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in a part of a paper [3] devoted to hia lifelony
collaboration with Turén, Brdos wrote (in slightly different notation):
"In our first joint paper [41 we proved the following theorem:
let 1 ¢ a, { vee X a be any sequence of k integers, -Then (w(m) is the
mmber of distinct prime factors of m)

loa k
u(i‘g‘j‘k(ai+uj)) 3 log 2 * (1)

We always thought that (1) 13 very far from being the best possible but
never could improve it. log k/log 2 can probably be replacad by K37€ and
perhaps even by k/log k. 1f a, = i ve see that (1) carmot hold with
(2+¢)k/log k, On the other hand we have no coumtersxampie to

ol T (a.+8.)) > (240(1)) —5m (2)
1¢i¢i¢k * log k

Perhaps such a counterexample will not be difficult to find.

It is annoying that we never could gettle our conjecture!
To every @ there is an £(s) so that if k » f(8) ardd 1 « ag < ooy < a
1 ¢« b1 { ves € hk are any two sets of k integers then

w( T (a+b)) ¥ s, | 3)
1¢i<k
1<9<k

1 would not be surprised if the proof of (3) is easy and we again
overlooked a simple argument.” In this paper we give such an elementary
argument and a survey of related results, | |
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1, NOTATION
Let A = {ai,..., k} ke a finite set of positive integers and

B = {h1,...,h } a finite set of nnn—nagat1ve intagers Put

M, = 0 (ath), My = - (ath),
a,beh ach

beB

We assume throughout the paper that there ig no prime number which divides
each sum a + b, For the problems which we congider it is no loss of

generality to do =o,

Let win) denote the number of distinct prime factors of n and
let P(n) denote the greatest prime factor of n, For any get X, let {X|
denote the cardinality of X, . By-ci,cz,w;. we shall denote certain
effectively computable: positive constants and by lea),cz(s};... cer@ain |
effectively computable pogitive numbers depending only on ¢, We thank.

A. Schinzel for a useful suggestion.

2, IHE CASE JAL = |Bl =2
- The first non-trivial case is k = 2, Obviously w, ) > 1,
If a, = 1 and az(- 2p-1) is a Mersenne prlme then w(Hi) = 2, Since it is
likely that there are inflnltely muny Hersenne primas it is algu likely
that there are infinitely many sets A with |A| = 2 and u(nl) 2, On the
other hand, there are only finitely many sets A with |A| = 2 and P(Hi}

bounded., In fact we have the following more general result,

Theorem 1. (Gyéry, Stewart and Tijdeman (7)), If 84.8,,b b, run through
positive integers sunh that g, ¢, d.’ (a +h1,a1+h2 a2+b1 u2+h2) = 1 and |
max(a 85, h h ) 3w then P(Hz) > o,

Note that P(I,) = max P(a+h), Theorem 1 is en immediate
ach,beB
consequence of a theorem of van der Poorten and Schlickewei [10J. Theorem

A i3 a generalization of this result., We obtain Theorem {1 from Theocrem A
by taking Xy = &, + bl’ g = T8y - b2* Xy = —aé - hl’ Ky = & + h2' £ =0,

Theorem A. (Evartae [6]) Let 8 = {pi,....p } be a finite set of prime
numbers and let n be a pusitive integer. Let ¢ ba a real number with
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0 ¢ ¢ <1, There are only finitely many n-tuples (xi....,xn) of rational
integers composed of prime numbers from 8 such that |

X + ... + % =10,

n
g.c.d. (31,...,}:“) = 1,
X, + ... +x%x, #0

1 i

for each non-empty, proper subset {ii""'it} of {1,....n}, and

.4
B0< I |x,...%.1 ¢ ( max | % i)e
j=0 17PNy g o

where | |p denotes the ordinary absolute value,
0

Since thig theorem is proved by the p-adic analogue of the ineffective
Thue-Siegel-Roth-Schmidt method, no non-trivial lower bound for P(HZJ can
be derived from the proof of Theorem 1,

