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Let f be in Z[z;,...,2,]. A typical problem of Diophantine equations is to’
determine all of the solutions of f(z1,...,%,) = 0 in integers 2y,... ,24. The name
Diophantine comes from the Greek mathematician Diophantus of Alexandria, who
worked about 250 A.D. and who laid the foundations for the study of equations
in integers. His great work, the Arithmetica, was apparently 13 volumes, but only
6 have survived. He studied problems connected with elliptic curves which are
current today, he knew that no integer of the form 8n+7 can be a sum of 3 squares
and he found the correct formula for the solutions of the equation z? + 3% = 2?
in integers. Approximately 1400 years later Fermat revived the subject. In about
1637 he stated in the margin of one of the pages of his copy of the Arithmetica that
 if n exceeds 2 there are no solutions of 2® 4+ y® = z" in positive integers z, y and z.
However, the margin was too small to contain his truly marvelous proof. We live
in exciting mathematical times. Wiles and Taylor have apparently closed the gap
in Wiles’ previously announced proof of Fermat’s Last Theorem. That is the news
as of October 26. |

In spite of the work of Fermat and the many great mathematicians who followed
him, a basic question remained open. This was posed by Hilbert in 1900 as the 10th
of 23 pmblems which he felt were of fundamental importance to mathematics. “Give
a way in which it is possible to determine after a finite number of operations whether
any given equation f(zj,...,2,) = 0, with f in Z[z,,...,2y], has a solution in
rational integers.” In 1970 Matijase;vic, completing work of Davis, Robinson and
Putnam, proved that such a general algorithm does not exist, even if we restrict
the number of unknowns to 13. Perhaps for 2 unknowns the situation is different.
Let us now restrict our attention to such equations.

Cousider, for exampie:

(1) 166z -+ 57y =2,
(2) 2®—-1141yp° =1,
(3) -2 =6,

The first equation has infinitely many solutions in integers  and y. To solve it,

we apply the Euclidean Algorithm to the pair (166, 57). We find a particular solu-
tion ¢ = —46,y = 134. The general solution is then {(—46+5Tn, 134 ~ 166n)|neZ}.
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Equation (2) also has infinitely many solutions and they can be found by the Contin-
ued Fraction Algorithm, which may be viewed as a generalization of the Euclidean
Algorithm. The smallest positive solution is given by |

T = 1,036, 782, 394, 157, 223, 963, 237, 125, 215

y = 30, 693, 385, 322, 765, 657, 197, 397, 208.

On the other hand (3) has only the solution ¢ = 2,y = 1.

Equation (3) is an example of a Thue equation. Axel Thue was 2 profound
and original mathematician from Norway. Let F in Z[z, y] be a binary form with
integer coefficients, content 1, non-zero discriminant D and degree at least 3. Thus
F(z,y) = arz" + Gp-12" "2y + -+ + agy” with r an integer larger than 2 and with
ao, - . . , Gy integers whose greatest common divisor is 1. Futher, the roots of F(z, 1)
are distinct. Let h be a positive integer. The equation

(4) - F(z,y) =

is known as a Thue equation. In 1909, Thue proved that if F is irreducible then (4)
has only finitely many solutions in integers # and y. Thue deduced his result from
the following result. He proved that if a is an algebraic number of degree r(> 1)
and ¢ is & positive real number then there exists a positive number C(a, €), which
depends on « and ¢, such that

5 Jor — p/fII:»fg(fl:z |

for all p, ¢ in Z with ¢ > 0. In 1844, Liﬂuville had established (5) with -E—+ 1+¢, the

exponent of g, replaced by ». Let us now apply (5) to show that the Thue equation

z3 — 2¢° = 6 has only finitely many solutions. Let w = 1""{:5 80 w? = 1. Then, by
Thue’s result,
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Thus |y|*/ 4 < 3 and so |y| and |z| are bounded. Notice that to bound

=~ C(¥2,1/4)

lz| and ly| all we had to do was improve on the Liouville exponent of 3. Building
on Thue’s work, Siegel, in 1921, replaced - 3 C+14ein (5) by 2+/7 + €. Finally, in

1955, Roth obtained the best possible exponent 2 + ¢ and on the strength of this
he was awarded a Fields medal in 1958.

Let us return to the Thue equation F(z,y) = h. The question of estimating the
number of solutions of (4) has been the subject of many papers by authors such
as Mahler, Siegel, Davenport, Lewis and Roth. For any integer A, let w(h) denote
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the number of distinct prime factors of h. In 1984, Evertse resolved a conjecture of
Siegel by proving that (4) has at most 2- 7r®(2w(h)+3) primitive solutions; a solution
(z,y) is said to be primitive if  and y are coprime. The key feature here is that
“the bound is independent of the coefficients of F. In 1987, Bﬂmbmn and Schm:dt
refined tluﬂ result, for F irreducible, to -

m,ﬁ1+t...ar(i‘1) ,

where ¢ is an absolute constant; ¢ may be taken to be 430 for r sufficiently large.
Let ¢ > 0. In 1991 1 showed that if ¢ is a divisor of h with g > 1h|*/*+¢ and
Ih| > |D|*/¢ then the number of primitive solutions of (4) is at most

cﬁrl"“"(”} !

