
THUE EQUATIONS AND ELLIPTIC CURVES

C. L. STEWART

Abstract. We discuss estimates for the number of solutions of Thue equations
and for the number of twists of elliptic curves over the rationals with rank at

least 2. We indicate some of the connections between these problems.

1. THUE EQUATIONS
Let F be a binary form with rational integer coefficients and with r ≥ 3. Let h

be a non-zero integer. In 1909, Thue [43] proved that if F is irreducible then the
equation

(1) F (x, y) = h

has only finitely many solutions in integers x and y. Equation (1) is known as Thue’s
equation and the problem of estimating the number of solutions of (1) has a rich
history, see for example Siegel [34], Mahler [20], Erdős and Mahler [8], Davenport
and Roth [6] and Lewis and Mahler [19]. Let NF (h) denote the number of pairs
of integers (x, y) for which (1) holds. Chowla [5], in 1933, refuted a conjecture of
Siegel by proving that there is a positive number C1 such that if k is a non-zero
integer and F (x, y) = x3−ky3 then equation (1) has at least C1 log log |h| solutions
in integers x and y for infinitely many integers h. Mahler, in 1935 [22], strengthened
Chowla’s argument to show that if F is a cubic form with non-zero discriminant
then there is a positive number C2 such that equation (1) has at least C2(log |h|)1/4

solutions for infinitely many integers h. In 1983, Silverman [36] was able to improve
Mahler’s estimate of C2(log |h|)1/4 to C3(log |h|)1/3. Silverman noted that if h0 is
a non-zero integer for which the curve E given by the equation F (x, y) = h0 has
a rational point then E may be given the structure of an elliptic curve. Let r be
the rank of the Mordell-Weil group of E over IQ. Silverman [36], by exploiting the
theory of height functions, was able to prove that

(2) NF (h) > C4(log |h|)r/r+2 ,

for infinitely many integers h. In 1951, Selmer [32] proved that the rank over IQ
of the elliptic curve given by the equation x3 + y3 = 657 is 3. Using this fact,
Silverman deduced from (2) that if F (x, y) = x3 + y3 then

(1) NF (h) > C5(log |h|)3/5 , tag3

for infinitely many integers h. The constructions of Chowla, Mahler and Silverman
produce solutions (x, y) of (1) for which the greatest common divisor of x and y
is large. They do not yield primitive solutions, that is, solutions with x and y
coprime.
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For any integer h let ω(h) denote the number of distinct prime factors of h.
In 1933, Mahler [20] proved that if F is irreducible then (1) has at most C1+ω(h)

6

primitive solutions where C6 depends on F only. A half-century later Evertse [10]
proved that if F has non-zero discriminant D then the number of primitive solutions
of (1) is at most

(4) 2 · 7r
3
,

This resolved a conjecture of Siegel since the bound does not depend on the coeffi-
cients of F . In 1987 Bombieri and Schmidt [2] refined this result for F irreducible
over IQ when they replaced the upper bound (4) with

(5) C7r
1+w(h) ,

where C7 is an absolute constant. They proved that C7 may be taken to be 430 for
r sufficiently large. Further, Bombieri and Schmidt showed that the Thue equation
may have at least r distinct primitive solutions. They gave the example

F (x, y) = xr + a(x− y)(2x− y) · · · (rx− y) ,

where a is a non-zero integer. Then (1, 1), (1, 2), . . . , (1, r) are primitive solutions
of
F (x, y) = 1. In 1991, [41], we proved that the number of primitive solutions of (1)
is at most

4rω(h) ,

for h sufficiently large. For the proof, we reduced the problem to the study of S-
unit equations and then applied estimates of Evertse, Györy, Stewart and Tijdeman
[12] on the number of solutions of such equations. Also [41], by means of an
argument which depends on the Thue-Siegel principle, we recovered the estimate
(5) of Bombieri and Schmidt for the number of solutions of (1) with C7 = 2800
under the less restrictive assumption that F has a non-zero discriminant. This is a
consequence of the following result.

