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FORM INEQUALITIES

C.L. STEWART

Abstract. In 2001 Thunder gave an estimate for the number of integer
solutions of decomposable form inequalities under the assumption that
the forms are of finite type. The purpose of this article is to generalize
this result to forms which are of essentially finite type. In the special
case of binary forms this gives an improvement of a result of Mahler
from 1933.

1. Introduction

Let n be an integer with n ≥ 2 and put X= (X1, ..., Xn). Let F be

a non-zero decomposable form in n variables with integer coefficients and

degree d with d > n, so

(1) F (X) = L1(X)....Ld(X)

where L1(X), ..., Ld(X) are linear forms in C[X1, ..., Xn]. Let m be a positive

integer and let NF (m) denote the number of points (a1, ..., an) with integer

coordinates for which

(2) |F (a1, ..., an)| ≤ m.

Let VF denote the volume of the set

{(x1, ..., xn) ∈ Rn : |F (x1, ..., xn)| ≤ 1}.

By homogeneity the volume of

(3) {(x1, ..., xn) ∈ Rn : |F (x1, ..., xn)| ≤ m}

is VFm
n/d and one might suppose that NF (m) is close to VFm

n/d.

F is said to be of finite type if VF is finite and the same is true for F

restricted to any non-trivial rational subspace. In particular, for every n′-

dimensional subspace S of Rn defined over Q the n′-dimensional volume of

F restricted to S is finite. In 2001 Thunder [19] showed that if F is of finite

type then

(4) NF (m) ≪n,d m
n/d;
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throughout this paper the symbol ≪ together with a subscript will mean

less than a positive number which depends on the terms in the subscript.

Thunder’s result resolved a conjecture of Schmidt [15] and is best possible

up to the dependence of the implicit constant on n and d.

For any element x = (x1, ..., xn) in Cn let ∥x∥ = (x1x1 + ... + xnxn)
1/2.

For any linear form L(X) = α1X1+ ...+αnXn in C[X1, ..., Xn] let L denote

the coefficient vector (α1, ..., αn) of L(X). We define the quantity H(F ) of

F by

H(F ) =
d∏

i=1

∥Li∥ .

Thunder [19], [21] also proved that if F is of finite type and F is not

proportional to a power of a definite quadratic form in 2 variables then

there exist positive numbers aF and cF such that

(5) |NF (m)−mn/dVF | ≪n,d H(F )cF (1 + logm)n−2m
n−1
d−aF .

If the discriminant of the form is non-zero then one may take aF = 1 and

cF =
(
d−1
n−1

)
− 1.

If T is in GLn(Z) then the form G(X) = F (T (X)) is said to be equivalent

to F . Then VF = VG but H(F ) need not be equal to H(G). Put

H0(F ) = min
T

H(F ◦ T )

where the minimum is taken over T in GLn(Z). Thunder [20] showed that

if F is of finite type and F is not proportional to a power of a definite

quadratic form in 2 variables then

VF ≪n,d H0(F )−1/d(1 + logH0(F ))n−1.

In 1933 Mahler [11] proved that if n = 2 and F (X1, X2) is a binary form

with integer coefficients which is irreducible over the rationals then

(6) |NF (m)−m2/dVF | ≪F m1/(d−1).

Thunder’s result (5) is a generalization of (6) since if F is irreducible over

Q then aF = 1 and F is of finite type.

Ramachandra, in 1969 [12], was the first to obtain an asymptotic result

for NF (m) for a class of decomposable forms with n ≥ 3. He did so when F

has the shape

F (X) = NK/Q(X1 + αX2 + α2X3 + ...+ αn−1Xn)

where K = Q(α) is a number field of degree r with r ≥ 8n6 and NK/Q

denotes the norm from K to Q.
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Let α1, ..., αn be non-zero algebraic numbers and put K = Q(α1, ..., αn).

Suppose that F (X) is a norm form so

F (X) = NK/Q(α1X1 + ...+ αnXn) =
∏
σ

σ(α1X1 + ...+ αnXn)

where the product is taken over the isomorphic embeddings σ of K into C.
Let V be the vector space of all rational linear combinations of α1, ..., αn.

For each subfield J of K we define the linear subspace V J of V given by the

elements of V which remain in V after multiplication by any element of J.
F is said to be non-degenerate if α1, ..., αn are linearly independent over Q
and if V J = {0} for each subfield J of K which is not Q or an imaginary

quadratic field. In 1972 Schmidt [13] proved that NF (m) is finite for each

positive integer m if and only if F is non-degenerate; see [6] and Chapter

9 of [9] for quantitative results for decomposable form equations. In 2000

Evertse [8] proved that if F is a non-degenerate norm form then

(7) NF (m) ≤ (16d)(n+1)3/3(1 + logm)n(n−1)/2m(n+
∑n−1

m=2 1/m)/d).

Non-degenerate norm forms are of finite type and so (4) gives a better

dependence on m than (7) although the dependence of the upper bound on

n and d is not explicit in (4).

Let N∗
F (m) denote the number of vectors (a1, ..., an) with integer coor-

dinates for which

(8) 0 < |F (a1, ..., an)| ≤ m.

If F is of finite type then F does not vanish at any non-zero integer point

and so

(9) NF (m) = 1 +N∗
F (m).

There exist distinct irreducible polynomials F1, ..., Fk with integer coef-

ficients, content 1 and degrees d1, ..., dk respectively and there exist positive

integers l1, ..., lk for which d1l1 + ...+ dklk = d such that

(10) F (X) = C0F1(X)l1 ...Fk(X)lk ,

where |C0| is the content of F . By, for instance, the discussion in Section

2, for each integer j with 1 ≤ j ≤ k the polynomial Fj(X) is of the form

aNK/Q(L(X)) where a is a non-zero rational number, K is a number field of

degree dj over Q, NK/Q denotes the norm from K to Q and L(X) is a linear

form which is proportional to a linear form Li with i from {1, ..., d}.
For i = 1, ..., d let Bi be the rational subspace of Rn for which Li(X) = 0.

Note that if Li(X) and Lj(X) divide Fh(X) in C[X] for some h with 1 ≤
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h ≤ k then Bi = Bj. Thus each polynomial Fi(X) determines exactly one

rational subspace of Rn, say Ai, for which Fi(X) = 0. Put

(11) dF =

{
0 if Ai = {0} for i = 1, ..., k

max{li1di1 + ...+ lijdij} otherwise,

where the maximum is taken over those tuples (i1, ..., ij) of distinct integers

for which Ai1 ∩ ... ∩ Aij is different from the zero vector or equivalently for

which there is a non-zero integer point (s1, ..., sn) for which Fim(s1, ..., sn) =

0 for m = 1, ..., j.