where ¢, = 2800 (1 + 1—;—5) . Note that if ¢ is less than - : 2

~ proportion of integers we may take g to be a prime and then r1+¢(9) = 2,
One of the main lessons which mathematicians have learned from the last century
of mathematics is that the real numbers and the p-adic numbers should be viewed

on an equal footing. The p-adic numbers were introduced by Hensel. Let F be a
field and let || ||+ # - R2 such that for all 2,y in F':

then for a positive

3) |lz]f=0& 2 =0,
i) leyl] = ol llgl,
wt) e+ yll < llzll + [lyll-

|| || is said to be a norm. If we put d(z,y) = ||z — || then d is a metric induced by
the norm. Two metrics d; and d; on a set are equivalent if a sequence is Cauchy
with respect to dy if and only if it is Cauchy with. respect to ds. Two norms are
equivalent if they induce equivalent metrics. Recall that a metric d on X is a map
d: X x X ~» R such that for all z,y,z in X:

)  dzy)=0oz=y

1) d(z,y) = d(y, ), -
i) d(z,9) < d(z,2) + d(2 ).

The trivial norm |} || is such that {{0|| = 0 and ||m|| =1 for ¢ #£ 0. Take F = Q.
The usual absolute value | | is a norm. For each prime p and non-zero integer = we
~ define ord,x to be I where p|z and p'*! [x. Next we define nrdpu/b for non-zero
integers a and b to be ordya— ord,b. Then, for each prime P |p is a norm where

|0} = 0 and l l = p™°"p(3/) for g and b non-zero integers. Ostrnwskl prmrad that

every nnn-trwml norm on Q is equivalent to | | or to | |, for some prime p.

Just as one constructs R by completing Q with respect to | |, 80 one constructs
the p-adic numbers Q, by completing Q with respect to | {,. By working in Q,
~ and finite extensions of @,, for various primes p, Mahler was able to extend 'I‘hue 8
result in 1933. Let py,...,p, be distinct primes. The equation

F(z,y) =5 ...pk
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in coprime integers = and y and non-negative integers &1,. .. , kr is known as a Thue-
Mahler equation and Mahler showed that it has finitely many solutions. We remark
that Schmidt has studied the class of norm form equations. For F irreducible with
F(z,y) = (z - a1y) - (z — ary) it follows that

F(z,y) = Ng(ay/g (& — 01y) where Ng(q,);¢ denotes the norm from Qfey) to Q.
Let [ = Bizs + Paz + -+ Ppzy and put X = Q(B1,...,0n). Then Nf{f@(L) =h
is a norm form equation and Schmidt has determined when such equations have
infinitely many solutions. Schlickewel has extended this to the p-adic case. All
of this work is built on the original work of Thue and it has a serious flaw. The
work is “ineffective” in the sense that while one can bound the number of solutions
one can’t bound the size of the largest solution. The reason for this is that Thue
assumed the existence of a very large solution of (4), and then showed there couldn’t
be many still larger solutions.

How does one solve a Thue equation effectively? Of course one can try congru-
ence arguments. Let me conclude this lecture by mentioning three other general
approaches. The first is the hypergeometric method. It applies to special numbers
a of the form ¥a for a in Z and was initiated by Thue. In 1964 Baker proved with
this method, that for all integers p and ¢ mth q positive,

19’2_—:?/9!:?'*—

where ¢ = 10~° and x = 2.955. Chudnovsky, in 1983, replaced x by 2.43, although
"be did not compute r:, and in 1987 Easton, a Ph.DD. student of mine, showed that
one may take ¢ = 10~% and x = 2.8. The above proofs depend upon an examma.tmn

of a sequence of Padé approximants E g; to (1 ~ z)t/3, Thus

. |
(1~ 2)3¢y{2) - pa(z) = z** R, (2) where p,(x) and g, (z) are polynomialsin z
of degree n with rational coefficients and where R, (%) is a power series in 2 with
rational coefficients. For an appropriate choice of z we find a sequence of rational
approximations to (1 — z)Y/3 which yield an irrationality measure for (1 — z)/3.

Bombieri, in 1982, reworked the Thue-Siegel theorem to find some special cases
where it gave effective improvements on the Liouville exponent. Both this ap-
proach and the hypergeometric approach depend on the existence of a very good
approximation for their success.

In 1966, Baker proved a result that led to the first general effective improvernent
on the Liouville estimate. He was awarded a Fields medal for this work in 1970.
The work originated in transcendence theory and it allows one to effectively solve
all Thue equations, at least in principle. In 1986, Baker and I sharpened these
arguments in the special case a = {/a for a a positive integer which is not a perfect
cube. Let ¢ be the smaliest unit larger than one in the ring of algebraic integers of
Q(¥a). Then for all integers p and ¢ with ¢ positive,

| Va —p/ql > c/q" ,
1

wherec-m,mzi’;-—l/cz and

eq = ¢(50logloge}? . g = 1012 loge .
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Further if m is a positive integer, all solutions of 2> - ay® = m satisfy
max (|z[, [y]} < (cam)®

For example, for the cube root of 14 we have € = 29 -+ 129’1_4 + 5@/14)2 . Thus we
can take ¢ = 10731990 ang

& = 2.9999999999998 .

The best previous result needed about 150 9’s after the decimal point. In spite of
the small size of ¢ and the closeness of & to 3, it is possible to solve these equations
compiletely for small @ and m. One of the ingredients used in the determination of
the complete list of solutions is the Lenstra-Lenstra-Lovasz algorithm.
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