It would be interesting to have an upper bound for the number
of possible n-tuples in Theorem A, even only for some fixed ¢, For n = 3
such results are known., Mahler {9] proved that there are at most c? |
triples Xy, %n, Ky 83 in Theorem A when ¢ = 0, This result was generalized
by Evertse as follows,

Theorem B, (Evertse [51). Let K be an algebraic number field of degree m,
let X,u be non-zero elements of K and let S be a finite set of primes of

K of cardinality s containing the infinite primes. Then the equation.
AX + uy = 1 (4)
in S~units x,y has at most

3 y ?m+23

solutions, (An element a of K is called an S-~unit if lalp = 1 for all
primes p outside S and its equivalence classes.)

8%
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Lewis and Mahler [8] showed that there are at most cg triples Xq %5, %q
satisfying the conditions of Theorem A with n=.3 and ¢ = 1/19, Using an. -
idea of Evertse, we can state their result as follows (cf, £12]).

Theorem ¢C. Let Py.ees By be distinct prime numbers, There exists an
effectively computable positive constant c, such that there are at most cz
- pairs of coprime integers X,y satisfying

=
0 < T |ay(x-y)|_ ¢ (max(|x!, |y|)}1/19

j=0 Py

We shall give applications of these results in gsection 4,

3. LOWER BOUNDS POR u(ll,

We recall a result mantionéd in the intruductian.

Theorem 2. (Erdée and Turén [4]), Let A be a set of positive integers
with {Al = k » 2. Then - o T |

pre doga k
M(Hl) y log 2 °

The elementary ard elegant proof is based on a lemma which states that,
for any odd prime p., every set of 2n positive integers contains a subset V
of n integers satisfying | o

fv1+f2|p = mﬂx(lv ip Ivzlp). . fﬁr ﬁl} ui'vQ £ V.

Erdés and Turén stresaed'ihe elementary character of their proof.

The following result answers Erdos’ question mentioned in the
introduction. The proof is elementary, but entirely different from the
proof of Erdés and Turén.

Theorem 3. Let A and B be sats of pusiti#e integers with
|IAl = |Bi = k » 3., Then

Jdoa k
w(n } > c3 Toglog Kk °

The proof is based on the following application of the box principle,
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Lemma 1, Let x,y.g and n be integers greater than one with g { y and let
di""'dm be distinct integers with y ¢ di { x fori=1,,..,m, Put
8 = “(di"'dm)' if

m » n((3e log x)/lag(yig))a (5)

+hen there axist n distinet integers dn .....dg £10m {di""'dm} for
1 n
which |

g.e.d. A, ,....d, ) > q.
pi Rn

Proof. Let p,,....p, be the prime numbers which divide d,...d and write

2 2
R P | 8,1
di - pi iiipa ’

for i =1,....m, To di we associate the vector
vy = (91 ilng pl""'"s i log ps) in Rg. Notice that all the vectors

¥

Vyroor sV lie in
D = £(Y1""'Yé]|Y1 e Y, ¢ log x and O ¢ Y; for i=1,...,8}.
Put w = [(a log x)/loagly/g)] + 1 and cbserve that
(s log x)/log(y/g) ¢ w ¢ (28 log x)/log(y/g). (b)
For any pcaitifa integers ji""'ja define the bhox

Djl""'js = {(yi.....ys)l((ji~1)lag x)/w ¢ Yi‘ (jilug x)/w, i=1,...,8}.

Let M be the number of such boxes for which

S
Z (3;-D/w < 1,
i=1

Notice that these M boxes cover D and are contained in

Dﬁ = {(yi,...,y5]|y1+...+yE (¢ (1+(a/w))log % and O < Yy for i=t1,...,8}.

