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Content

One of the major mathematical triumphs of of the last century is Schmidt’s Subspace Theorem.
We plan to put it in context and derive some of the consequences of it.

Let o € R. Basic question: How well can o be approximated by rational numbers? Since
the rational numbers are dense we know that they can be approximated as well as we want.
So we ask the more interesting question: How well can o be approximated by rationals p/q
with p,q € Z, ¢ > 0 in terms of ¢?

Theorem 1. (1842 Dirichlet). Let Q be a real number with () > 1. There exists p,q € Z with
1< q<Q such that
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Notes:

-This tells us that ’a — g’ < qiz.
-If « is irrational then Dirichlet’s Theorem shows that there are infinitely many rationals
p/q for which

Clearly this is not true if « is rational.

Algorithmic question: How do we find these good rational approximations to a?
In particular, can it be done efficiently? Yes, because of the continued fraction algorithm.

Given a we produce we produce two sequences (ag, aq, ... ) and (ag, ai, ...) with the a;’s in
R and the a;’s in Z by the following rules:

Put @ = ap and a; = [a] for i = 0,1,2,... and a;y1 = (o — [o])7! for ¢ = 0,1,2,...
provided that a; # [;]; here for any x € R we denote the greatest integer less than or equal
to « by [z]. Note that if a; = a; for some i we stop the process. In this case a € Q. We put,
forn=0,1,2,...

Pn 1

1
dn ay + g+

here we suppose that (p,,q,) =1 and ¢, > 0.
We then have ’oz — Z—Z’ < qu forn =0,1,2.... Further Legendre showed that if ’oz — %" < ﬁ
then there exists n such that % = f]ﬁ.

n

The zﬁ are known as the convergents to «.
n

Remark:
If the a;’s are all eventually 1 then lim q ’a — bl = %
Given aq,...,a, € R. Interesting question: How well can we approximate the «;’s by

rationals of the same denominator?
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Theorem 2. (Dirichlet) Suppose that o, ... ,a, are real numbers and ) > 1 is an integer.
Then there exists q,p1, ... ,pn with 1 < q < Q™ for which
Di 1 .
o — —| < — fori=1,... n.
q| q@

Corollary 1. Suppose that at least one of the «;’s in Theorem 2 is irrational. Then there exist
infinitely many n + 1-tuples of coprime inegers (q,p1, ... ,pn) with ¢ > 0 for which

Pi 1 -
ai—g q1+% fori=1,... n.
Proof:
Note that since one of the «;’s is irrational, Theorem 2 yields infinitely many n + 1-tuples.
Further we may assume that (g, p1, ... ,pn) are coprime by factoring out the common factor if
necessary. L]

Algorithmically there is no "good” way of finding these approximations in sense of the
continued fraction algorithm. However there are algorithms which produce some good approx-
imations.

Note: Corollary 1 tells us that the linear forms satisfy |qo; — pi| < #

Theorem 3. Suppose that «, ... ,«, are real numbers and that Q) is an integer with ¢ > 1.
Then there exist integers p and qi, ... ,q, with 1 < Imax lgi| < QY™ for which
o + -+ <2
q101 qnQn —P| >~ =
Q
Corollary 2. Suppose that o, . .. , «, are real numbers with 1, aq, ... , o, linearly independent

over Q. Then there exist infinitely many coprime n + 1-tuples (p,q1, ... ,qn) such that if we
put ¢ = max |gi| we have ¢ > 1 and |qroq + - -+ + quay, — p| < qin.

Proof:
Since 1, aq, ... ,q, are linearly independent over Q we see that ¢yaq + -+ -+ gpa,, —p # 0 and
so Theorem 3 produces infinitely many coprime n + 1-tuples of the desired form. O

We can combine Theorems 1,2,3 into a single theorem:

Theorem 4. (1842) Dirichlet
Suppose that o;j are real numbers for 1 < i < n, 1 < j < m and that () is an integer with
Q > 1. Then there exist integers qi, ... ,qm and py,... ,p, with 1 < _max | < Q™™ and

1 .
|Oéi1Q1+~-~+OéiQO—pi|§@ fori=1,... n.

Corollary 3. Suppose that 1,1, ...,y are linearly independent over Q for some v with
1 <i < n. Then there exist infinitely many coprime n + m-tuples (p1, ... ,Pn, Qs - - 5 qm) Such
that with 1 < ¢ = _max lgi| we have

1

T fori=1,... n.
qmn

laiiqn + -+ + QimGm — pi| <
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Notation:

Recall that for x € R we denote the greatest integer less than or equal to z by [z] and the
fractional part of by {z} so {z} = x — [z]. Also we let ||z|| denote the distance from z to
the nearest integer. So then ||z| = min({z}, 1 — {z}).

For n € Z*, u™ denotes the unit cube u™ = {(t1,... ,t,) |0 <t; <1, fori=1,...,n}
and T" = {(t1,...,tp) eR*"|0<¢t; <1, fori=1,...,n}
Proof:

(Theorem 4) Let us divide @™ into ™ subcubes of side length % in such a way that the union
of the cubes is @™ and so that the intersection of any two subcubes is either a face, edge or
point of a subcube or nothing.