For any non-zero integer n and prime number p let ordpn denote the exact power
of p that divides n. For any real number x let [x] denote the greatest integer less
than or equal to x. Let p be a prime number and let r, k and D be integers with
r ≥ 2 and D 6= 0. We define T = T (r, k, p,D) by

T = min
([(

r − 1
r

)
k

]
, min
j=0,...,r−2

([
ordpD

(j + 1)(j + 2)
+
(

j

j + 2

)
k

]))
and for any non-zero integer g we define G(g, r,D) by

G(g, r,D) =
∏
p|g

pT (r, ordpg,p,D) .

Notice that if ordpg = 1 then
[(

r − 1
r

)]
= 0. Therefore G(g, r,D) = 1 whenever

g is squarefree. Similarly if ordpD = 1 then
[

ordpD
(r − 1)r

]
= 0 and so G(g, r,D) = 1

whenever D is squarefree. Further G(g, r,D) = 1 whenever g and D are coprime.
Recall that the content of a binary form with integer coefficients is the greatest

common divisor of the coefficients of F .
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Theorem 1. Let F be a binary form with integer coefficients of degree r(≥ 3),
content 1 and non-zero discriminant D. Let h be a non-zero integer and let ε be a
positive real number. Let g be any divisor of h with

(6)
g1+ε|D|1/r(r−1)

G(g, r,D)
≥ |h|2/r+ε .

The number of pairs of coprime integers (x, y) for which F (x, y) = h is at most

(7) 2800
(

1 +
1

8εr

)
r1+ω(g) .

Since

T (r, k, p,D) ≤
[

ordpD
(r − 1)r

+
(
r − 2
r

)
k

]
,

we see that
G(|h|, r,D) ≤ |h|(r−2)/r|D|1/r(r−1) .

Therefore (6) is satisfied with g = |h| and ε any positive real number and so the
number of primitive solutions of (1) is at most 2800 r1+ω(h) whenever D(F ) is
non-zero.

Several authors, for instance, Siegel [35], Domar [7] and Evertse and Györy
[11], have given estimates for the number of solutions of Thue equations and Thue
inequalities when the discriminant of F is large relative to |h|. On taking g = 1 in
Theorem 1 we obtain a result of this type since G(1, r,D) = 1 and condition (6)
becomes

(8) |D|1/r(r−1) ≥ |h|2/r+ε .
Thus if (8) holds then the number of solutions of (1) in coprime integers x and y is
at most

2800
(

1 +
1

8εr

)
r .

In general the optimal choice of g will be different from 1 and |h|. Let (D, g2)
denote the greatest common divisor of D and g2. It is readily checked that

G(g, r,D) ≤ (D, g2)1/2 .

Let g be any divisor of h with

(9) g ≥ |h|2/r+ε .
Then, since |D| is at least 1, whenever

(10) |h| ≥ (D, g2)1/ε ,

(6) holds with ε replaced by ε/2. Therefore if F is a binary form, as in the statement
of Theorem 1, and (9) and (10) hold, then the number of solutions of (1) in coprime
integers x and y is at most

(11) 2800
(

1 +
1

4εr

)
r1+ω(g) .

This result sharpens a result of Erdős and Mahler. In 1938, they proved [8] that
there exist positive numbers C8 and C9, which depend on F , such that if g is a
divisor of h with g > h6/7 and h > C8 then the number of primitive solutions of
(1) is at most C1+w(g)

9 . The most significant aspect of estimate (11) is the fact that
the term w(h) of previous estimates has been replaced with w(g). Provided that
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ε < (r − 2)/r condition (9) is satisfied with g a prime for a positive proportion of
the positive integers h and in this case the upper bound (11) has the form C(ε)r2.
By contrast, for almost all integers h, in the sense of natural asymptotic density,
and any δ > 0, w(h) = log log h+ 0((log log h)1/2+δ).

