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Abstract

We prove that there are infinitely many inequivalent cubic binary forms F with content 1 for which the Thue equation F(x, y) =
m has � (logm)6/7 solutions in integers x and y for infinitely many integers m. To cite this article: C.L. Stewart, C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Points entiers sur les équations cubiques de Thue. Nous démontrons qu’il existe une infinité de formes binaires cubiques F

avec contenu 1 qui sont inéquivalentes et pour lesquelles l’équation de Thue F(x, y) = m a � (logm)6/7 a des solutions entiers x

et y pour une infinité d’entiers m. Pour citer cet article : C.L. Stewart, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Let F(x, y) = anx
n + an−1x

n−1y + · · · + a0y
n be a binary form with integer coefficients, n � 3 and non-zero

discriminant. Let m be a non-zero integer. The equation

F(x, y) = m, (1)

in integers x and y is known as a Thue equation and it has only finitely many solutions. This was first established by
Thue [9] in 1909 in the case that F is irreducible over the rationals. Consider also the Thue inequality

∣∣F(x, y)
∣∣ � m, (2)

for m a positive integer. Let AF denote the area of the set of points (x, y) in R2 for which (2) holds when m = 1. In
1935 Mahler [3] proved that the number of solutions of (2) in integers x and y is asymptotic to AF m2/n as m tends to
infinity. Thus for most integers m, Eq. (1) has no solution.

✩ This research was supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering
Research Council of Canada.

E-mail address: cstewart@uwaterloo.ca.
1631-073X/$ – see front matter © 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.
doi:10.1016/j.crma.2009.04.018



716 C.L. Stewart / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 715–718
Let NF (m) denote the number of solutions of (1) in integers x and y. Chowla [1], in 1933, building on earlier work
of Mordell and Pillai, proved that there is a positive number c0 such that if k is a non-zero integer and F(x, y) =
x3 − ky3 then

NF (m) > c0 log logm,

for infinitely many positive integers m. In 1935 Mahler [4] proved that for each cubic form F , with non-zero discrim-
inant, there is a positive number c1, which depends on F , such that

NF (m) > c1(logm)1/4, (3)

for infinitely many positive integers m. In 1983 Silverman [7] replaced the exponent 1/4 by 1/3 in (3) and recently
Stewart [8] showed one may replace the exponent 1/4 in (3) by 1/2. In addition, Silverman [7] showed that there
are infinitely many cubic forms F with integer coefficients and non-zero discriminant for which (3) holds with an
exponent of 2/3 in place of 1/4. He deduced both results from the following theorem:

Silverman’s Theorem. Let F be a cubic binary form with integer coefficients and non-zero discriminant. Let m0 be
a non-zero integer such that the curve E :F(x, y) = m0z

3 has a point defined over Q. Using that point as origin, we
give E the structure of an elliptic curve. Let r be the rank of the Mordell–Weil group of E/Q. Then there is a positive
number c2, which depends on F , such that

NF (m) > c2(logm)r/(r+2),

for infinitely many positive integers m.

With Liverance [2] we showed, by means of Silverman’s Theorem, that there are cubic forms with non-zero dis-
criminant for which (3) holds with 6/7 in place of 1/4. In this note we shall show that we may adapt our argument
to prove that there are infinitely many inequivalent forms with this property. We shall now discuss the notion of
equivalence of forms which is appropriate in this context.

Let A = (
a b
c d

)
, with a, b, c and d integers. Let F be a binary form with integer coefficients, degree n(� 2) and

non-zero discriminant D(F). We define the binary form FA by

FA(x, y) = F(ax + by, cx + dy).

We remark that

D(FA) = (detA)n(n−1)D(F ). (4)

Further, for any non-zero integer t we have

D(tF ) = t2(n−1)D(F ). (5)

Notice that if A is in GL(2,Z), so that A has integer entries and determinant ±1, and (x, y) is a solution of (1) in
integers then A(x,y) = (ax + by, cx + dy) is a solution of

FA−1(X,Y ) = m

in integers X and Y . Further, if F has integer coefficients and a non-zero discriminant then FA−1 also has integer
coefficients and a non-zero discriminant. In particular, by (4),

D(F) = D(FA−1). (6)

For any A in GL(2,Z) we say that FA and −FA are equivalent to F . Observe that the number of solutions of (1) is
unchanged if we replace F by FA or by −FA when F has odd degree. Furthermore, by (4) and (5), equivalent forms
have the same discriminant.

Suppose that F is a binary form with integer coefficients and non-zero discriminant and that k is a non-zero rational
number for which kF has integer coefficients. If the discriminant of F is non-zero then so is the discriminant of kF.

Furthermore the number of solutions of (1) in integers x and y is the same as the number of solutions of

kF (x, y) = km,
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in integers x and y. Accordingly, when looking for forms F for which the Thue equation (1) has many solutions
we may restrict our attention to binary forms F for which the greatest common divisor of the coefficients is 1 or,
equivalently, for which the content is 1.