We now consider the points in @™ of the form ({aq121 + ... + 1T}, -, {@mzr + ... +
QpmTm }) Where the 2;’s are integers with 0 < z; < Q"™ fori = 1,... ,m. The sequence of such
points has Q™ elements. If we include the points (1, 1,...,1) we get Q™+ 1 points and so two of
them are in the same subcube. These points are say ({aq121+. ..+ a1mTm}, - - {omxi+.. .+
pmTm }) and ({oanz) + ...+ ol }, o {amx] + ..o+ apml, }) or (a1 + ..o F T —
Yty .- >an1I1+~ . +anmIm_ym) and (a11$/1+. : '+a1mI;n_yi’ ce >anlzﬁ+' : +anmI;n_y;n)
Then

lony (21 — 21) + .. 4 au(@m — 27,) — (1 — )| <

1
|O‘n1($1 - ill) +.+ O‘nm(xm - x;n) - (yn - y;)| < é

and so the result follows on taking ¢; = z; — 2} and p; = y; —yj for i = 1,... ,m and
j=1,...,n. Notice that |¢;| < Q"™ fori=1,... ,m since 0 < z; < Q"/™. O
Notation:
We denote points in R” by z so & = (21,... ,2,) forz; e R, i=1,... ,n.

We put z| = max (|zi]).

If x = (21,...,2,) is such that x; € Z for i = 1,... ,n then we say that z is an integer
point.

For any set T'in R" and z € R weput T +z ={t+z |t € T}.
Further for A € R* we denote AT" by AT = {At |t € T'} here At = (Aty,..., Aty).

Theorem 5. (Blichfeldt 191]) Let P be a non-empty set of points in R™ which is invariant
under translation by integer points and we suppose that P has precisely N points in u™. Let
A be a subset of R™ of positive Lebesque measure p(A). Then there exists an x € u"™ such
that A+ x contains at least Nu(A) points of P. Further if A is compact then there exists an
x € u" such that A+ x contains more than Nu(A) points of P.

Proof:

For any set S in R™ let v(S) denote the number of points of P in S. Let P4,..., P y denote
the points of P in u". Let P, ..., Py be defined by P; = {P; + ¢ | ¢ an integer point in R"}.
Note that P = PLUP,U...UPy and P,NP; = ¢ if i # j since P is invariant under translation
by integer points.
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Now let 1;(S) denote the number of points of P; in S for i = 1,... ,n. Observe that
N

v(S) = 1(9).

i=1
Let x denote the characteristic function of A. Then fori=1,... ,n and z € R"

vi(A+z) Z xL2i+g—2z)
where the sum is over all integer points g- We have

/uuz(Ajo d:l:—/ ZX +g9— g)dngnx(z)d(g)Zu(A)-

Therefore

and so for some z € u" we have

v(A+z) > Nu(A).
Suppose now that A is compact. If Nu(A) is not an integer the result is immediate so we
may assume Nu(A) = h € Z*. For k = 1,2,... we define Aj, by Ay = (1 + 1)A. By what
we have just proved there is a sequence (SL’ K)o, of points in u™ for which v(Ay +zx) > h+1,
for k=1,2,.. Slnce the z,’s are in u™ we may extract a convergent subsequence (z g, )
which converges to z’. All of the sets Ay, + z,; are uniformly bounded and so contain only
finitely many points of P. Since each set contams h + 1 points of P there exist h + 1 points
oo By Wthh occur in infinitely many of these sets.

Smce A 1s compact so is A4z and so either Moo, are all in A4z’ or there is one of
them, say [ which is not and then it is a posmve dlstance from A+ z’. But the maximum

dlstance from a point of Ak +xy, to A+ z' tends to zero as j — oo since Ty, — x and
1 + — — 1. This is a contradlctlon and so Hpooeos | are in A+ 2. We now choose g€ 7"

SO that z' — g e u" and then v(A+2' — g) > h+1 as requlred O

Theorem 4a: Theorem 4 holds for Q € R with @) > 1.
Proof:
Let P be the set of points in R™ of the form

(@111 + -+ Qi Ty - - Q1T+ -+ Ay @) + g
where g is an integer point in R" and z; € Z with 0 < z; < < QY™ fori=1,...,m. Pis
invariant by translation by integer points. Let N be the number of points P in u" Then either
N > Q" or two points (allatg) .oz, anlxy) .ot apma)) for i = 1,2 differ by

an integer point. In the latter case we are done.

Let A = {t;,...,t,)|0 < t; < %fori = 1,...,n}. Ais compact and u(A) = & By
Blichfeldt’s Theorem there is a point z € u" for which A + z contains more than N é =1
point of P. Thus there are two points of P in A + z and the result follows on taking the

difference of the coordinates of these points. O
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Definition:
A set S in R” is said to be symmetric about the origin 0 if whenever x € S then —z € S.

S is said to be convex if whenever z and y are in S then the line segment joining x and Yy is
also in S. In particular z Y € S implies >\.§L’ +(1-Ny eSfor0<A<1LAeR.

Theorem 6. (Minkowski’s Convex Body Theorem, 1896)

Let A be a convex set in R™ which is bounded, symmetric about the origin and has a positive
volume p(A). If u(A) > 2™ or A is compact and u(A) > 2" then there is a non-zero integer
point in A different from 0.

Proof:

Notice that either p(1A) > 1 or 3A is compact and p(34) > 1. We now apply Blichfeldt’s
Theorem to the set 1A where P is the set of integer points in R". Thus there is an z € R"
such that 1A +z contalns two 1nteger points, say 9, and 9, Thus there exist £, and z, € A

such that —:cl +z = =g, and 2 Lo+ 2 = 9, By symmetry —zo € A and by convexity

—gl + (—:E 9) = 9, — 9, 1s also in A. But 9, #+ g, and so 9, ~ 9, is a non-zero integer point

in A. O
Note: The estimate for p(A) cannot be weakened since A = {(¢1,... ,t,) € R"| |[t;| < 1 for i =
1,...,n} is convex, symmetric and bounded with p(A) = 2" and yet the only integer point in
Ais 0.