Let s be the number of non-zero coefficients of F . Mueller and Schmidt [28] and
Schmidt [31] have given upper bounds for the number of primitive solutions of (1)
that depend on s and h only. The special case when s = 2 has been intensively
studied by Siegel [35], Evertse [9] and others. As a final remark, we note that
Silverman [37] proved that the number of primitive solutions of (1) is at most

r2r2
(8r3)RF (h) ,

where RF (h) is the rank of the Mordell-Weil group of the Jacobian of the curve (1)
over IQ, provided that the discriminant of F is non-zero and that h is r-powerfree
and sufficiently large relative to F .

2. RANKS OF ELLIPTIC CURVES

Let E be an elliptic curve over IQ with Weiertrass equation y2 = x3 +ax+b, with
a, b, ε IQ and 4a3 +27b2 6= 0. The set of rational points on E together with the point
at infinity can be endowed with a group structure in a natural way by the chord
and tangent process. This group, denoted E(IQ), is abelian and is isomorphic to
the direct product of a finite group and r copies of ZZ; r is known as the rank of E.
By a result of Mazur [24], [25], all 15 possible torsion groups are known. The rank
is less well understood. In 1954 Néron [29] proved that there are infinitely many
elliptic curves over IQ with rank at least 11. In 1991 Mestre [26] improved 11 to 12.
Recently Fermigier [13] produced an example over IQ with rank at least 19. It is
not known if there is a curve of rank at least 20 but there is a widely held belief
that there exist curves of arbitrarily large rank. Computational work suggests that
curves of rank 0 and 1 predominate. Brumer [3] has recently proved, subject to
the Birch and Swinnerton-Dyer conjecture, the Shimura-Taniyama-Weil conjecture
and the Riemann hypothesis for the L-function of elliptic curve, that the average
rank of an elliptic curve, ordered accordingly to its Faltings height, is at most 2.3.

How does the rank vary as we run over twists of a given elliptic curve E? That
is, we restrict our attention to families of curves defined over IQ which are isomor-
phic over lC. There are families of quadratic cubic, quartic and sextic twists, see
Proposition 5.4 of [39]. Let d be a non-zero integer and let Ed denote the quadratic
twist of E given by the equation dy2 = x3 + ax + b. Let r(d) denote the rank of
Ed. Goldfeld [14] conjectured in 1979 that the average value of r(d) is 1/2. In 1960
Honda [17] conjectured that the rank of any twist of a given elliptic curve E over
IQ is bounded by a constant which depends on E only.

Those twists with rank at least 2 are interesting and expected to be somewhat
uncommon. Can one show that there are in fact quite a few of them? The first
theoretical results in this context were due to Gouvêa and Mazur [15] in 1991. Let
ε > 0. Under the assumption of the parity conjecture, they proved that there are
positive numbers C10 and C11, which depend on ε and E, such that for any positive
integer T larger that C10 the number of square-free integers d with |d| ≤ T for
which the rank of Ed is at least 2 is at least C11T

1/2−ε. Mai [23] extended this
work to cubic twists of x3 + y3 = 1. Let ε > 0. He proved, subject to the parity
conjecture for cubic twists (see §4), that there are positive numbers C12 and C13,
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which depend on ε, such that for any T larger than C12 the number of cube-free d
with |d| ≤ T for which the rank of x3 + y3 = d is at least 2 is at least C13T

2/3−ε.
Recently [42], Top and I have given unconditional analogues of the above results.

Let E denote the elliptic curve y2 = x3 + ax+ b with ab 6= 0. We proved that there
exist positive numbers C14 and C15, which depend on E, such that if T exceeds
C14 then the number of square-free integers d with |d| ≤ T for which the rank of
dy2 = x3 + ax + b is at least 2 is at least C15T

1/7/(log T )2. We also gave several
families of curves for which stronger results applied. For example, let t be a rational
number different from -1, 0 and 1 and put u = ((t2 +1)/2t)2. We showed that there
exist positive numbers C16 and C17, which depend on t, such that if T is a real
number larger than C16 then the number of square-free integers d with |d| ≤ T for
which the curve given by

dy2 = x(x− 1)(x− a) ,

has rank at least 3 is at least C17T
1/6. Furthermore we proved that there exist

positive numbers C18 and C19 such that if T is a real number larger than C18 then
the number of sixth power free integers d with |d| ≤ T for which the curve given by

y2 = x3 + d ,

has rank at least 6 is at least C19T
1/27/(log T )2.