87



Stewart and Tijdeman: Sums of integers

Bach box has volume ((log x)/w)°. The volume of D, is -
((1+(a/w))log %)°/8l. Therefore |

M ¢ (s+w)°/st,
and so, by (6), and the inequality B! > (a/e)>,
M ¢ ((Je log x)/logly/gn®,

If (5) holds m/M is at least n and 80 there is one box

which contains at least n vectors. Let 4 d. be the

D- EEX N
#1 8

leilijjs
integers associated with these vectors and put

gi = gicldl (dpiplliidnn)'

Since dF ....,dp are in the same bhox,
1 n

lﬂgldp |_1 ’ lﬂgldﬂ I"1 - (log x)}/w,

1 Py 1 Py

fori=1....nand j=1,...,8. Thus, by the product formula for
valuations,

8
log g, = 5 loqlgiipi = (log |d, |131 -~ (log X)/W),

3=1 i j=t 153 |

hence
log g, » logd, -~ (8 log x)/w.
1 Ri
But dp 3 vy and thus
1
g1 } quafwl

hence, by (b6), : » g as required, 0

Lemma 1 is used twice in the proof of Lemma 2

&8
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Lemma 2. Let c,k and 8 be integers with ¢ > 6, k » 2, 8 3 2. Let

8 = {pi,...,psl be a finite set of prime numbers., Let A = {ui....,ak} and
B = (b ""'bk} be sets of positive integers such that a; + bj is composed
of prime numbers from 8§ for i,i = 1,...,k. Suppose 8, C ene % a and

by < ... <b, andput N=a_ +b. If k> 2010 c8)°® and b, > N T1/CE

then a, > N1"27C8 apg there exist integers g and i,, with g > N18/C and

1« 11 ¢ k such that

1:_';|ail+!:>:i for j=1,....k.

i-1/¢c8 1-2/¢c8

Proof. We apply Lemma 1 withm=k, x =N, y = N | ard g = N to
the numbers a1+bk, az+hk,...,ak+hk. We obtain that there exist integers

8
11""'in with 1 < i1 4 12 C var X in { kand n > 2(10 ca)” such that

9, : Ni—zfca
where 9q = g.c.d. (ﬂil+hk....,ain+bk). Since 9, divides aiz — aii, we
have a. 3} g,. This gives the first assertion. Thus, for any 3 from
2 | _
(1.....k), the mmbers a; +b;, &, +b,, ..., &, +b, lie between ni-e/cs
2 3 n

and N, Therefore, by Lemma 1 applied with m = n~1, x = N, y = HiﬂZ/ﬂE and
g = H1—3/cs' there exist two integers hi(j) and hzfj) from [12,13....,in}
with hl(j) 4 hz(j) for which

92(33 3 Hiwafca

where gz(j} = g,¢.4. {ﬂhi(j) + bj, “hzij) +_hj), Put ga(j) =
g.c.d. (qi.gz(j)) and notice that both dq and gz(jJ divide & ¢4
2

&hiij)' Since &hZ(j) - &hith £ ahzij) { N. we have

(i) = — glgztj} N ) B1-2/c3H1r3/ca .
3 l.c.m.(gi,gzij)) N

1-5/¢ca

Notice that gafjJ divides hk - bj and is composed of primes from
{p-l " ;pa} - m&mm

&9
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| g1 | ¢ Nﬁfcs |
ga(j)

g,(3)
for j=%,....kand o =1,.,..,8. Henﬁe

ﬂ'=1 j:i,ii',k ga(j)ﬁ '

This implies that there exists an integer 9, with gdlgatj) for 1i=1,....k
and

g, ) giﬂ-Sfc ; N1-2/cs~5/c 3 Ni-&!c'
It followa that g4|g1 and gd'bk'bj for 3 = 1,...,k, Hence
q4|ai + hj
for i = i1 ard j=1,....k.