Theorem 7. (Minkowski’s Linear Forms Theorem)

Let B = (0;j) be an n x n matriz with entries in R and non-zero determinant. Let cy, ... , ¢,
be positive real numbers with ci---c, > |det B|. Then there exists an integer point x =
(21,...,2,) with z # 0 such that

|Gz + -+ Binxn| < fori=1,... , n—1

and
|ﬁnlxl + -+ ﬁnnxn| S Cp,

Proof:

Put L;i(z) = Bux1 + -+ + Bz, for i = 1,... ,n and Zl(g) = %Ll(g) fori=1,...,n. In
particular, we wish to solve the system

|L()|<1 fori=1,... ,n—1

and N
[Ln(z)] <1 forz € Z" —{0}.

~

The absolute value of the determinant associated with the system (L;);—1_ , is at most 1.
Therefore we may assume without loss of generality that ¢; = --- = ¢, = land 0 < |det B| < 1.

Let A be the set of z € R for which |L;(z)| < 1fori=1,... ,n. Note that A is bounded,
symmetric and compact. A is also convex since if X is a real number with 0 < A <1 and z,
and z o are in A then

[Li(Az 1+ (1= Nzo)| < |Li(Az )] +[Li((1 = A)z2)]
S ALi(z )] + (1= A)[Li(z)]

<A A+1-X<1 fori=1,...,n
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Further j(A) = —25u(U ) where U = {(t1,... ,t,) € R"| [t;] <1 fori=1,... n}.
Thus pu(A) > 2". We now apply Minkowski’s Convex Body Theorem to conclude that there is
an integer point z in A with z # 0. This gives our result with |L;(z )| <1 for i = 1,.
To get strict inequality for the first n — 1 forms we need an additional argument.
For each € > 0 we define the set A, where A, consits of the z € R" for which

|Li(z)| <1 fori=1,...,n—1

and

Luz)| <1+
Note that A, is bounded, symmetric and convex and p(A.) = (14 ¢€)2™ > 2". By Minkowski’s
Convex Body Theorem there is a non-zero integer point z. in A.. Note that Uj..<1 A, is a
bounded set and so contains only finitely many integer points. Thus there is an integer point
z € Ac with z # 0 for e = i for m =1,2,... and so for this integer point z we have

|Li(z)| <1 fori=1,...,n—1

and
[Ln(z)| < 1.

O

Theorem 7 implies Theorem 4a

Proof:

Put [ = m + n and consider the linear forms z = (z1,...,2;) given by

Li(z)=a; fori=1,...,m
and
Lpij(z) =ajzr + -+ m@m — Tpy;  forj=1,...n
Notice that the determinant of the system of equations given by the linear forms Ly, ... , L; is

(=™
Let @ be a real number with ) > 1. By Minkowski’s Linear Forms Theorem there is a
non-zero integer point z such that

|Li(z)] < QY™ fori=1,...,m

and .
| Lyt j (2 )\<@ forj=1,...,n
We now put ¢; = x; fori =1,... ,m and p; = x4 for j =1,... ,n. Then
q=,max g <Q""
and )
|aj1q1+---+ajmqm—pj|§é forj=1,...,n
Note that ¢ # 0 since if it was then ¢; = --- = ¢, = 0 and as a consequence p; = ---=p, =0

since @) > 1. This is a contradiction since = (g1, ..., ¢m,p1,-.. ,Pn) # 0. O
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Theorem 8. Let oj; €R fori=1,...,n,j=1,... ,m. Put

Li(z) =anzy + -+ amay,  fori=1,...,n
Put L(z) = (Li(z),...,Ln(z)). Then thereis an integer point (z,y) = (T1,. .., TmsY1,--- 2 Yn) €
R™ ™ with x # 0 such that

|£’(£)_y|n<cmn| m (1)

mn ()l pyrether if whenever x is a non-zero integer point then L(z) is

where ¢, p = )T il
not an integer point then there exist infinitely many integer points (z,y) with x # 0 and with

coprime components satisfying (1).

Remark:
1. Note that ¢, ,, < 1 since it is one of the m +n + 1 terms in the binomial expansion

1:1m+":( m n >m+n
m+n m-+n

2. Theorem 4 a) states that for any @) > 1, Q € R, there exists an integer point (z,y) € R™*"
such that 1 < [z | < Q™™ and [L(z) — y| < 5- Thus [L(z) - y|"

Ix\m'

Lemma 1. Let m and n be positive integers and let t be a positive real number. Let K, be
the set of points (z,y) = (1, ..., Tm, Y1, .- ,Yn) € R™" satisfying

x|+ "y | < 1.

2m+n m!n!

Thus K, is compact, symmetric about the origin, convex and has volume G

Proof:

Plainly K, ,, is compact and symmetric about the origin. To see that K, ,, is convex let A € R
with 0 < A < 1 and suppose that (z y(l ) and (z®,y®@) are in K,, ,, then

Az @ ),g(l)) (1-— A)(:(z),g(z)) is in Kmm since
Az W 4+ (1= Nz @+t Ay D + (1 — Ny @
<7 (A2 + (1= V@) + " (\g D] + (1 = Ny @)
<AEzO1+ "y O)) + (1 =) (2@ + ]y @)

<A+1-A=1
We now calculate the volume of K, ,,. We first note that the linear transformation that sends
x; to t"z; for i =1,... ,m and y; to t™y,; for j =1,... ,n has determinant t"™ - (t~™")" = 1.