Let me outline our strategy for proving these results. We work over the function
field IQ(t) initially. We search for polynomials H in ZZ[t] with non-zero discriminant
for which the rank of the group of IQ(t) points of EH is large where EH is given by
H(t)y2 = x3 +ax+ b. To this end, for several of the families of curves we study, we
make use of polynomials found in Mestre [26] Next we appeal to a specialization
result of Silverman [38] which tells us that for all but finitely many rationals t0
the map ρt0 , where ρt0 : EH(IQ (t))→ EH(t0)(IQ) by sending a point (x(t), y(t)) to
(x(t0), y(t0)), is an injective homomorphism. Thus, if the rank over IQ(t) is large
then the rank of the specialization over IQ is also large, for all but finitely many
rationals t0. We then need to establish how many different twists we get from this
process. For the case of quadratic twists we have to determine how many different
square-free integers d with |d| ≤ T have the property that H(a/b) = dz2 for some
non-zero integers a and b and some rational number z. Equivalently we consider
the binary form H0 with H0(a, b) = bmH(a/b) where m is the smallest even integer
greater than or equal to the degree of H. Since we assume that H is in ZZ[t] and
that d is square-free, it suffices to estimate the number of square-free integers d of
the form H0(a, b).

3. POWER-FREE VALUES OF BINARY FORMS

Let k be an integer with k ≥ 2. We say that an integer n is k-free if it is not
divisible by the k-th power of prime. Let f be a polynomial with integer coefficients
and degree r ≥ 2. Suppose that f is primitive and irreducible. In 1933, Ricci [30]
proved that if k ≥ r then the number of positive integers n, with n at most x,
for which f(n) is k-free is asymptotic to C20x, where C20 is a positive number
which depends on f and k. In 1966 Hooley [18] obtained the analogue of Ricci’s
result when k = r − 1 subject to the additional necessary assumption that there
is no prime p for which pr−1 divides f(n) for all integers n. What happens in the
situation when we replace the polynomial f by a binary form F?
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Let F be a binary form of degree r with integer coefficients and non-zero dis-
criminant D. We write

(12) F (x, y) = arx
r + ar−1x

r−1y + · · ·+ a0y
r .

We shall introduce three counting functions associated with F for each integer k
with k ≥ 2. Let w be the largest positive integer such that wk divides F (a, b) for
all integers a and b. For any real number x let Pk(x) denote the number of pairs of
integers (a, b) with 1 ≤ a ≤ x and 1 ≤ b ≤ x for which F (a, b)/wk is k-free. Further
for any real number x, let Rk(x) denote the number of k-free integers t with |t| ≤ x
for which there are integers a and b with F (a, b) = twk and let Sk(x) denote the
number of k-free integers t with |t| ≤ x for which there exist integers a, b and z
with z non-zero and F (a, b) = tzk. Notice that

(13) Sk(x) ≥ Rk(x) ,

and that for our estimates for the number of twists we require a lower bound for
Sk(x).

Let m denote the largest degree of an irreducible factor of F over IQ. Suppose
that w = 1 and that m ≤ 3. Gouvêa and Mazur [15] were able to modify Hooley’s
sieving argument in order to prove that in this case P2(x) is asymptotic to C21x

2,
where C21 is a positive number which depends on F . One year later, Greaves [16]
employed Selberg’s sieve and Gallagher’s larger sieve to prove that if ara0 6= 0 and
w = 1 then Pk(x) is asymptotic to C22x

2, where C22 is a positive number which
depends on F and k, provided that m is at most 6 when k is 2 and m is at most
2k + 1 otherwise. In [42], Top and I noted that a straightforward modification of
the argument of Greaves allowed one to remove the restriction that w = 1. Combin-
ing this argument with our estimate (11) for the number of solutions of the Thue
equation we proved the following result.

