n—1,p}; here
A+B={a+blac A, beB}.
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ON DIVISORS OF SUMS OF INTEGERS. 1 149

Lemma 2 (large sieve). Let A be a set of integers in the interval [M+1, M+ N].
For each prime p let v(p) denote the number of residue classes modulo p that contain an
element of A". Then for any positive integer Q we have

N+Q? P—v(p)
e/Vé——, or L: 4 —_——
Wi=—— / 21 50)

where the summation is taken over Square-free positive integers q.
Proor. See Theorem 7.1 of [8].

LemMA 3 (Gallagher [5]). Let A" be a set of integers in the interval [M +1, M+ N1.
For each prime p let v(p) denote the number of residue classes modulo p that contain
an element of A". Then for any finite set of primes S we have

2 logp—log N
=25

logp
—~log
)

provided that the denominator is positive.

3

We shall also require the following result,

LemMA 4. Let p and k be integers with k=2 and p—1=(k—1)* Let

. k—
Dz{(xl, e X )ER* Xy L =1+ 2 and—l—sx-- 1for i=1, ...,k}. Then
i D y4 D
k(1 k *
@ min 1 (1) = |-—=
1+
p
and
5 ol
%) mxnl%'xl ) -

Proor. First we shall establish (4) by induction on k. It is readily checked that
(4) holds for k=2 and so we may assume that k=>2. Our inductive hypothe51s is

that (4) holds with £ —1 in place of k. We observe that the minimum of [J (——— 1)

i=1 xl
in D, occurs in D, where DO:{(xl, ...,xk)ED]x1+...+xk=1+k—;—2—}. Note also
k k
that JJ (;1--—1) and 2 log (%—-1) achieve their minimum value in D, at the
i=1 i i=1 i
same points. Applying the method of Lagrange multipliers we conclude that if

k
2 log [}—:-— I] has a local minimum at (x,, ..., x;) in the interior of D, then for all
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150 A. SARKOZY and C. L. STEWART

integers i and j with 1=i,j=k either x;=x; or x;=1—x;. If x;=x; for all i

and j then
1) ==
=1 sz
4

On the other hand if x;=1—x; for some 7 and j then x;+x;=1 and by the defi-

nition of D, we have x, :; for some integer /. Similarly if (xy, ..., x;) is on the boun-

dary of Dy then we again have x,:-IIT for some integer I. However, if x,=—;— and

{x1, ..., x) 18 in' Dy then

;ﬁ (_‘—1] =@-D H {_.*1] = (p—Dmin i]l (___1]
where it il

, k—3
D= {0015 ooy Xpm1s Xpt1s oes XDERF X b2 Xy e 2 = 1+—P—

and gxiéi’—;-l for i=1,..,1-1,14+1,.., Kk}

1
p
‘ k
By our inductive hypothesis the minimum over D’ of ]] [—-—-1) is

=1
[ 4

k-1
ﬁ——l , which is at least 1 since k=2. Therefore if (x,,...,x) is a

point in D, with x,———% then

k(1 k k
_]I(—-;-l)ép—lz(k-l)k> —% -11,
i=1 \Xj 1+ -

k
consequently the minimum of ]] (———— 1) on D occurs with

k-2
I+T
.

Thus (4) holds and this completes the induction.

To establish (5) requires only a routine application of the method of Lagrange
multipliers. Alternatively (5) can be deduced from the arithmetic-harmonic mean
inequality.
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§3. Proof of the main theorem. We shall first prove (1). Let p be a prime with
N<p<(1+—s-) N. Assume that N=>max {2(k~1) s k} and put A(p=
={a+pZlac A;} for i=1, ..., k. By repeated application of Lemma 1 we find that

2

© () o ()] = min { 1P~ (k1 2

Since 4;S{l,...,N} and p=>N, |4;(p)|=]|4;]. Therefore
k
1) = A+ N

and, since —;—N >k —1, the minimum on the right hand side of (6) is p. Accordingly,

|4:(P) +... + A (p)|=p, hence A,(p)+...+ A, (p)=ZJpZ. Therefore there exist
a€Ad;, for i=1,...,k, with pla,+...+a,. Since a,+...+a=kN, k<N and
p>N, P(a,+...+a)=p as required.