Thus the volume of K, ,(t) equals the volume of K, (1) for ¢ € R*. Thus we may suppose
t=1. Put Ky, 4(1) = Ky . Further vol(Ky,,) = 2™ vol (K}, ) where

Khn={z.y) eR"™"||z|+y| <1, 0<a, i=1,...,m, 0<y, j=1,... ,n}
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Furthermore the volume of K . is m times the volume of K}* where K = {(z,y) €

Ky .lz =} Notice that if |z| = #; then 0 < 2; <z fori=2,... mand 0 < y; <1 -1z
for j=1,...,n. Thus

1
Vol(K**, ) = / 21— 2)"dzr = A(m,n).
’ 0

m—1)!n

We claim that the integral is . To verify the claim we first observe that by integration

m+n )
by parts
! 1 Ty 1 tay 1
A(m,n) = / 2T (1 —z)"dry = —(1—x)" g+ | —n(l—z1)" " dry
0 m 0o m
= ﬁA(m—l— 1I,n—1).
m
We have
A(1,n) /1(1 )" d /l”d L
= — = | a2 doy = ——.
(Ln 0 ! SR R |
We now claim that A(m,n) = (?;;b Jrln'” for m,n positive integers. Prove by induction on m.
For m =1 we have A(1,n) = (T? T as required. Suppose for m the result holds. Then
m  (m—1)!(n+1)! min!
(m+1n) =g A+ 1) = o T T 1)
as required. 0
Proof: (of Theorem 8)
Let t € RT and let K, ,(t) be as before. Put C' = # where V,, ,, is the volume of
Vm,n m+n

Kpn(t). Let T : R™" — R™™ be the linear transformation given by the map that sends
zy) to T(m y ) where z; is sent to C'z; for i = 1,... ,m and y; is sent to C(L;(z) — y;) for
1,.

Put T(K a(t) = Iw(mn( t). Note that Kmn( ) is compact, symmetric about 0 and convex
since these propertles are preserved by linear transformations. The determlnant of the matrix
associated with T is (—1)"C™*" = (—1)”%. Therefore the volume of Km,n( ) is 2mtn,
Notice that

(
J

K pnt) = {T(x y)| Tz | + 07Ty < 1),

T is invertible and so
Konnl®) = {(z,y)

By Minkowski’s Convex Body Theorem there is an integer point (z,y) # 0 in K mn(t). In
particular, B

Tz) + "TE@) — gl < O,

|+ e () —y | < C. (2)

Notice that for each integer point (z,y ) there are only finitely many real numbers ¢ for which

)

Thus these exist only countably many real numbers for which (3) has a solution with (z,y)
an integer point. We shall suppose that t is not one of these reals and that B

tm > C

]+ e TE(E) gl =

—~
w

~—~
=~
S~—
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Then we may replace (2) by

x|+ L (z) —yl < C (5)
By the arithmetic-geometric mean inequality for real numbers zy,. .., 2 with 2; > 0 for i =
1,... ,l we have (Zl"~2l>l/l S w We take | = m-+n and 21 == Zy = t77l|£‘ and
™ L(z) -yl
Am4l = T = Bmdn &< T,
T\ ™ mIr () — 1\ —nJ,. mir oy oy \ "
g\ (@) -~y (] £ ) -yl
m n N (m 4 n)mtn
Thus by (5)
T mmn” 1 1
L) —y)l" < min L g L
R T T

Note that z # 0 since if z = 0 then by (4) and (5) we have y = 0 also which is a contradiction
since (z,y) # (0,0). This completes the proof of the first assertion.

To prove the second assertion note that if (z,y) satisfies (1) with z # 0 and L(z ) is not

an integer point for  an integer point then |L(z)—y| > 0. Thus, for ¢ sufficiently large
(5) does not hold. Accordingly, we may apply our argument again to get a new integer point
(z1,y1) with 1 # 0 for which |L(z,) —y.|" < Omm%- Continuing in this way we produce

|z

infinitely many such integer points. U

If n=m =1 then C;; = % Thus if & € R with a € Q then there exits infinitely many
pairs of coprime integers p, g with ¢ # 0 and

g0 —pl < 5
q —p YR
2|q]
or equivalently
P 1
- =< —. 6

Since in this case we cannot replace 2 by a number larger than /5 in (6) when « is a real
number whose continued fraction has partial quotients which are eventually all 1 we might
suspect that for other pairs (m,n), Cy,, can’t be replaced by an arbitrarily small number. In
fact this is the case.

Definition:
Let o;; be real numbers fori=1,... ,nand j =1,... ,m and put
Li(z) = oz + -+ oy, fori=1,... n.
Put L(z) = (Li(z),... ,Ly(z)). Li,...,L, is said to be a badly approximable system of
linear forms if there is a positive real number v = v(Ly, ..., L,) = y(a11, - .. , Q) such that

for all integer points (z,y) with z # 0 we have
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Lemma 2. For every positive integer | there exists a real algebraic number 6 of degree | over
Q for which all of the conjugates 0 = 01, ... ,60; of 0 over Q are real numbers.

Proof:

Let [ € ZT. Put fi(x) = (x — 4)(x — 8)--- (x — 4]) — 2. Note that f; is irreducible over Q by
Eisenstein’s theorem with p = 2. It remains to show that f; has distinct real roots since we
then take # to be a root of f;. Notice that for [ > 2,

fidl+2) = (2)(6)--- (4l —2) —2>0
fidl —2) = (=2)(2)(6)---(4(1—1)—2) =2 <0

<0 iflisodd
>0 if[is even

fi2) = (=2)(=6)--- (2 —4l) - 2 {

Note between 2 and 6, 6 and 10, ..., 4l — 2 and 4l + 2 f changes sign. Therefore f; has [
distinct real zeros as required. U
Theorem 9. Let 1, a4, ... ,q,, be a basis for a real algebraic number field of degree m~+1 over

Q. Then the linear form L(xz) = cqxy + - - + @y, is badly approxzimable.

Proof:
Let ¢, ..., ¢, and p be integers with ¢y, ... , ¢, not all zero and for which

longr + -+ + am@m — p| < 1. (7)
Let ¢y, co, ... denote positive numbers which can be determined in terms of aq, ... , a,,.

goee

Let ag-i) fori =1,... ,m+ 1 denote the conjugates of over Q of «; for j =1,... ,m. Then

agi)ql + -+ ozﬁ,?qm — p is a conjugate of ayq1 + -+ + G —p = agl)

1=1,... ,m+ 1. Further, forte=1,... ,;m+1,

q+---+alg, —pfor

10+ + aBq, — p| < eaq.