F is said to be of essentially finite type if VF is finite, V (F̃ ) is finite

whenever F̃ is F restricted to a rational subspace of Rn which is not a

subspace of Ai for i = 1, ..., k and

(12) A1 ∩ ... ∩ Ak = {0}.

If F is of essentially finite type then, by virtue of (12) ,

(13) dF < d.

Further, if F is of finite type then it is also of essentially finite type since in

this case Ai = {0} for i = 1, ..., k and so (12) holds.

Theorem 1. Let F (X) be a non-zero decomposable form in n variables

with integer coefficients and degree d with d > n ≥ 2 and let m be a positive

integer. If F is of essentially finite type then

(14) N∗
F (m) ≪n,d m

1
d
+ n−1

d−dF .

Notice that if F is of finite type then dF = 0 and (4) follows from (9)

and (14).

The proof of Theorem 1 depends on a quantitative version of Schmidt’s

Subspace Theorem due to Evertse [7]. A key feature of Theorem 1 is that

the upper bound for N∗
F (m) is independent of the coefficients of the form

F . We require such an estimate in order to prove the analogue of estimate

(5) for forms of essentially finite type. Before stating such a result we shall

make explicit the quantities aF and cF .

Any linear form Li(X) in the decomposition of F (X) as in (1) is a factor

of Fj(X) for some j with 1 ≤ j ≤ k by (10) and so is proportional to a

linear form with coefficients in a number field of degree the degree of Fj(X).

For a factorization as in (1) of F we let I(F ) denote the set of all n-tuples

(Li1 , ...,Lin) of linearly independent coefficient vectors. For each linear form

Li(X) from (1) we denote by b(Li) the number of n-tuples in I(F ) which

contain Li and we put

bF = max{b(L1), ..., b(Ln)}.
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Next let J(F ) be the subset of I(F ) consisting of n-tuples (Li1 , ...,Lin) for

which for j = 1, ..., n− 1 either Lij+1
is proportional to Lij or Lij is in the

span of Li1 , ...,Lij . Thunder [19] showed that J(F ) is non-empty provided

that I(F ) is non-empty. We then put

aF = max

{
the number of Li in the span of Li1 , ...,Lij

j

}
where the maximum is taken over integers j from {1, ..., n−1} and n-tuples

(Li1 , ...,Lin) from J(F ). Thunder proved, see (16) of [19], that if F is of

finite type and F is not proportional to a power of a definite quadratic form

in 2 variables then

(15) 1 ≤ aF ≤ d

n
− 1

n(n− 1)
,

and the same argument shows that (15) holds if F is of essentially finite

type and F is not proportional to a power of a definite quadratic form in 2

variables. We note that aF = 1 if and only if the discriminant ∆F of F is

non-zero.

Finally we put

cF =

{(
d−1
n−1

)
− 1 if ∆F ̸= 0

bF
n!aF

(d− (n− 1)aF )− 1
aF

otherwise.

For any set X let |X| denote its cardinality. Let I ′(F ) be the subset of

I(F ) consisting of the n-tuples (Li1 , ...,Lin) of linearly independent coeffi-

cient vectors with i1 < i2 < ... < in. Then

|I ′(F )| ≤
(
d

n

)
.

Since bF ≤ n!|I ′(F )| and aF ≥ 1 we find that if ∆F = 0 then

cF ≤
(
d

n

)(
d

aF
− (n− 1)

)
hence

(16) cF ≤
(
d

n

)
(d− n+ 1).

Certainly
(
d−1
n−1

)
<

(
d
n

)
when d > n and so (16) also holds when ∆F ̸= 0.

Further bF
n!

≥ 1 from which it follows that when ∆F = 0

cF ≥ d− (n− 1)aF − 1

aF

and so, by (15),

cF ≥ (n− 1)(d− n+ 1)

d(n− 1)− 1
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hence

(17) cF ≥ d− n+ 1

d
.

Note that (17) also holds when ∆F ̸= 0.

Theorem 2. Let F (X) be a decomposable form in n variables with integer

coefficients and degree d with d > n ≥ 2 and let m be an integer with m > 1.

If F is of essentially finite type then

(18)

|N∗
F (m)−mn/dVF | ≪n,d H(F )cF (logm)n−2m

n−1
d−aF +(logm+logH(F ))n−1m

1
d
+ n−2

d−dF

If F is of finite type then dF = 0 and aF ≥ 1. Thus

1

d
+

n− 2

d− dF
=

n− 1

d
<

n− 1

d− aF

and so (5) follows from Theorem 2.

For the proof we appeal to Theorem 1 and, once again, to a quantitative

version of the Subspace Theorem.

The discriminant ∆F of a form as in (1) is given by

∆F =
∏

(i1,...,in)

det(Ltr
i1
, ...,Ltr

in)

where the product is taken over all n-tuples of distinct integers (i1, ..., in)

with 1 ≤ ij ≤ d for j = 1, ..., n. Here Ltr denotes the transpose of L.

Let B(x, y) denote the Beta function, see [5]. In 1996 Bean and Thunder

[2] proved that if ∆F ̸= 0 then

(19) |∆F |
(d−n)!

d! VF ≤ Cn

where

Cn =
2

n

n−1∏
k=1

(
B(

1

n+ 1
,

k

n+ 1
) +B(

n− k

n+ 1
,

k

n+ 1
) +B(

n− k

n+ 1
,

1

n+ 1
)

)
;

the case when n = 2 was established by Bean [1] in 1994. They proved that

the upper bound of Cn is sharp in (19) and that Cn grows like a constant

times (2n)n. If ∆F is non-zero then aF = 1 and cF =
(
d−1
n−1

)
− 1. Thus by

Theorem 2 and (19) we have the following result.

Corollary 3. Let F (X) be a decomposable form in n variables with integer

coefficients and degree d with d > n ≥ 2 and let m be an integer with m > 1.

If F is of essentially finite type and ∆F ̸= 0 then

(20)

N∗
F (m) ≪n,d m

n/d|∆F |−
(d−n)!

n! +H(F )(
d−1
n−1)−1(logm)n−2m

n−1
d−1+(logm+logH(F ))n−1m

1
d
+ n−2

d−dF
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When n = 2, F (X) is a binary form and if ∆F is non-zero then F is of

essentially finite type and dF is either 0 or 1. Since aF = 1 we obtain our

next result.