Proof of Theorem 3. let Beseee, 8y denote the elements of A and hi""*bk

the elements of B, We shall suppose 0 < a, < ... <2 and 0 < by € ouu ¥

bk' Further we may assume, without loss of generality, that there is no

prime number p such that

pla, + hj for i,j=1,...,k. (7)

Finally we may assume that &y £ bk‘ Put N = a * bk.
We shall prove that if

k > 1608478 (8)

then

w(ﬂz) > 8,

This suffices to establish our result, Fnr.a = ] it ia_nbvinus.' We shall
therefore assume that

90
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w(ll,) =3 > 1

and that k satisfies (8) and we shall show that this implies (7) for some
prime p. Let Pyreee Py be the primes which divide HZ'

208

Since N » k » 27, we have bk s N/2 3 NiuifZﬂE.
1-1/10s

Therefore, by Lemma 2 with ¢ = 20, we have a ? N and there exist

7710 and 1 < i, ¢ k such that

integers e and 11 with Je ’ N 1

g5ia11 + bj fﬂr j = 1,...,k-

By applying Lemma 2 with A and B interchanged and ¢ = 10, we obtain that

there exist integers 9% and ;i1 with 9¢ ? H2f5 and 1 ¢ j1 ¢ k such that

gélai + bj1 for 1 =1.....k.

Put g = g.¢.d. (g5,gs) and notice that both e and 9. divide a, + bjl+

1
Hence
%% NN o,
g I.C.m.(gs.qﬁ) N '
~Since a, + bj = (ai+§j1) - (a11+hj1) + {ai1+bj}, we have
q|a1+bj for i,3=1,....k.
Hence there exists a prime p such that (?).holds. 0
4. LQHEB.EQHHD&HEQB_ﬂLHTl;&HD“ﬂ1E2ll.ﬂQﬂ:ELEﬂEHI&EI.EBQQE&

It is easy to derive the following refinement of Theorem 2
from Mahler's result mentioned in section 2 which was published just one
year sarlier than the paper of Erdde and Turén appeared., Mahler’s result
has a non-elementary proof, however,

Theorem 4. Let A = {ai.....ak} be a set of positive integers with k » 2.

Pt B = {ﬂ,ai}. Then

91
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k X
u(iE1 {(ai+a1)(ai+ai))} } w(nz) > c4log k, (G)
" =
Proof. Let 1 (ni(ai+a1)3 be composed of the prime numbers RTRRI

i=1
Then each of al rﬁzr v :ﬂk 'ﬂ1+a1 ra2+a1 P Fak+a1 is cﬂmposed of these

primes, Put di = g.c.d.(ai,ai+a1), X, = (ai+a1)!di and Y; * ai/di for
i = 1,....k. Then q.c.d.{xi.yi} =] for i =1,.,..k and all the pairs
(xi,yi) are distinct. Moreover, each pair Ry Yy satisfies

s
Hence k ¢ cf by Mahler's result (or by Theorem B or C),. |

It is possible to refine Theorem 3 in a similar way. The
essential difference with the above proof is that we no longer know that

X; =~ ¥y ig composed of the prime numbers PyreserPg ard we can therefore

not apply Mahler’'s result. However, for i = 1,...,k, each pair a, + bi'

a, + b, provides a solution of the equation (b,-b,) lx + (by-by) "y = 1.
Hence a straightforward application of Theorem B vields the following
result,

Theorem 2. {(Gyory, Stewart and Tiideman (7). Let A and B be sets of
positive integers with k = [A} » |Bl » 2, Then

“(HZ) P Cg log k. (10)
We note that a slightly weaker result, namely
-ufﬁzl > Ce log k/loglog k

can be derived by using Lemma 1 and Theorem C, See Stewart and Tiideman
[12]. |

92
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ﬂEEEE_EQHHQE“EQE_HLETl_BHDHﬂiHQA

It is likely that Theorems 2 and 3 are far fxrom best poasihle
results, but we have nothing to add to the words of Erdés cited in the
introduction., However, we shall show that Theorems 4 and 5 are not far
from being best possible.

iheorem 6, Let ¢ he a positive real number. For every k > C1(e) there
exist positive integers Qgreee. By such that

i
w( T (a,(a,4a,))) < 2(log k)2*E,
i=1 .