Observe that the norm of (ayq; + - - - + @n@m — p) is a rational number which is non-zero since
since oy, ... , oy, is a basis and since (g1, ... ,¢n) # 0. Thus |N(a1q1 + -+ - + @t — p)| > 0.
On the other hand

IN(arqr + -+ QG — )| < langy + -+ + QG — p| - (c29)™ (8)
Further there exists a positive integer h such that haq, ..., ha,, are all algebraic integers.
Then [N(haigi + -+ 4 hamGm — hp)| > 1 so
1

IN(arg + -+ amdm = p)| 2 27 (9)

By (8) and (9) we see that
S 1 1
langr + -+ + Qg — pl > e g
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Theorem 10. (Perron 1921) For each pair of positive integers (m,n) there exist algebraic
numbers oy, 1 < i < n and 1 < j < m for which the associated system of linear forms

Li(z) = anx1 + -+ i@, fori=1,... ,n is badly approximable.

Proof:

Put | = m + n and let 6, be a real algebraic integer of degree [ with the property that all of
the conjugates 61,... ,6; say of 0; are real numbers. As usual, we put z = (z1,...,2,,) and

Yy = (Y1, ,Yn). Next we put

vz, y) 29 y2+292+j_1xj, fork=1,...,1L
=

Observe that if (z ,y ) is an integer point with (z,y ) # (0,0) then My(z,y ) # 0 since otherwise
6, would be the root of a polynomial with integer coefficients of degree less than [ which
is a contradiction. Further, by construction M;(z,y),..., Mz, y) are conjugate algebraic

integers. Therefore since the norm of a non-zero algebralc integer is a non-zero integer,
[Mi(z,y)]--- [Mi(z,y)] =1 (10)

=)
IO

for all integer points (z,y) # (0,0). We now define the linear forms L, ..., L, by the rule

My(z,y)=>_0;"(vi— Li(z)), fork=1,...,n
o i=1
In other words we require that — >/, 6, " L;(z) = Y7 0.y, for k=1,... n. Hence
16, 62 .. ot b
19; 6’% 9n1 Qi1 - Qum L1 oy - 67" ! 21
Lo o giet) \am ) e ) NGy B e
16, --- 9?—1
We can solve this system for the o;;’s since the matrix : : is a vanderMonde
10, - 9;1—1
n(n—1)

matrix with determinant (—1) [1;<;(0; — 0;). Since 6; # 0; for i # j the determinant is
non-zero and so the matrix is invertible. Further each ay; is an algebraic number since it is a

rational function of the #,’s. Next observe that for k=n+1,... ,n+m
My(z,y) Z O (i — Li(z)) + Z Aiji,
Z =

where \; is an algebraic number determined by the 6;’s.
Let ¢q,co, ..., denote positive numbers which can be determined in terms of 6;,...,6;, n
and m. Let (z,y) # (0,0) be an integer point and suppose that [L(z) —y| < 1. Then

|Mk(£,£)|§cl|ﬁ(£)—g|, fork=1,...,n,

and o
|Mp(z,y)| < clz| fork=n+1,...,n+m.
yl|"

Thus by (10), 1 < c}|L(z) — gz |™, for integer points (z, y) # (0,0). Since

|L(z) —y| <1 we have z # g and thus |L(z) —y[" > C3gjor A required. O
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Observe that C,, , is Theorem 8 cannot be replaced by an arbitrarily small real number for
any pair of positive integers (m,n). Recall C; = % and the best possible constant is —=. If

NG
m =1 we have C,, = (L) . In 1914, Blichfeldt improved this to

n+1
n \" n— 1"\ 7!
1 .
(n—l—l) ( +(n—|—1> )

Thus given real numbers «,...,«a, with at least one of them irrational there exist, by
Theorem 8, infinitely many integer points (z,y1, ..., y,) with z > 0 for which
n 1
max(jasz — g1, ., [an@ — yal) < (H 1) -

: n n n—1 n+3 ~i/m : : 2
By Blichfeldt 25 — (n—+1) (1 + (n—+1) ) . Thus if n = 2, Theorem 8 gives % and

Blichfeldt gives .66323.... In fact, for n = 2 the best possible constant is between ,/2/7 =
b34... and .615....

A badly approximable system of linear forms L;(x) = oz for i = 1,... n satisfies, for z a
non-zero integer,

|2 [max(|[arzl], ..., lanz|)]" >~
for some positive real number ~.
Littlewood conjectured that if aq, ..., «a, are real numbers with n > 2 then
liminf |z] - ||y, ... ,|awz] =0,
r—00

where the liminf is taken over positive integers x. The conjecture is still open.
In 1926, Khintchine proved that the set of badly approximable n-tuples (aq, ..., ;) in R”
is of Lebesgue measure 0.

Let o;; with 1 <7 <mn and 1 <j <m, be real numbers and put

Li(z) =anz1 4+ + ey, fori=1,... n
Associated to the system L;(x),..., L,(z) there is a dual system of linear forms M (u) with
M;(u) = agjus + - - + apju,, forj=1,... m.