Corollary 4. Let F (X) be a binary form with integer coefficients, degree d

with d ≥ 3 and ∆F ̸= 0. Let m be a positive integer. Then

(21) |N∗
F (m)−m2/dVF | ≪d m

1
d−1H(F )d−2.

Corollary 4 generalizes Mahler’s result (6), where F is assumed to be

irreducible over the rationals, to the case where F has a non-zero discrimi-

nant. By (5) such a result holds when F is of finite type but that does not

give Corollary 4 in the case when F has a linear factor over the rationals.

Corollary 4 is required in the work of Stewart and Xiao [17] on the number

of integers represented by a binary form with a non-zero discriminant and

the number of k-free integers represented by such a form [18] and the author

is grateful to Professor Fouvry for pointing this out.

The proofs of Theorems 1 and 2 build on the work of Thunder [19]. He

proceeds by establishing an upper bound for each x in Rn for∏n
j=1 |Lij(x)|

|det(Ltr
i1
, ...,Ltr

in)|
for some n-tuple (Li1 , ...,Lin) from I(F ). Thunder establishes two such es-

timates and they are given in Lemma 5 and Lemma 6 of [19]. Our main

innovation is a modification of Lemma 6 in order to treat the more general

situation when F is of essentially finite type.

I would like to thank Professors Jeff Thunder and Stanley Xiao for some

helpful comments on this work.

2. Small products of linear forms

Let F (X) be a decomposable form in n variables with integer coefficients

and degree d with d > n ≥ 2 as in (1).

Lemma 5. If F (X) is of essentially finite type and F is not proportional to

a power of a definite quadratic form in 2 variables then there is a positive

number C1 = C1(n, d), which depends on n and d, such that for every x in

Rn there is an n-tuple (Li1 , ...,Lin) in J(F ) for which∏n
j=1 |Lij(x)|

|det(Ltr
i1
, ...,Ltr

in)|
< C1

(
|F (x)|

∥x∥d−naF

)1/aF

H(F )cF .

Proof. This follows from Lemma 5 of [19] since if F is of essentially finite

type and F is not proportional to a power of a definite form in 2 variables

then, by (15), aF < d/n. □
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Suppose that R is a decomposable form in n variables with integer co-

efficients and degree d with d > n ≥ 2 as in (1). Suppose further that R is

irreducible over Q and has content 1. Then, by Lemme 1 on p. 85 of [3], R

is equivalent under GLn(Z) to a form for which the coefficient of Xd
1 , say

A, is non-zero. Thus we may assume that

R(X) = A
d∏

j=1

(X1 + µ2,jX2 + ...+ µn,jXn)

and, with Xi = 1 and Xj = 0 for i from {2, ..., n} and j = 2, ..., n with

j ̸= i,

R(X1, 0, ..., 0, 1, 0, ...0) = A
d∏

j=1

(X1 + µi,j)

is a polynomial with integer coefficients. Therefore there is a linear form

L(X) = X1 + µ2,1X2 + ... + µn,1Xn which divides R with µi,1 a root of

R(X1, 0, ..., 0, 1, 0, ..., 0) where the 1 is in the i-th coordinate. Put K =

Q(µ2,1, ..., µn,1). Then

NK/Q(L(X)) =
∏
σ

σ(L(X))

where the product is taken over the isomorphisms of K into C. NK/Q(L(X))

is in Q[X] and is irreducible, see Théorème 2 of [3]. Thus, since NK/Q(L(X))

divides R, R is a rational multiple of NK/Q(L(X)). The coordinates of

Aσ(L(X)) are algebraic integers and so AdNK/Q(L(X)) is a polynomial with

integer coefficients. Since R has content 1 there exists a non-zero integer m

such that

mR = Ad
∏
σ

σ(L(X)) =
∏
σ

σ(AL(X))

hence

(22) R =
1

m

∏
σ

σ(AL(X)).

In particular

(23) R =
∏
σ

Mσ(X)

where Mid(X) = 1
m
AL(X) and Mσ(X) = σ(AL(X)) for σ different from the

identity.

Recall that if T is in GLn(Z) then the form G(X) = F (T (X)) is said to

be equivalent to F . Then VF = VG and N∗
G(m) = N∗

F (m) for each positive

integer m.
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Lemma 6. If F (X) is of essentially finite type and H(F ) is minimal among

forms equivalent to F then there is a positive number C2 = C2(n, d), which

depends on n and d, such that for every x in Rn there is an n-tuple (Li1 , ...,Lin)

in I ′(F ) and there is a polynomial G(X) in Z[X] of degree d0, with d0 ≥
d− dF , which divides F (X) in Z[X] for which∏n

j=1 |Lij(x)|
|det(Ltr

i1
, ...,Ltr

in)|
< C2

|F (x)|1/d|G(x)|
n−1
d0

H(F )1/d
.

Proof. The result holds if F (x) = 0 since then one of the linear forms Li(x)

is 0. Thus we may suppose that F (x) ̸= 0.

The decomposition (1) of F into a product of linear forms is not deter-

mined uniquely since if t1, ..., td are complex numbers with t1...td = 1 then

we also have

F (X) = t1L1(X)...tdLd(X).

We may use (23) to find, for each integer r with 1 ≤ r ≤ k, linear forms

Ur,1(X), ..., Ur,dr(X) for which

Fr(X) = Ur,1(X)...Ur,dr(X)

Thus we may suppose that each linear form Li(X) in (1) is plus or minus

|C0|
1
dUp,q(X) for some p with 1 ≤ p ≤ k and q with 1 ≤ q ≤ dp.

For each x in Rn for which F (x) ̸= 0 put

L
′

i(X) =
|F (x)|1/d

|Li(x)|
Li(X)

for i = 1, ..., d and observe that F (X) = L
′
1(X)...L

′

d(X).

Without loss of generality we may suppose that the forms L1(X), ..., Lr1(X)

are from R[X], d = r1 + 2r2 and Lr1+1(X), ..., Ld(X) have complex coeffi-

cients and are arranged so that Li(X) = Li+r2(X) for i = r1 + 1, ..., r1 + r2.

Let Ed be the set of vectors (x1, ..., xd) with x1, ..., xr1 in R and xr1+1, ..., xd

in C with xi = xi+r2 for i = r1 + 1, ..., r1 + r2. Then Ed is d-dimensional

Euclidean space by means of the usual Hermitian inner product on Cd.