Theorem 2. Let k be an integer with k ≥ 2 Let F be a binary form with integer
coefficients, non-zero discriminant and degree r with r ≥ 3. Let m be the largest
degree of an irreducible factor of F over IQ and suppose that m ≤ 2k + 1 or that
k = 2 and m = 6. There are positive numbers C23 and C24, which depend on k and
F , such that if x is a real number larger than C23 then

(13) Rk(x) > C24x
2/r .

Up to the determination of C24, estimate (14) is best possible by virtue of a
result of Mahler [?]. Erdős and Mahler [8], in 1938, used estimates for the number
of solutions of the Thue equation in a similar fashion. Let F be a binary form, as in
(12), with integer coefficients, non-vanishing discriminant, degree r ≥ 3 and with
ara0 6= 0. They proved that the number of integers t with |t| ≤ x for which there
exist integers a and b with F (a, b) = t is at least C25x

2/r for x sufficiently large
where C25 is a positive number which depends on F .

We remark that Gouvêa and Mazur made use of their estimate for P2(x) to
deduce a lower bound for R2(x) in the special case where F (x, y) = y(x3 + axy2 +
by3), with a and b integers for which 4a3 + 27b2 6= 0. Let ε > 0. They proved that
there exist positive numbers C26 and C27, which depend on a, b and ε, such that if
x exceeds C26 then

R2(x) > C27x
1/2−ε .
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In order to apply the parity conjecture for quadratic twists, Gouvêa and Mazur
needed to estimate the number of square-free values assumed by F (x, y) below a
given bound with additional congruence restrictions on x and y. It is possible to
impose such restrictions for all the estimates for Pk(x), Rk(x) and Sk(x) referred to
in this section but we have not bothered to do so in order to simplify the exposition.

There are several instances in [42] where the restrictions on m in Theorem 2 are
too severe for the theorem to be applicable to the problem of estimating the num-
ber of twists below a given bound. In these situations we appeal to the following
estimate for Sk(x) which is weaker than the estimate obtained from Theorem 2 and
(13) but which applies more generally.

Theorem 3. Let k be an integer with k ≥ 2. Let F be a binary form with integer
coefficients and degree r which is not a constant multiple of a power of a linear
form and which is not divisible over IQ by the k-th power of a non-constant binary
form. There are positive numbers C28 and C29, which depend on F , such that if x
is a real number larger than C28 then

Sk(x) > C29x
2/r/(log x)2 .

A key feature of the proof of Theorem 3 is an appeal to the Chebotarev density
theorem.

4. CUBIC TWISTS OF x3 + y3 = 1
The family of curves Ed

x3 + y3 = d ,

with d a cube-free positive integer, is the family of cubic twists of the elliptic curve
x3 + y3 = 1 and it has been much studied. In 1951, Selmer [32] [33], building on
work of Cassels [4], determined the rank and generators of the Mordell-Weil group
of Ed for all d up to 500. These tables were extended by Stephens [40] in 1968. In
1987 Zagier and Kramaz [44] computed the values of Ld(1) and L

′

d(1) where Ld(s)
is the L-series of the curve Ed for d up to 20,000. They found that for 8,320 of
the cube-free positive integers d, in this range Ld(s) has a root number of -1, or
equivalently a factor of -1 in its functional equation. Of these 8,320 integers d, 179
also have L

′

d(1) = 0 whence, by the Birch and Swinnerton-Dyer conjecture, the
rank of Ed is odd and at least 3.

In [42] Top and I proved that there are positive numbers C30, C31 and C32 such
that if T is a real number larger than C30 then the number of cube-free integers d
with |d| ≤ T for which Ed has rank at least 2 is at least C31T

1/3 and for which Ed
has rank at least 3 is at least C32T

1/6.
In 1966 Birch and Stephens [1] gave the following explicit version of the parity

conjecture for cubic twists.

Parity conjecture for cubic twists. Let d be a cube-free integer and let Ed be
the elliptic curve given by x3 + y3 = d. Let r(d) denote the rank of Ed. We have

(−1)r(d) = −w3

∏
p6=2

wp ,

where
w3 = −1 if d ≡ ±1,±3 (mod 9), w3 = 1 otherwise,
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and
wp = −1 if p|d and p ≡ 2 (mod 3), wp = 1 otherwise.