By a Transference Theorem, Khintchine proved that if Lq,..., L, is a badly approximable
system of linear forms then so is My, ... , M,,.

Let ay,...,a, be linearly independent vectors in R". Consider the set of points

This set is known as a lattice in R" with basis a1,... ,a,. Note that if z € A then, since
ai,...,a, are linearly independent, there is a unique representation for z of the form z =
gi1a1+ -+ g, with g; € Z for ¢ = 1,... ,n. The basis a,,...,a, for A is not uniquely
determined in general since if we put a} = 3", bja;, fori = 1,... n where the b;’s are
integers and det(b;;) = =£1 then a!,...,a), is also a basis for A. To see this note that

(bi;)~" = (¢y;) with ¢;; € Z since det(b;;) = 1. We then havea; = 3% cjja); fori=1,... n.

=J
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Suppose that @1,... ,a, is a basis for a lattice A in R". Suppose that y,... ,y, is another
basis for A. Thus B B

IS

i

Z dijgj with dij € Z,
=1 =

and

<

n
i = Z €i;Q j with €ij € Z,
Jj=1

Thus we have
(dij)(ei;) = In

so det(d;;) det(e;;) = 1. Since the dj;’s and ej;s are integers we see that

det(d;;) = det(e;;) = £1.
Therefore if a1,... ,a, and a’,... ,a’ are two bases for A then

det(aq,...,a,) = det(c;)det(al,... ,ay)

where (c;;) is obtained by expressing a1,... ,a, in terms of a’,... ,al,. We then define d(A)
" d(A) = |det(gy, ... an)l
where a1,...,a, is any basis for A.

Note: that d(A) > 0 since a1, ... ,a, are linearly independent.

Minkowski’s Convex Body Theorem, II

Let A be a lattice in R™. Let A be a convex set in R™ which is symmetric about the origin
with positive measure p(A). If u(A) > 2"d(A) or A is compact and p(A) > 2"d(A) then A
contains a point of A different from 0.

Proof:
Suppose that ai,...,ay, is a basis for A. Then we have

gi:(ail,...,am) forizl,...,n

Let T' be the linear transformation from R"™ to R" associated with the matrix (c;;). Then
A =TAy where Ay is the lattice of integer points in R™. Notice that

(T A) = d(A) ™ u(A).

Further, since T is a linear transformation and A is convex and symmetric about 0 then so is
T—'A. We now apply Minkowski’s Theorem I, to conclude the proof. O
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Theorem 11. A subset A of R™ is a lattice if and only if
i)a+beAand —a €A foralla,b €A
ii) A contains n linearly independent points.
ii1) A is discrete.

Proof:
= Immediate from definition of a lattice.

< We'll prove this by induction on n.

First, consider the case n = 1. By i) there is a non-zero point a in A. By i) we may suppose
that @ > 0. Further, we may suppose that a is the smallest positive real number in A which
we know exists by 7). Then by i) {ga| g € Z} is contained in A. Further there are no other
points in A since otherwise we could find a smaller positive real in A.

Assume the result holds for n — 1 with n > 2. We may choose our coordinate system so that A
has n—1 linearly independent points on the set S = {(z1,... ,7,_1,0) | (z1,... ,2,_1) € R"1}.
Let A’ be the intersection of A with the set S. By the inductive hypothesis A’ is a lattice in
S. Let b1,...,b,—1 be a basis for A’. Then by i) there is a point b,, in A which is linearly

independent of by,... ,b,—1. We may choose b,, so that the n-th coordinate of b, is positive.

Further we may choose_lz)n = (bp1,- -+ ,bpn) so that by, is minimal since otherwise we obtain
an infinite sequence of distinct points in a compact subset of R™ from which we can extract a
convergent subsequence which contradicts 7).

We claim that bq,... ,b, is a basis for A. For d € A say d = (dy, ... ,d,). Notice that d, is

an integral multiple of b,,, and then d — (bd—fl) b, € S and so, by induction, d — (i—z) b, is an

integer linear combination of by,...,b,—1 as required.

Let ay,...,a, be points in a lattice A in R"™ with a basis b1,... ,b,. Then

The integer I give by
det(ar,. .. an)| _ |det(a.. .. an)

Pl = Taen, bl © d®
is called the index of @1,... ,a, in A. I =0if and only if a,,... ,a, are linearly dependent.
If a1,...,a, are linearly independent they generate a lattice A’ which is a sublattice of A.
Then
d(A)
AN

Recall (). Suppose D = |det(t;;)| # 0. Then (¢;)~' = (w;;) with w;; rational numbers for
which Dw;; € Z for 1, j.
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Theorem 12. Let A be a sublattice of a lattice M in R™. Let by,... b, be a basis of M.
Then there exists a basis a1,... ,a, of A such that

a1 =t11by

a9 =tyby1 + by

IS

where the t;;’s are integers with t;; > 0 fori=1,... ,n and with t;; <t; for j=1,...,1—1.
(Alternatively, we can have an upper triangular arrangement i.e. tj; < t;;).

Proof:

Let D = |det(t;;)|. Then Db, is an integral linear combination of ay,... ,a, fori=1,... n.
In particular, Db, € A for ¢ = 1,... ,n. Then for each ¢ with 1 < i < n there exist z; in A of
the form

Ti=vnby+ -+ vyb;
with v;; € Z and v; # 0. We now choose x; so that |vii| is non-zero and minimal. We claim
that z1,...,2, is a basis for A.