Following the proof of Lemma 6 of [19] we let M be the d × n matrix

with rows L
′

1, ...,L
′

d and put

M =
(
mtr

1 , ..., mtr
n

)
.

By our ordering of L1(X), ..., Ld(X) we have m1, ...,mn in Ed and so

(24)
∥∥∧n

j=1mj

∥∥2
=

∑
I′(F )

|det(L′tr
i1
, ...,L

′tr
in )|

2,
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where I
′
(F ) denotes the set of linearly independent coefficient vectors (L

′

i1
, ...,L

′

in)

with i1 < ... < in and where ∧ denotes the wedge product in the Grassman

algebra, see Chapter I of [16].

Let λ1 ≤ ... ≤ λn be the successive minima of the n-dimensional lattice Λ

generated by m1, ...,mn in Ed with respect to the unit ball. By Minkowski’s

Theorem on Successive Minima

(25) λ2
1...λ

2
n ≪n det(Λ)2 =

∥∥∧n
j=1mj

∥∥2
.

Let z1, ..., zn be a basis for Λ for which ∥zj∥ ≤ jλj for j = 1, ..., n, see

p.191 of [16]. Then there is a T in GLn(Z) with T = (atr
1 , ..., a

tr
n ) for which

MT = (ztr1 , ..., z
tr
n ).

Put zj = (zj,1, ..., zj,d) and observe that zj,i = L
′
i(aj) for j = 1, ..., n and

i = 1, ..., d. We have

(26) λ2
1 ≥ ∥z1∥2 =

d∑
i=1

|z1,i|2 =
d∑

i=1

|L′

i(a1)|2.

It is at this point that we modify Thunder’s proof of Lemma 6 of [19].

Let G be the primitive polynomial in Z[X] of largest degree which divides

F and for which G(a1) is non-zero. By (10) and the definition of dF , see

(11), the degree d0 of G is at least d− dF . Let i1, ..., id0 be such that

(27) Li1(X)...Lid0
(X) = ±|C0|

d0
d G(X).

Then by (26)

λ2
1 ≥

d0∑
j=1

|L′

ij
(a1)|2

and by the arithmetic-geometric mean inequality

λ2
1 ≥ d0

d0∏
j=1

|L′

ij
(a1)|

2
d0 .

Thus, by (27),

λ2
1 ≥ d0

|F (x)| 2d

|G(x)|
2
d0

|G(a1)|
2
d0

and since G(a1) is a non-zero integer we find that

(28) (λ1...λn−1)
2 ≥ λ

2(n−1)
1 ≥ |F (x)|

2(n−1)
d

|G(x)|
2(n−1)

d0

.

Now

n3λ2
n ≥

n∑
j=1

(jλj)
2 ≥

n∑
j=1

∥zj∥2 =
n∑

j=1

d∑
i=1

|zj,i|2
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so

n3λ2
n ≥

d∑
i=1

∥(z1,i, ..., zn,i)∥2

and by the arithmetic-geometric mean inequality

n3λ2
n ≥ d(

d∏
i=1

∥(z1,i, ..., zn,i)∥2)
1
d ≥ d(H(F ◦ T ))

2
d .

Since we have assumed that H(F ) is minimal among forms equivalent to it

we have

(29) λ2
n ≥ d

n3
(H(F ))

2
d .

By (24), (25), (28) and (29)∑
I′(F )

|det(L′tr
i1
, ...,L

′tr
in )|

2 ≫n,d
|F (x)|

2(n−1)
d

|G(x)|
2(n−1)

d0

H(F )
2
d .

The number of terms in the sum above is at most
(
d
n

)
hence there is an

n-tuple (i1, ..., in) for which

|det(L′tr
i1
, ...,L

′tr
in )| ≫n,d

|F (x)|n−1
d

|G(x)|
n−1
d0

H(F )
1
d .

Since

|det(L′tr
i1
, ...,L

′tr
in )| =

|det(Ltr
i1
, ...,Ltr

in)||F (x)|nd∏n
j=1 |Lij(x)|

the result follows.

□

3. Bounds from the Subspace Theorem

Let K be an algebraic number field of degree d over Q with ring of

algebraic integers OK and let M(K) be the set of equivalence classes of

absolute values on K. Suppose that K has r1 real embeddings σ1, ..., σr1 and

2r2 pairs of complex embeddings with σr1+i = σr1+r2+i for i = 1, ..., r2. Then

M(K) consists of r1 + r2 Archimedean absolute values represented by, for

each x in K,

|x|vi = |σi(x)|

for i = 1, ..., r1 + r2. We put nvi = 1 for i = 1, ..., r1 and nvi = 2 for

i = r1 + 1, ..., r1 + r2. The non-Archimedean absolute values correspond to

prime ideals P of OK. For each prime ideal P and each x in K with x ̸= 0

|x|vP = p−(ordPx)/e
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where ordPx denotes the order of P in the fractional ideal generated by x

and where e is the index of ramification. We put nvP = ef where f is the

residue field degree.

We extend this to n-tuples x = (x1, ..., xn) with x ̸= 0 and xi in K for

i = 1, ..., n by

|x|v = (
n∑

i=1

|xi|2v)1/2

if v is infinite,

|x|v = max(|x1|v, ..., |xn|v)

if v is finite.

We now define the field height HK(x) of x by

HK(x) =
∏
v

|x|nv
v .

Let L(X) = α1X1 + ... + αnXn be a linear form with coefficients in K. We

define the field height of L(X), HK(L) by

HK(L) = HK((α1, ..., αn))

and the absolute height H(L) by

H(L) = HK(L)
1
d

where d is the degree of K over Q.

Suppose that R is an irreducible decomposable form of content 1 as in

(22). By Lemma 2a, Chapter III, of [16]

HK(AL) =
1

m

∏
σ

∥σ(AL)∥ .

Thus

H(R) = HK(AL) = H(AL)d

By the product formula H(AL) = H(L) and so

(30) H(R) ≥ H(L).

Suppose that F has the form (1) and (10) and that L1(X), ..., Ld(X) are

as in the proof of Lemma 6. Then, by the product formula and (30)

(31) H(F ) ≥ H(Li)

for i = 1, ..., d and, as a consequence,

(32) H(F ) ≥ 1.

Also note that if T is in GLn(Z) then F ◦ T = (L1 ◦ T )...(Ln ◦ T ) and (31)

holds with F replaced by F ◦ T and Li by Li ◦ T for i = 1, ..., d.