This implies that the right-hand sides of (9) and (18) cannot be replaced
by (log k)2 € for sufficiently large k.

The proof of Theorem & is based on the fulldwinq counterpart
of Mahler’s estimate,.

Theorem D, (Stewart and Tijdeman). Laet ¢ > 0, Let pi....,p be the
first 8 prime numbers. Then for g ) Cz(e) there exists a posgitive integer
a < e such that the aquation

X ~y % a
has at least exp(alfz'ﬁ} golutiong in relatively prime positive integers x
arnd y composed of Pysese Py Further there are arbitrarily large finite
sets S of prime numbers such that the equation

K-y =2

f

with (%,y,2) = 1 hag at least exp(is|
X,y and z compoged of primes from S,

ifz'a) solutiong in positive integers

The proof of Theorem D is based on an estimate of de Bruiin [2] for the
number of positive integers < x composed of prime numbers ¢ v,

Proof of Theorem 6. We may assume 0 < ¢ ¢ 1. Let Pyrees Py be the first
3 prime numbera where 8 > Cz(EfS); Apply Theorem D, Let a4 be an integer
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with 0 < a ¢ &° such that the eguation x ~ y = a4 hag at least

exp(slfz"efg} solutions in integers x,y composed of Pyreee Py Penote
these solutions (x,y) with y # ai'hy
(a2+ai,a2). (&3+&1'33)' cea, (ak+ﬂ1*“k)‘
Then
K
m(iz1 {ai(ui+a1))l £ m(zal) + 8,
Since a £ es. we have w(Zai) ¢ 8, Further k 3 exp(sifz"a;s}, hence
s ¢ (log K)2/178/4) ¢ (1oq ¥)%*€, Combining these inequalities we obtain
k 2+€
w( 1 (&i(a.+a1))) ¢ 28 £ 2(log kK)° . {
i=1 :
. LOWER BOUNDS FOR P(Il
6 W F (- AND_P(Ti.)

Lower bounds for “(Hi) and M(H2) give immediately lower
bounds for P(Hl) ard P(Hz). Iin fact by applying the prime number theorem
we deduce the following result from Theorem 5,

Theorem 7. Let A and B be sets of positive integers with k = {A| » |B} » 2
and k # 3. Then

P(HE) > € logk loglog k. (11)

By Theorem 11 the right hand side of inequality (11) can not
be replaced by {log k)2+£ for any ¢ > 0. If, however, at least one of the
terms of A or B is large and the terms have no common factor we are able
to improve upon (11).

Theorem 8. (GySry, Stewart and Tijdeman [7]). Let ¢ be a positive real
number and let EREERL ard b be positive integers. Put A = {ai,....ak}
and B = {0,b}. 1If k> C,(e) and

g.c.d, (51""'ak'b) = 4

94
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then |
P(Hz) > min{{1-e)k logk, Cq loglog (ak+h)).

For the proof of Theorem 8 we employ estimates for linear forms in
logarithmg due to Baker and, in the p-adic case, to van der Poorten,

Let N be a positive integer. If A and B are dense subsets of -
{1,..,.N} then it is possible to improve on the above estimates, For

example Balog and S&rkdzy used the large sieve inequality to prove the
following theorem,

Theoram 9. (Balog and S&rkézy [1]). Let N be a positive integer and let
A and B be gubsets of {1,....N}, If

172

aatis2 > 1081 %10g N

and N > Cy. then

1/2
pary > SALIBL
2 16 log N °

Further, Sarkdzy and Stewart used the Herdy-Littlewood circle method to
@atablish the following result.