To see this suppose that ¢ € A and ¢ is not a linear combination of 21,... ,2,. Then ¢ # 0
and ¢ € M and so there exists integers [y, ... ,l, so that ¢ =101 + -+ [,,b,, and in fact we
may write ¢ = l1by + -+ + by with & <n and [; # 0.

Suppose that ¢ is chosen with & minimal. Since vi;, # 0 we can find an integer s such that
|l — svkk| < |'Ukk| Then
g — Sgk = (ll — Svkl)(:)1 + -+ (l - Svkk)ék.
By the minimality of |vgx| we see that | — svg, = 0 and this contradicts the minimality of &
forc. Thus z1,...,2, is a basis for A.

We now observe that by replacing x by —z if necessary we may suppose that vy, > 0.
To complete our proof we put
a; =hpz+- -+ hixi+x;
where the h;; are integers to be determined. Then
a;=1tinb1+ - +tub;
Since
a; =hi(vi1h1) + hia(va1b1 + va2bo) + -+ - + hyj(vjib1 + -+ v05) + - +
hii—1(Vi—11b1 + -+ vimrim1bic1) + 1 (vaby + - - - + viby)
Thus t; = v; > 0. Further
tij = hijvgi + hijravjeng + -+ By + vy

We can now choose in order hji_1, hii—2,... , hiy1 so that 0 <t,; <t; for j <. O
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Recall the following elementary unimodular column operations:

i) exchanging two columns.
ii) multiplying a column by -1.
iii) adding an integer multiple of one column to another column.

Notice that if a matrix represents a sublattice within a lattice with respect to a given basis
then the unimodular column operations on the matrix give a new matrix which represents the
same sublattice. Thus we can recast out theorem in this setting. It suffices then to show that
a non-singular matrix with integer entries can be put in Hermite normal form with integer
entries by a sequence of unimodular column operations.

Proof B of Theorem 12:

Suppose we start with a matrix A. By unimodular column operations we may suppose that the
first row (aq1, ... ,a1,) of Aissuch that a1; > ajp > -+ > ay, >0, a1; >0, and a1+ - -+ ay,
minimal.

Note that a;5 = 0 since if a1 > 0 then we could get a smaller sum a1+- - -+ay, by subtracting
the second column from the first column which is a contradiction. Similarly ais,... ,ay, are
zero. We repeat the argument with the last n — 1 coordinates of the second row to get
(93 = +++- = ao, = 0. Continuing in this way we obtain a lower-triangular matrix with integer
entries and positive integer entries along the main diagonal.

Fori=2,...,nand j=1,...,7i— 1 we add an integer multiple of the -th column of A to
the j-th column of A so that the ij-th entry of A is non-negative and less than a;;. Then A is
in integer Hermite normal form as required. U

Theorem 13. Let A and A’ be n X n non-singular matrices with integer entries and (row)
Hermite normal forms B and B' respectively. Let by,...,b, be a basis for R". Then A

generates the same lattice as A" with respect to by, ... by, if and only if B = B'.

Proof:

= We have A = UB and A’ = U’'B’ where U and U’ are unimodular matrices, so matrices
with integer entries and determinant +1. Hence they generate the same lattice.

= Let B = (By;) and B’ = (Bj;) and suppose that B # B’. Let ij be the entry for
which B;; # Bj; with j minimal. Without loss of generality we may assume Bj; > B};. Let
ri=DBabi+---+Bab,andr,=DBj;b1+---+Bj,b,. Thenr, € Aandr, e Asor,—r; e A.

Thus r; — r! is an integer linear combination of by,... ,b,. By our choice of ij we have

ri—1;=(By—Bjbj+ -+ (Bin— Bj,)bn
Note that r; —r; is the span of b;, ... , b, and so (B;; — Bj;) is an integer multiple of B;;. But
0 < |By; — Bj;| < Byj since if i = j then 0 < Bj; — B}, < Bjj, while if i < j then 0 < By; < By
and 0 < ng < B;-j < Bj; which is a contradiction. O

Remark: Since the row Hermite normal form of the matrix associated with a sublattice of a
lattice is uniquely determined the representation given in Theorem 12 is uniquely determined.
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Let A be a sublattice of a lattice M. We split the elements of M into equivalence classes
under the equivalence relation ~. We say that ¢ ~ d if and only if ¢ — d € A.

Lemma 1. Let A be a sublattice of M. The index of A in M is the number of equivalence
classes under ~.

Proof:

Let ay,...,a, and by,...,b, be bases for A and M respectively with a+,...,a, chosen in

the form described in Theorem 12. Plainly the index of A in M is ﬁ t;;. It suffices then to

show that every element in M is equivalent to precisely one term of ﬁfe form
@bi+---+qb, where0<gq <t;fori=1,... n (11)

Let ¢ = c1by + -+ cuby, bein M. We first show that ¢ is equivalent to an element of M of
the form (11). To see this note that ¢ is equivalent to ¢ — ga,, for any ¢ € Z. Thus we may
subtract a multiple of a,, to ensure that c, is replaced by an integer ¢, with 0 < ¢, < t,,.
Next we subtract a multiple of a,_; and so replace ¢,—1 by g,—1 with 0 < g1 < th—1p-1.
Continuing in this way we obtain an element of M equivalent to ¢ and of the form (11).

Finally we show that any two lattice elements of M of the form (11) are distinct. If the
difference of two such lattice elements is in A then we have r = by +--- 4+ r,b, € A with
|ri| <ty fori=1,... ,n, and not all of the r;’s zero. Suppose that j is the largest integer for
which r; # 0. Then in that case r is an integer linear combination of a1, - ,a; say

But then by Theorem 12

r=mibit-+myb

with my,---,m; integers and m; = d; t;;. On the other hand m; = r; and 0 < |r;| < tj;
which is a contradiction.