ON THE NUMBER OF SOLUTIONS OF DECOMPOSABLE FORM INEQUALITIES13

In 1989 Schmidt [14] established a quantitative version of the Subspace

Theorem [13]. This was subsequently refined by Evertse [7] who proved the

following.

Lemma 7. Let L1, ..., Ln be linearly independent linear forms in n variables

with algebraic coefficients, H(Li) ≤ H and [Q(Li) : Q] ≤ D for i = 1, ..., n.

For every δ with 0 < δ < 1 there are t proper rational subspaces T1, ..., Tt of

Qn with

(33) t ≤ 260n
2

δ−7n log 4D log log 4D

such that every primitive integral solution x of

(34)
|L1(x)...Ln(x)|
|det(Ltr

1 , ...,L
tr
n )|

< ∥x∥−δ

with H(x) ≥ H lies in T1 ∪ ... ∪ Tt.

Proof. This is the Corollary of the main theorem of Evertse [7].

□

We shall use Lemma 5 and Lemma 7 to prove our next result.

Lemma 8. Let F be a decomposable form in n variables with integer coeffi-

cients and degree d with d > n ≥ 2 as in (1). Suppose that F is of essentially

finite type and that F is not proportional to a power of a definite quadratic

form in 2 variables. Put

(35) C = max(C1,m
1

aF ,m
1
dH0(F )1+cF )4aF (n−1)

where C1 is given in Lemma 5. There is a positive number c, which is

computable in terms of n and d, and there are t proper rational subspaces

T1, ..., Tt of Qn with t ≤ c such that if a is an integer point with ∥a∥ ≥ C

for which

1 ≤ |F (a)| ≤ m

then a is in T1 ∪ ... ∪ Tt.

Proof. Since F is of essentially finite type and F is not proportional to a

power of a definite quadratic form in 2 variables by (15)

(36)
d− naF

aF
≥ 1

aF (n− 1)
≥ n

d(n− 1)
.

Put

δ = min(
1

2
,
d− naF
4aF

)

so that
n

4d(n− 1)
≤ δ ≤ 1

2
.
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We may suppose, without loss of generality, that H(F ) = H0(F ). If a is

an integer point with ∥a∥ > C for which 1 ≤ |F (a)| ≤ m then by Lemma 5

there is an n-tuple (Li1 , ...,Lin) in J(F ) such that∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
< C1

(
m

∥a∥d−naF

)1/aF

H(F )cF .

By (36)

∥a∥
d−naF
4aF ≥ ∥a∥

1
4aF (n−1) ≥ max(C1,m

1
aF ,m

1
dH0(F )1+cF ).

Thus ∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
<

1

∥a∥
d−naF
4aF

≤ 1

∥a∥δ
.

We may write a = ga
′
with a

′
primitive. Since 1 ≤ |F (a)| ≤ m and

|F (a)| = gd|F (a
′
)|,

(37) g ≤ m
1
d .

Therefore ∏n
j=1 |Lij(a

′
)|

|det(Ltr
i1
, ...,Ltr

in)|
<

1

∥a′∥δ
.

But ∥a∥ > C hence by (17) and (37)∥∥∥a′
∥∥∥ ≥ H(F )1+cF ≥ H(F ).

Further, by (31),
∥∥a′∥∥ ≥ H(Lij) for j = 1, ..., n. Thus by Lemma 7

∥∥a′∥∥,
hence also ∥a∥, is in one of at most |J(F )|c1 proper subspaces of Qn, where

c1 is the right hand side of inequality (33) with d in place of D.

□

4. Bounds for integer points

We require an estimate for the number of integer points a for which an

expression of the form ∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
is small.

Lemma 9. Let K1(X), ..., Kn(X) be n linearly independent linear forms in

C[X]. Let A and C be positive real numbers and let U be the set of x in Rn

with ∏n
i=1 |Ki(x)|

|det(Ktr
1 , ...,K

tr
n )|

< A
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and ∥x∥ ≤ C. Let D be a real number with D > 1. The set of integer points

in U lie in a set W or in at most κ proper subspaces where if Cn ≥ n!ADn

then

|W | ≪n

(
log( Cn

n!A
)

logD

)n−1

ADn+1

and

κ ≪n

(
log( Cn

n!A
)

logD

)n−1

and where otherwise

|W | ≪n ADn+1

and

κ ≪n 1.

Proof. This follows from Lemma 7 of [20] and Lemma 9 of [19]. □

Lemma 10. Let K1(X), ..., Kn(X) be n linearly independent linear forms

in C[X]. Let A and B be positive real numbers and let U be the set of x in

Rn with ∏n
i=1 |Ki(x)|

|det(Ktr
1 , ...,K

tr
n )|

< A

and

B ≤ ∥x∥ ≤ 2B.

The set of integer points in U lie in a set W or in at most κ proper subspaces

where if Bn ≥ n
n
2 n!A then

|W | ≪n

(
log(

2nBn

n
n
2 n!A

)

)n−2

A

and

κ ≪n

(
log(

2nBn

n
n
2 n!A

)

)n−2

and where otherwise

|W | ≪n A

and

κ ≪n 1.

Proof. This follows from Lemma 6 of [20] with C = 2B and D = 2 and

Lemma 9 of [19]. □
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5. Powers of a definite quadratic forms in 2 variables

Suppose F is proportional to a power of a definite quadratic form in 2

variables, say

(38) F (X1, X2) = h(AX2
1 +BX1X2 + CX2

2 )
k

with h, k, A,B,C integers with h ̸= 0, k ≥ 2 and B2 − 4AC < 0. Then F

is of essentially finite type but aF = k = d/2 where d denotes the degree

of F and so (15) does not hold. As a consequence we must estimate N∗
F (m)

directly.

We proceed by first estimatingN∗
G(m) whereG(X1, X2) = AX2

1+BX1X2+

CX2
2 . In 1915 Landau [10] gave an asymptotic estimate for NG(m), hence

also for N∗
G(m), however he did not make explicit the dependence on the

coefficients of G in his estimate, a feature that we require.

Lemma 11. Let F be a form as in (38). Then

(39) |N∗
F (m)− 2π√

4AC −B2
(
m

h
)2/d| ≪ (

m

h
)1/d.

Proof. We first remark that

(40) N∗
F (m) = N∗

G((
m

h
)1/k)

and, since G is definite, that for any positive real number q

(41) NG(q) = 1 +N∗
G(q).

We may suppose that G is positive definite. The argument when G is neg-

ative definite is similar.