Recall that Mai [23] had assumed this conjecture in order to estimate the number
of twists Ed of rank at least 2. If we assume the above parity conjecture we are
able to show that there are positive numbers C33 and C34 such that if T exceeds
C33 then the number of cube-free integers d with |d| ≤ T for which Ed has rank at
least 4 is at least C34T

1/6.
We shall now indicate briefly how we produce cubic twists of rank at least 3. It

turns out to be more convenient to work with the family E
′

d where E
′

d is the curve
given by the equation

(14) xy(x+ y) = d .

We remark that the rank of E
′

d is the same as the rank of Ed. Of course we can also
view (15) as a Thue equation and in [41] we proved that there are infinitely many
integers d for which the Thue equation (15) has at least 18 solutions in coprime
integers x and y. We established in [42] that the elliptic curve defined over the
function field IQ(t) by the equation

(15) xy(x+ y) = (t6 − 1)(t6 − 9)

has IQ(t) rank at least 3. In particular, P1, P2 and P3 are in dependent points on
(16) where

P1 =
(
−t2(t3 − 1),

3 + t3

t

)
, P2 =

(
t3 − 3
t

, t2(1 + t3)
)

and

P3 =
(

4,
t6 − 9

2

)
. Putting t = a/b and multiplying by b12 we see that it suffices to

count the number of cube-free integers d with |d| ≤ T for which F (a, b) = d where

F (X,Y ) = (X6 − Y 6)(X6 − 9Y 6) .

We then apply Theorem 2 to obtain our result.
We claim that if we take t = 11 in (16) we obtain a twist of xy(x + y) = 1 of

rank at least 6. We may transform (16) into the Weierstrass form

Y 2 = X3 + 16d2 ,

by putting X = 4y(x+ y) and Y = 4y(x+ y)(x+ 2y). For t = 11 we find that
d = (116 − 1)(116 − 9) = 28 · 32 · 5 · 7 · 19 · 23 · 29 · 37 · 83 and so it suffices to prove
that the rank of

(16) Y 2 = X3 + (2 · 32 · 5 · 7 · 19 · 23 · 29 · 37 · 83)2

is at least 6. Consider the points P1 = [286769980, 4856306226310], P2 = [91402920, 874200377610],
P3 = [7628364, 32327735238], P4 = [−7971984, 9722830986], P5 = [142000965, 1692320167215]
and P6 = [18190125, 81362973915] on (16). We used Apecs on Maple V to check
that the Grammian height-pairing determinant for P1, . . . , P6 is 22870.45105 . . . and
so the rank of (16) is at least 6. On combining this information with Silverman’s
result (2) we deduce the next result, which improves upon (3).
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Theorem 4. There exists a positive number C35 such that for infinitely many
integers h the equation

x3 + y3 = h ,

has at least
C35(log h)3/4

solutions in integers x and y.
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[34] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. preuss. Akad.

Wiss. Phys. Math. Kl. (1929) No. 1.

[35] , Die Gleichung axn − byn = c, Math. Ann. 114 (1937), pp. 57–68.
[36] J. H. Silverman, Integer points on curves of genus 1, J. London Math. Soc. (2) 28 (1983),

pp. 1–7.

[37] , Representation of integers by binary forms and the rank of the Mordell-Weil group,
Invent. Math. 74 (1983), pp. 281–292.

[38] , Heights and the specialization map for families of abelian varieties, J. reine u.
angew. Math., 342 (1983), pp. 197–211.

[39] , The arithmetic of elliptic curves. Springer-Verlag, Berlin, New York and Heidelberg,

1985. Graduate Texts in Math.
[40] N. M. Stephens, The diophantine equation X3 +Y 3 = DZ3 and the conjectures of Birch and

Swinnerton-Dyer, J. reine u. angew. Math., 231 (1968), pp. 121–162.
[41] C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations,

J. Amer. Math. Soc., 4 (1991), pp. 793–835.

[42] C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary
forms, J. Amer. Math. Soc., to appear.
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