To prove (2) we assume that 7=8N2log N and we put Q =—ﬂ—k~T—. Further,

og T
we shall suppose that N is chosen sufficiently large for the subsequent argument;

% >(k—1)%, TY">k and N¥2>8log N. We shall
now show that the assumption that P(a;+... +ak)<-g— whenever a;4;, i=1, ...k,
leads to a contradiction and this will establish (2).
Applying Lemma 2 with M=0, we find that
N+Q?
p—vi(p)’
0/2<p<Q vi(p)

in particular, large enough that

|4l <

where the summation in the denominator is taken over primes p and where v;(p) is
the number of residue classes modulo p that contain an element of 4;. Thus
N+Q?
< b
H

@) T
where
: p—v-(p))""
= )"
ig Q/2<Zp<e vi(p)
By a generalization of the Cauchy—Schwarz inequality (see 81.3, page 68 of [7]),
(f2z)"
oo \i=1 V(D)
Define A4;(p) as above and notice that, by Lemma 1, we again obtain (6). How-

6)) H=

ever, for each prime p with —g—-<p< Q. A;(p)+... +A.(p) does not contain the zero
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residue class hence |4;(p)+... +4,(p)|=p—1. Further, v;(p)=|4;(p)| and there-
fore

) @)+ ... +v(p) = p+k—2.
Certainly 1=v,(p)=p—1 and thus putting ,(p %) ——2=x; and applying (4) of Lemma 4
we find, since p>% >(k—1), that
k Ve
(10) {gl {vifp)—l)] 2—1;—;32——1 zé.
By the prime number theorem,
k kQ

11 A
) or5-02 ~ SlogQ

for N sufficiently large. Combining (7), (8) (10) and (11) we obtain
N+Q?

kQ
SlogQ

T <

By assumption NV2=>8log N and so N<—§— 0*. Thus

k_T<QlogQ = kT i log kT,

and, since TV >k,

kT kT
71 g 10 kT < — 6
This gives the required contradiction.
Finally, we shall prove (3). We may assume without loss of generality that ¢ is

less than one. Put

4

Q= Wfﬁ and @ = |4,].

We shall assume that N is sufficiently large in terms of ¢ and k for the validity of
the argument to follow. Further we shall assume that Q>N¢%2 and that P(q,+
...+a)=0, whenever g;c4;, i=1, ..., k. Let v;(p) denote the number of residue
classes modulo p that contain an element of 4;. By Lemma 3,

> logp—logN
(12) 14| = 2=2=%
logp—lo N

0<p<0, Vi ()
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for i=1, ..., k, whenever the denominator is positive; here the summations are
taken over all primes p between Q and Q,. We shall show that for at least one integer

i the denominator in (12) is at least % log N. As before we find that (9) holds for each

vi(p)

7 =x; and applying

prime p with Q<p<Q;. Since 1=v;(p)=p—1, on putting
(5) of Lemma 4 we find that

1 “logp>logp k

76--i=1Vi(P) T op 1+k"2.

Since p>Q=N?,
k £

%3k
1+—p-‘
for N sufficiently large. Thus
1 X ( logp ] (1 X logp]
. —log N} = — —log N =
2 2 og 2 \%25.p) o8

_E i=1 \Q=p<Q, v (p) O=<p<Q, =1
s)logp
k _.—-) —log N.
Q<I)Z<’Q1 ( 8 _p

By Theorem 425 of [6] there is a constant C such that the right hand side of the above
inequality is

Iy

= (k—g) (log 0, —log 0 —C)—log N = (k-%) log (Q,/0)—log N.

This in turn is >%log N, since k=2, e<1 and Q,/Q=NV*+#2 Since the ave-

rage of the depominators in (12) is at least g2log N, for at least one integer 7,

. ZQ logp—log N
4| = b5 :

;— log N
Hence, by the prime number theorem,
=20 _ 44
" eglogN  glogN’
for N sufficiently large. But |4;]=|4,] and so we have a contradiction for N suffi-

ciently large. Therefore either P{a;+...+a)=0 for some a@,€A4;, i=1, ...,k or
O<N*2,_ Consequently, for some a;€4;, i=1,..,k,

4;
P(a;+...+a) > “]% = Tluk—l-x?’

as required.
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