We note that

(42) NG(q) = NG̃(q)

whenever G̃(X1, X2) = G(aX1 + bX2, cX1 + dX2) where ( a b
c d ) is in SL2(Z).

By choosing ( a b
c d ) appropriately we may suppose that G̃ is in reduced form.

In particular

G̃(X1, X2) = rX2
1 + sX1X2 + tX2

2

with |s| ≤ r ≤ t. We also have

(43) s2 − 4rt = B2 − 4AC

since ( a b
c d ) is in SL2(Z).

The region {(x1, x2) ∈ R2 : |G̃(x1, x2)| ≤ q} is closed and bounded with

perimeter of length P . Thus, see [4],

(44) |NG̃(q)− VG̃q| < 1 + 4(P + 1),
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and, by (43),

(45) VG̃ =
2π√

4rt− s2
=

2π√
4AC −B2

.

The length of the perimeter of the ellipse given by G̃ = q is at most 2πw

where

w =
(2(r + t+

√
(r − t)2 + s2)

4rt− s2
)1/2

q1/2.

Since |s| ≤ r ≤ t we have 4rt− s2 ≥ 3rt and so w ≪ q1/2. Thus by (44) and

(45)

|NG̃(q)−
2π√

4AC −B2
q| ≪ q1/2

and so by (41) and (42)

|N∗
G(q)−

2π√
4AC −B2

q| ≪ q1/2

hence, since k = d/2, the result follows from (40).

□

6. Small solutions

Let m and B be real numbers with m ≥ 1 and B ≥ 1. Denote by

V ol(m,B) the volume of the set

{(x1, ..., xn) ∈ Rn : |F (x1, ..., xn)| ≤ m and ∥x∥ ≤ B}.

Lemma 12. Let m and B be real numbers with m ≥ 1 and B ≥ 1. If F , as

in (1), is of essentially finite type and F is not proportional to a power of

a definite quadratic form in 2 variables then

|VFm
n/d − V ol(m,B)| ≪n,d H(F )cFm1/aFB(naF−d)/aF (1 + logB)n−2.

Proof. This follows from (15) and the proof of Lemma 15 of [19].

□

Let V ol
′
(m,B) be the volume of the set

{(x1, ..., xn) ∈ Rn : |F (x1, ..., xn)| ≤ m and max(|x1|, ..., |xn|) ≤ B}

and let N
′
F (m,B) be the number of integer points a for which |F (a| ≤ m

and max(|x1|, ..., |xn|) ≤ B.

Lemma 13. Let m and B be real numbers with m ≥ 1 and B ≥ 1. If F , as

in (1), is of essentially finite type then

|N ′

F (m,B)− V ol
′
(m,B)| ≤ dn(2B + 1)n−1.

Proof. This follows from the proof of Lemma 14 of [19].

□
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7. Large solutions

In order to establish Theorems 1 and 2 we shall first analyze the set

Q(m) of integer points a for which

1 ≤ |F (a1, ..., an)| ≤ m

and

∥a∥ ≥ m1/(d−aF ).

Lemma 14. Let F be a non-zero decomposable form in n variables with

integer coefficients and degree d with d > n ≥ 2 and suppose that F is of

essentially finite type and not proportional to a power of a definite quadratic

form in 2 variables. Let m be a positive integer. Q(m) is contained in a set

of cardinality

≪n,d H(F )cF (1 + logm)n−2m
n−1
d−aF

or in

≪n,d (1 + logm+ logH(F ))n−1

proper subspaces.

Proof. By Lemma 8 if a is in Q(m) with ∥a∥ ≥ C where C is given by (35)

then a lies in one of

(46) ≪n,d 1

proper rational subspaces.

It remains to consider the integer points a in Q(m) with

m1/(d−aF ) ≤ ∥a∥ ≤ C.

and we do so by controling the solutions with

(47) 2j−1m1/(d−aF ) ≤ ∥a∥ ≤ 2jm1/(d−aF )

for j = 1, ..., t where t satisfies

2t−1 < C ≤ 2t.

By (35),

(48) t ≪n,d 1 + logm+ logH0(F ).

By Lemma 5 and (15) , for each integer point a for which (47) holds and

1 ≤ |F (a)| ≤ m there is an n-tuple (Li1 , ...,Lin) in J(F ) for which∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
<

C1m
n−1
d−aF H(F )cF

2
j−1

aF (n−1)

.
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We may now apply Lemma 10 with A = C1m
n−1
d−aF H(F )cF

2
j−1

aF (n−1)

and B = 2j−1m
1

d−aF .

We find that such integer points a lie in a set of cardinality

(49) ≪n,d (1 + logm+ j)n−2m
n−1
d−aF H(F )cF

2
j−1

aF (n−1)

.

or, since j ≤ t and (48) holds, in

(50) ≪n,d (1 + logm+ logH(F ))n−2

proper subspaces.

Observe that, for j ≥ 3,

(51) (1 + logm+ j) ≤ (1 + logm)j

and that

(52)
t∑

j=1

jn−2

2
j−1

aF (n−1)

≪n,d 1.

Since |J(F )| ≤ n!
(
d
n

)
it follows from (46), (49), (51) and (52), that the set

of integer points a with m1/(d−aF ) ≤ ∥a∥ and 1 ≤ |F (a)| ≤ m lies in a set

of cardinality

≪n,d (1 + logm)n−2m
n−1
d−aF H(F )cF

or in

≪n,d (1 + logm+ logH(F ))n−1

proper subspaces as required.

□

8. Proof of Theorem 1

If F is proportional to the power of a definite quadratic form in 2 vari-

ables then the result holds by Lemma 11 since |h| ≥ 1, |4AC −B2| ≥ 1 and

dF = 0 and so we may assume this is not the case.

Since N∗
G(m) = N∗

F (m) when G is equivalent to F we may assume,

without loss of generality, that H(F ) = H0(F ).

We shall first prove that the integer points a with 1 ≤ |F (a)| ≤ m lie in

a set of cardinality

(53) ≪n,d m
1
d
+ n−1

d−dF .

or in at most

(54) ≪n,d (1 + logm)n−2

proper subspaces of Rn.
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To do so we consider two cases. In the first case

(55) H(F )cF ≥ m
n

2(d2(n−1)2+d)/(1 + logm)n−2,

and in the second case

(56) H(F )cF < m
n

2(d2(n−1)2+d)/(1 + logm)n−2.