Theorem 10, (S&rkdzy and Stewart [11])., Let ¢ be a positive real number,
let N be & positive integer and let A and B be subsets of {1,...,N}. Put

R = /(ABDY 2. 1f
(IAIIBI31/2 y N5.-’6+£:
and N > C4(£), then
PUL.) > (ALBD
2 10 log R logloeg R °
7. UPPER BOUNDS FOR P(,) AND P(I,)

The following theorem shows that the right hand side of
inequality (11) cannot be replaced by (log k)2+E for any ¢ > 0,
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Theorem 11 Let ¢ be a positive real number, For every k > CS(s) there
exist positive integers 81,0008y and a positive integer b such that, with
A = {ai,...,ak} and B = {0,b},

P(,) < (log k)eHE, (12)

Proof., We may assume ¢ < 1, Let s be the number of primes not exceeding
{log k)2+£. Then, by the prime number theorem,

24+E
g > 2T KI_— o () g g2/ (1-€/) (13)

if k > Cele). let py.....p, be the first ¢ prime numbers, If k is so
large that & > Cz(efﬁ) then, according to Theorem D, there exists a
positive integer b such that the equation x - v = b has at least
exp(sifz_e,s) golutions in positive integers x#,y. Note that, by (13),

exp(sizz“g;ﬁ) > k.

Let (x,y) = (a1+b,a1), (a2+b,a2), con, (ak+h,akl be a set of solutions,
Then B,000,8y anrd b yield (12), 0

The proof of Theorem 11 does not guarantee that P(b) is
small, Such a result isg given by the following theorem which should be
compared with Theorems 6 and 11. The proof of Theorem 12 iz self-~
contained.

Theorem {2. Let ¢ be a positive real number. For every k > C7(a) there
exist positive integers By Bo,ene By gsuch that
k 1/2 '
P(C T (ai(ai+a1])) ¢ exp{((2+c)logk loglog k) " 7). (14)
i=1

Progf. We may assume € < 1. Let p be the smallest prime number such that
k < exp((1-¢/8)(log p)°/2loglog p). (15)

Let Py Porees denote the prime numbers in increasing order and let p = Py
By the prime number theorem we have

%
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B
g 2 log p’ (16)
for k > c11' Put
_(1-e/8)log v - |
t = 2 loglog p and u = [t] + 3. - an

Let S denote the set of positive integers at most pu which are composed of

pi.--.,ps. ThEﬂ, bY (16},

1

8 . B\, BV
151 > 57> @ Giee B
Thus, by (17),
18t > 2p

for k > CB(E). Consider the gaps between consecutive elements of 3,

Since an interval of length p- can contain no more than p”‘1 distinct
u-1

intervals of length p, there are at least p
with 0 ¢ g~y ¢ p. By (17) and (15) we have

pairs of integers x,y 1In S

'ﬁu'i > Dt+1 > pk.

Hence for some integer a, with 0 ¢ a4 ¢ m, there are at least k pairs X,y

from 8 such that ¥ -y = 8y and so k distinct elemsnts y = Ag,000,8, in 8
for which the equation x - y = a hag a solution x in S, Since

k > exp((1-¢/8)(log p__,)%/2 loglog p,_,)
we have
(1-¢/8)(log p,_()°/2 loglog Py ¢ log k and Py ¢ k
for k > Cgle). Since pg ¢ 2p,_q bY Bertrand’s postulate, we obtain

k
PCT (a;(a,+a,))) ¢ p, < 2py 4 ¢ 2exp(((2+¢/231og k loglog k)72

1=1

)

1/2

< exp({{2+&)log k loglog k)™ ™)

97
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for k > C, (€], | C

10

We remark that it is possible to replace the factor 2 + ¢ on
the right hand side of inequality (14) by 1 + Elby uaing estimates of de
Bruijn [2) as in the proof of Theorem D. ”
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