Theorem. Let r be a positive integer which is the rank of the Mordell–Weil group of rational points of the elliptic
curve E : y2 = x3 + D, with origin the point at infinity, for some non-zero integer D. There exist infinitely many
inequivalent cubic binary forms F with integer coefficients, content 1 and non-zero discriminant for which there is a
positive number c, which depends on F, such that

NF (m) > c(logm)r/(r+2),

for infinitely many positive integers m.

Proof. Let P = (s, t) be a rational point on E with st �= 0. We put

F(x, y) = x3 − 3sx2y − 4Dy3.

Note that the discriminant �(F) of F is −432Dt2. The curve C :F(x, y) = 1/2t is a non-singular cubic curve since
st �= 0. Further Q = (−s/t,−1/2t) is a point on C. With Q as the origin, C is an elliptic curve.

Let H and G be the quadratic and cubic covariants of F and recall, Theorem 1 of Chapter 24 of [5], that

G2 = 4H 3 − 27�(F)F 2. (7)

In particular, we have

(4G)2 = (4H)3 + (432t)2DF 2,

where

H(x,y) = 9
(
s2x2 + 4Dxy − 4sDy2)

and

G(x,y) = 54
((

s3 + 2D
)
x3 − 6sDx2y + 12s2Dxy2 + 8D2y3).

We have C :F(x, y) = z3/2t and E : zy2 = x3 + Dz3 in P2. Define

λ :C → E

by

λ
([x, y, z]) = [

zH(x, y)/9,G(x, y)/54, z3].

Notice that λ is regular at those points [x, y, z] for which either z �= 0 or G(x,y) �= 0. If z = 0 and G(x,y) = 0 then
F(x, y) = 0 and, by (7), H(x,y) = 0. But the resultant of the binary forms H(X,Y )/9 and F(X,Y ) is 256D2(s3 +
D)2 = 256D2t4 which is non-zero. Therefore λ is a non-constant morphism and so is an isogeny from the elliptic
curve C with origin Q to the elliptic curve E with origin λ(Q) (= [s,−t,1]). Further, the kernel of any non-zero
isogeny between elliptic curves is a finite group. Since λ is defined over Q the rank of the Mordell–Weil group of
rational points of C with origin Q is the same as that of E with origin λ(Q). Furthermore, the rank r of the elliptic
curve E over Q does not depend on the choice of rational point for the origin. Therefore the rank of the group of
rational points of C with origin Q is r .

Let s = s1/s2 and t = t1/t2 with s1 and s2 coprime integers with s2 > 0 and t1 and t2 defined similarly. Put
b = s2/(3, s2) and F̃ (x, y) = bF(x, y). Note that F̃ is a cubic binary form with integer coefficients and content 1.
Furthermore, recall (5), the discriminant �(F̃ ) of F̃ is −432b4t2D. Put m0 = (b/2t)(2t1)

3 and C1 : F̃ (x, y) = m0z
3.

Note that m0 is a non-zero integer and C1 with origin (−s/t,−1/2t,1/2t1) is an elliptic curve whose group of rational
points has rank r. Thus by Silverman’s Theorem there is a positive number c3, which depends on F̃ , such that

N
F̃
(m) > c3(logm)r/(r+2), (8)

for infinitely many positive integers m.
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To complete the proof of our theorem it suffices to show that we can find infinitely many inequivalent forms F̃ with
content 1 for which (8) holds. To this end we note, by our earlier discussion, that it is enough to prove that we can
find forms F̃ with content 1 associated with points on E and with discriminants of arbitrarily large absolute value. In
particular it suffices to show that b4t2 is unbounded or, equivalently, s4

2(t1/t2)
2 is unbounded as we run over rational

points (s, t) on E with s, t �= 0. Since t2 = s3 + D we see that s3
2 = ±t2

2 . Thus

s4
2(t1/t2)

2 = |s2|t2
1 = |t2|2/3t2

1 ,

which is unbounded since r is positive and so there are rational points (s, t) on E with t of arbitrarily large height. �
In 1987 Quer [6] investigated quadratic number fields for which the 3-rank of the ideal class group is 6. In

this context he found three elliptic curves of the form y2 = x3 + D with rank 12 (D = −6533891544658786928,

−49317122354452517296,−50586546986138596528). Therefore we deduce the following result as a consequence
of our main theorem:

Corollary. There exist infinitely many inequivalent cubic binary forms F with integer coefficients, content 1 and
non-zero discriminant such that

NF (m) > c4(logm)6/7, (9)

for infinitely many positive integers m, where c4 is a positive number which depends on F .

Since P = (2109824,1690470036) is a point on y2 = x3 − 6533891544658786928 we see from the proof of the
main theorem that (9) holds with

F(x, y) = x3 − 6329472x2y + 26135566178635147712y3.
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