Department of Pure Mathematics

Algebra Comprehensive Examination

2:30-5:30pm, January 21, 2015

Prepared by Y.-R. Liu and M. Satriano

Instructions: Answer seven of the following eight questions. If you answer all eight, clearly indicate which question you do not want marked. In the following, \mathbb{Q} denotes the set of rational numbers, \mathbb{Z} the set of integers and \mathbb{N} the set of positive integers.

Linear Algebra

1. Let A be a $n \times n$ complex matrix and A^{*} the adjoint of A, i.e., $\left(A^{*}\right)_{i j}=\bar{A}_{j i}$.
(a) Prove that $I+A^{*} A$ is invertible, where I is the identity matrix.
(b) Let $\zeta_{n}=e^{2 \pi i / n}$ be a nth root of 1 . Suppose that the $i j$ th entry of A is defined by $A_{i j}=\zeta_{n}^{i j} / \sqrt{n}$. Prove that A is unitary, i.e., $A^{*} A=I$.
2. Let $T: V \rightarrow V$ be a liner transformation of vector spaces. Suppose that for $v \in V$, $T^{k}(v)=0$, but $T^{k-1}(v) \neq 0$.
(a) Prove that the set $S=\left\{v, T(v), \ldots, T^{k-1}(v)\right\}$ is linearly independent.
(b) Prove that the subspace W generated by S is T-invariant.
(c) Show that the restriction \widehat{T} of T to W is nilpotent of index k, i.e., $\widehat{T}^{k}=0$ (the zero matrix), but $\widehat{T}^{k-1} \neq 0$. Then write down the matrix of T in the basis $\left\{T^{k-1}(v), \ldots, T(v), v\right\}$ of W. Justify your answer.

Group Theory

3. (a) Let G be a finite group, and let p be a prime with $p \| G \mid$. Let n_{p} be the number of Sylow p-subgroups of G. Show that if $n_{p} \neq 1$ and $|G|$ does not divide n_{p} !, then G is not simple.
(b) Prove there are no simple groups of order 80.
4. The following questions explore properties of \mathbb{Q} viewed as a group under addition.
(a) Prove that \mathbb{Q} (under addition) is not a direct product of any two non-trivial subgroups.
(b) Let P be the set of primes. Given $\varnothing \neq S \subseteq P$, let G_{S} be the set of rational numbers of the form a / b with $a, b \in \mathbb{Z}$ relatively prime, $b \neq 0$, and either $b=1$ or every prime divisor of b is an element of S. Prove that G_{S} is a subgroup of \mathbb{Q} under addition.
(c) Show that if S and T are non-trivial subsets of P and $G_{S}=G_{T}$, then $S=T$. Conclude that \mathbb{Q} is a countable group with uncountably many subgroups.

Ring Theory

5. Let $R=\mathbb{Z}[\sqrt{-5}]$. Let $\psi: R \rightarrow R \bigoplus R$ be the R-module map defined by $\psi(1)=$ $(2,1+\sqrt{-5})$ and let M be the cokernel of ψ, i.e., $M \simeq(R \bigoplus R) / \operatorname{im} \psi$.
(a) Let $\langle 2,1+\sqrt{-5}\rangle$ be the ideal of R generated by 2 and $(1+\sqrt{-5})$. Prove that $\langle 2,1+\sqrt{-5}\rangle \neq R$.
(b) Prove that M does not contain a free sub-module of rank 2 .
(c) Is M a free R-module? Justify your answer with proof.
6. Let $V=\bigoplus_{i \in \mathbb{N}} k$ be a countably infinite dimensional vector space over a field k and let $R=\operatorname{End}_{k}(V)$.
(a) Let m be a positive integer and let $f \in R$ be given by $f\left(a_{1}, a_{2}, \ldots\right)=\left(a_{m}, a_{m+1}, \ldots\right)$. Prove that the two-sided ideal \mathcal{J} generated by f is R.
(b) Prove that $\mathcal{K}=\{f \in R \mid \operatorname{rank}(f)<\infty\}$ is a non-trivial two-sided ideal of R.
(c) Show that if \mathcal{J} is any two-sided ideal of R not contained in \mathcal{K}, then $\mathcal{J}=R$.

Fields and Galois Theory

7. Let $n \in \mathbb{N}$ and $f(x)=x^{n}-p$ with p a prime.
(a) Find the splitting field E of f over \mathbb{Q}. Justify your answer.
(b) If n is a prime, prove that $[E: \mathbb{Q}]=n(n-1)$.
8. (a) The polynomial $f(x)=x^{4}+2 x+2 \in \mathbb{Q}[x]$ is irreducible. Let E_{f} be the splitting field of $f(x)$ over \mathbb{Q}. Compute the Galois group $\operatorname{Gal}_{\mathbb{Q}}\left(E_{f}\right)$. Justify your answer.
(b) The polynomial $g(x)=x^{4}-2 \in \mathbb{Q}[x]$ is irreducible. Let E_{g} be the splitting field of $g(x)$ over \mathbb{Q}. Compute the Galois group $\operatorname{Gal}_{\mathbb{Q}}\left(E_{g}\right)$. Justify your answer.