Suppose initially that (55) holds. Let a be an integer point with 1 ≤
|F (a)| ≤ m. By Lemma 6 there is an n-tuple (Li1 , ...,Lin) in I(F ) and a

polynomial G in Z[X] of degree d0 ≥ d− dF which divides F for which∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
< C2

|F (a)|1/d|G(a)|
n−1
d0

H(F )1/d
.

Since G(a) divides F (a) and F (a) is a non-zero integer of size at most m

we see that |G(a)| ≤ m and so

(57)

∏n
j=1 |Lij(a)|

|det(Ltr
i1
, ...,Ltr

in)|
< C2

m
1
d
+n−1

d0

H(F )1/d
.

Thus each integer point a with 1 ≤ |F (a)| ≤ m lies in a set of x in Rn

with ∏n
j=1 |Lij(x)|

|det(Ltr
i1
, ...,Ltr

in)|
< C2

m
1
d
+n−1

d0

H(F )1/d
.

for some n-tuple (Li1 , ...,Lin) from I(F ). We now apply Lemma 9 with

A = C2
m

1
d
+n−1

d0

H(F )1/d
, C given by (35) and D = (2H(F ))

1
(n+1)d to conclude that

the set of integer points a with ∥a∥ ≤ C for which (57) holds lie in a set of

cardinality

≪n,d m
1
d
+n−1

d0

or in

≪n,d 1

proper subspaces.

By Lemma 8 the set of integer points a with 1 ≤ |F (a)| ≤ m for which

∥a∥ > C lie in

≪n,d 1

proper rational subspaces. Therefore, provided that (55) holds, the integer

points a with 1 ≤ |F (a)| ≤ m either lie in a set of cardinality

(58) ≪n,d m
1
d
+ n−1

d−dF

or in

(59) ≪n,d 1

proper subspaces.
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We now suppose that we are in the second case, so that (56) holds. For

any real number x let ⌊x⌋ denote the greatest integer less than or equal to

x. Put

r = ⌊H(F )2cF (d2(n−1)2+d)/n⌋.
For x ≥ 1 we have ⌊x⌋ ≥ x/2 hence

(60) r ≥ H(F )2cF (d2(n−1)2+d)/n/2.

since H(F ) ≥ 1 by (32). Observe that

r
n

2(d2(n−1)2+d) ≤ H(F )cF

and so (55) holds with r in place of m. Thus, by (58) and (59), the set of

integer points a with 1 ≤ |F (a)| ≤ r either lie in a set of cardinality

≪n,d r
1
d
+ n−1

d−dF

or in

≪n,d 1

proper subspaces. Each proper subspace contains at most (1 + 2r
1

d−aF )(n−1)

integer points a for which ∥a∥ ≤ r
1

d−aF . By (15) n−1
d−aF

< n
d
and so the number

of integer points a with 1 ≤ |F (a)| ≤ r and ∥a∥ ≤ r
1

d−aF is

≪n,d r
1
d
+ n−1

d−dF

hence the number NF (r, r
1

d−aF ) of integer points a with |F (a)| ≤ r and

∥a∥ ≤ r
1

d−aF is

≪n,d r
1
d
+ n−1

d−dF .

Therefore the number N
′
F (r, r

1
d−aF ) of integer points a with |F (a)| ≤ r and

max(|a1|, ..., |an|) ≤ r
1

d−aF

is

≪n,d r
1
d
+ n−1

d−dF .

By Lemma 13 with m = r and B = r
1

d−aF we find that

|V ol
′
(r, r

1
d−aF )−N

′

F (r, r
1

d−aF )| ≪n,d r
n−1
d−aF

hence

V ol
′
(r, r

1
d−aF ) ≪n,d r

1
d
+ n−1

d−dF .

and so

(61) V ol(r, r
1

d−aF ) ≪n,d r
1
d
+ n−1

d−dF .

By Lemma 12

|VF r
n
d − V ol(r, r

1
d−aF )| ≪n,d H(F )cF r

n−1
d−aF (1 + log r)n−2.
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By (15)

(62)
n

d
− n− 1

d− aF
≥ n

d
− n− 1

d− d
n
+ 1

n(n−1)

=
n

d2(n− 1)2 + d

and so

|VF r
n
d − V ol(r, r

1
d−aF )| ≪n,d

r
n
dH(F )cF (1 + log r)n−2

r
n

d2(n−1)2+d

hence by (60)

(63) |VF r
n
d − V ol(r, r

1
d−aF )| ≪n,d r

n
d ,

and so by (61)

(64) VF r
n
d ≪n,d r

1
d
+ n−1

d−dF .

Since (56) holds, m = rs with s > 1 and so

VFm
n
d = VF r

n
d s

n
d .

Thus by (64)

VFm
n
d ≪n,d r

1
d
+ n−1

d−dF s
n
d

hence

(65) VFm
n
d ≪n,d m

1
d
+ n−1

d−dF .

By Lemma 12 with B = m
1

d−aF

|VFm
n
d − V ol(m,m

1
d−aF )| ≪n,d H(F )cFm

n−1
d−aF (1 + logm)n−2

and since m > r we find, as in (63), that

|VFm
n
d − V ol(m,m

1
d−aF )| ≪n,d m

n
d

and so by (65)

V ol(m,m
1

d−aF ) ≪n,d m
1
d
+ n−1

d−dF

and

(66) V ol
′
(m,m

1
d−aF ) ≪n,d m

1
d
+ n−1

d−dF .

Since n−1
d−aF

< n
d
, by Lemma 13 with B = m

1
d−aF we find that

|V ol
′
(m,m

1
d−aF )−N

′

F (m,m
1

d−aF )| ≪n,d m
n
d .

Thus, by (66),

N
′

F (m,m
1

d−aF ) ≪n,d m
1
d
+ n−1

d−dF

hence

(67) NF (m,m
1

d−aF ) ≪n,d m
1
d
+ n−1

d−dF .
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By Lemma 14 the integer points a with 1 ≤ |F (a)| ≤ m for which

∥a∥ ≥ m1/(d−aF ) lie in a set of cardinality

≪n,d H(F )cFm
n−1
d−aF (1 + logm)n−2

or in

≪n,d (1 + logm+ logH(F ))n−1

proper subspaces. Thus, by (56) and (62), these points lie in a set of cardi-

nality

≪n,d m
n
d

or in

≪n,d (1 + logm)n−1

proper subspaces. Together with (67) we conclude that when (56) holds the

integer points a with 1 ≤ |F (a)| ≤ m lie in a set of cardinality

(68) ≪n,d m
1
d
+ n−1

d−dF

or in

(69) ≪n,d (1 + logm)n−1

proper subspaces.

Therefore, by (58), (59), (68) and (69) the integer points a with 1 ≤
|F (a)| ≤ m lie in a set of cardinality

(70) ≪n,d m
1
d
+ n−1

d−dF

or in

(71) ≪n,d (1 + logm)n−1

proper subspaces. Notice that we may suppose that each proper subspace is

defined over Q by replacing the subspace by the linear span of the integer

points in the subspace.

If T is a proper rational subspace of Rn which contains a point with

integer coordinates a with 1 ≤ |F (a)| ≤ m then T is not contained in

A1, ..., Ak. Since F is of essentially finite type then V (F|T ) is finite, where

F|T denotes F restricted to T , and V (F̃|T ) is finite whenever F̃|T is F|T

restricted to a rational subspace of T which is not a subspace of Ai for

i = 1, ..., k. Therefore F|T is of essentially finite type.

We shall now prove our result by induction on n. First suppose that

n = 2. Then a proper rational subspace T is defined by an equation of the

form pX1 + qX2 = 0 with p and q coprime integers. The integer points

in T have the form (kq,−kp) with k an integer. If T contains a point a

with 1 ≤ |F (a)| ≤ m then it contains a point a with F (a) ̸= 0 and so
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F (q,−p) ̸= 0. But F (kq,−kp) = knF (q,−p) and if 1 ≤ |F (kq,−kp)| ≤ m

then 1 ≤ |k|n ≤ m hence each proper rational subspace contains at most

2m
1
d points a with 1 ≤ |F (a)| ≤ m . Thus the result holds for n = 2 by

(70) and (71).

F|T is of essentially finite type for each proper rational subspace T which

contains a point a with integer coordinates for which 1 ≤ |F (a)| ≤ m. Let n
′

be the dimension of T , so n
′
< n. As on page 801 of [19], F|T may be viewed

as a form G, which is essentially finite, on Rn
′
. Thus, since n

′ ≤ n−1, by our

inductive hypothesis each proper rational subspace of Rn which contains an

integer point a with 1 ≤ |F (a)| ≤ m contains

≪n,d m
1
d
+ n−2

d−dF

such points. Therefore, by (70) and (71), the number of integer points a

with 1 ≤ |F (a)| ≤ m is

≪n,d m
1
d
+ n−1

d−dF + (1 + logm)n−1m
1
d
+ n−2

d−dF

which is

≪n,d m
1
d
+ n−1

d−dF

as required.

9. Proof of Theorem 2

If F is proportional to a power of a definite quadratic form the result

holds by Lemma 11 so we may assume this is not the case.

Let N∗
F (m,m

1
d−aF ) denote the number of integer points a with 1 ≤

|F (a)| ≤ m and ∥a∥ ≤ m1/(d−aF ) and let Ñ∗
F (m,m

1
d−aF ) denote the number

of integer points a with 1 ≤ |F (a)| ≤ m and ∥a∥ > m1/(d−aF ). Then

N∗
F (m) = N∗

F (m,m
1

d−aF ) + Ñ∗
F (m,m

1
d−aF )

and so

(72) |VFm
n
d −N∗

F (m)| ≤ |VFm
n
d −N∗

F (m,m
1

d−aF )|+ Ñ∗
F (m,m

1
d−aF ).

We first estimate |VFm
n
d −N∗

F (m,m
1

d−aF )|, To this end we note that by

Lemma 12 with B = m
1

d−aF

|VFm
n
d − V ol(m,m

1
d−aF )| ≪n,d H(F )cFm

n−1
d−aF (1 + logm)n−2.

It follows that

(73) |VFm
n
d − V ol

′
(m,m

1
d−aF )| ≪n,d H(F )cFm

n−1
d−aF (1 + logm)n−2.

By Lemma 13, with B = m
1

d−aF ,

(74) |V ol
′
(m,m

1
d−aF )−N

′

F (m,m
1

d−aF )| ≪n,d m
n−1
d−aF .



ON THE NUMBER OF SOLUTIONS OF DECOMPOSABLE FORM INEQUALITIES25

Denote by N∗′
F (m,m

1
d−aF ) the number of integer points a with 1 ≤ |F (a)| ≤

m and max(|a1|, ..., |an|) ≤ m
1

d−aF . The integer points a for which F (a) = 0

lie in the subspaces A1, ..., Ak with k ≤ d and each subspace contains at

most (1 + 2m
1

d−aF )n−1 points hence

(75) |N ′

F (m,m
1

d−aF )−N∗′
F (m,m

1
d−aF )| ≪n,d m

n−1
d−aF

Next we observe that

(76) |N∗′
F (m,m

1
d−aF )−N∗

F (m,m
1

d−aF )| ≤ Ñ∗
F (m,m

1
d−aF ).

Thus, by (72), (73), (74), (75) and (76),

(77) |VFm
n
d −N∗

F (m)| ≪n,d H(F )cFm
n−1
d−aF (1+ logm)n−2+ Ñ∗

F (m,m
1

d−aF ).

It remains to estimate Ñ∗
F (m,m

1
d−aF ). By Lemma 14 the integer points

a with 1 ≤ |F (a)| ≤ m and ∥a∥ ≥ m1/(d−aF ) are contained in a set of

cardinality

(78) ≪n,d H(F )cFm
n−1
d−aF (1 + logm)n−2

or lie in

(79) ≪n,d (1 + logm+ logH(F ))n−1

proper subspaces.

If T is a proper rational subspace of Rn of dimension k with k < n which

contains an integer point a with 1 ≤ |F (a)| ≤ m then, as we remarked in

the proof of Theorem 1, F|T is of essentially finite type and F|T may be

viewed as a form in k variables with k ≤ n − 1. Thus by Theorem 1 each

proper subspace contains

(80) ≪n,d m
1
d
+ n−2

d−dF

integer points a with 1 ≤ |F (a)| ≤ m and ∥a∥ ≥ m1/(d−aF ). Therefore, by

(78), (79) and (80),

(81)

Ñ∗
F (m,m

1
d−aF ) ≪n,d H(F )cFm

n−1
d−aF (1+logm)n−2+(1+logm+logH(F ))n−1m

1
d
+ n−2

d−dF .

Our result now follows from (77) and (81).
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[9] J.-H. Evertse and K. Győry, Unit equations in Diophantine number

theory, Camb. Stud. Adv. Math. 146, Cambridge University Press,

2015.

[10] E. Landau, Zur analytischen Zahlentheorie der definiten quadratische
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