Thus all the elements of the form (11) are in distinct equivalence classes as required. U
Lemma 2. Let n,m and ki, ...,k be positive integers. Let a;; for 1 <i <m,1 <j <mn be

integers. The set A of integers points u in R™ satisfying
> aju; =0 (mod k;), i=1,...,m
j=1

is a lattice with d(A) < ky -+ ky,.

Proof: A is discrete since it is a subset of Ag. Next since
(k1 km,0,...,0),(0,ky - kpmy0,...,0), ..., (0,... 0,k k) €A

we see that A contains n linearly independent vectors. Finally if u = (uy,...,u,) and v =
(v1,...,v,) are in A then u +v € A since

> aij(u;+v) =0 (modk;) i=1,...,m
j=1
Therefore, by Theorem 11, A is a lattice and so is a sublattice of Ag.
We have d(A) = % is the index of A in Ag. By Lemma 1 this is the number of equivalence
classes of points in Ay under ~. But u ~ v if and only if

Zaij(uj—vj)z() (mod k’z) Z:]_, ,m.
j=1
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Therefore d(A) < ky -+ - k. O

Theorem 14. (Lagrange’s Theorem,)
Every positive integer is the sum of four squares.

Proof:
We may assume, without loss of generality, that m > 1 and that m is square free. So suppose
m = py---p, with p1, ..., p, distinct primes. We first observe that for each prime p there exist

integers a, and b, for which
az+b+1=0 (mod p).
Note that if p = 2 then a, = 1 and b, = 0. Suppose p is odd. Then consider a* with 0 < a < L
and —1 —b? with 0 < b < L. We have [g] + 1 terms in each grouping and so two must be the
same modulo p. In particular there exists a, and b, with
a?=—1-"b> (mod p)

as required.
We now consider the set A of integer points (uq, ug, us, us) which satisfy the congruences

Uy = ap,ug + by,us  (mod p;)
ug = by,ug — apugy  (mod p;)
fori=1,...,r. By Lemma 2, A is a lattice and d(A) < p?---p? = m?. Let A be the set of

T
points
A= {(21, 72, 73,74) € R | 2% + 23 + 23 + 2] < 2m}.

Notice that A is symmetric about 0, convex and p(A) = T (2m)? = 2x%m?, since A is the

sphere in R* of radius v/2m. By Minkowski’s Convex Body Theorem II, since 2*d(A) < 2'm? <
212m? = u(A), there is a non-zero lattice point (uy, us, u3, u4) in A which is in A. In particular

0 < uf+uj +uj +uj < 2m. (12)
But

it uuitui= (o), +02 +1)(ui+ui) =0 (modp;) fori=1,...,r
Thus
ui +us+ui+ui =0 (modm)
by the Chinese Remainder Theorem. Therefore by (12),
uf+u§+u§+ui =m

as required. 0
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Proposition 1. Let R be a positive real number and let n be a positive integer. The volume

of the sphere of radius R in R™ is w, R™ where w, = ”n/i .
r(1+2)
Proof:
It suffices to prove that w, is the volume of the unit sphere {(z1,...,z,) | 2%+ +22 < 1}.
We have w; = 2 and wy = w. We then compute w,, inductively for n = 3,4, ... by the formula

1 1
o= [, e = [ [ ([ o ey o doy ) oy,
a2+ +a2 < 1J=

where g is the characteristic function of the unit sphere in R”. Thus by our inductive hypothesis

n—2
2 dl‘n_ldl’n

_ 2 2
Wn = w”—2(1 —Tp_1 xn)
x24x2 <1

= wn_g/ (1—a2 | — a:i)n%2 dx,_1dz,,.
2422 <1
Change to polar variables r and 6. Thus

2T 1 ne2
Wy, = wn_g/ (/ (1—7r%)"2 rdr) do
0 0

(1= 7"2)n/2 _ 2Twn o

— 2w, o[ — —
TWn—2lp p -
Therefore
B 27 27 2 B i
“n = o 2(n—1) 1T
while
2 2 2T 5
a)n — . e e —— .
T on+1 2n—1 3
T T T
_ . Ceeeg 2
nty n—35 3
7Tn

Recall that T" function satisfies the relation I'(z + 1) = zI'(z) for z € RT and T’ (%) = /7.
The result now follows. O

Proposition 2. Let A be a lattice in R™. There is a non-zero point x in A for which

2/n

O<z-z=af++a, <4(w,'d(A))

18

Proof:
We apply Minkowski’s Convex Body Theorem II to the set A where
A={(yr- yn) ER [yi +yp + -y, <t}
with ¢ = 4 (w;'d(A))*™. Since A is convex, symmetric about 0 and
((A) = wat™? = w2 w Yd(A) = 2"d(A).

Further A is compact and our result follows. O
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The natural question to ask is how good this result is.
Minkowski proved that for each n € Z* there exists a lattice A in R™ for which
2/n
min -z > (w;ld(A)) "

zehzA0™

Thus Proposition 2 is best possible up to a factor of 4. For dimensions n < 8 the best possible
version of Proposition 2 is known.

2/n
Rogers proved that one can replace 4w;*™ by 4( ) / where o, = UZ‘ZZ((ABN

an equilateral n-simplex in R™ with edge length 2 and B is the set of all points in An with
distance < 1 from a vertex of An. One can prove that

n
on/2

where An is

Oy ~ as n — 00.

We have y
)" 2
w;2/n ~ L, 4 (U_> ~ ﬁ’ 4&);2/” ~ _n
2me Wn, e e
where the former is probably the truth.

We will now address the question of algorithms for producing good approximations given by
Theorem 4.

For Dirichlet’s theorem (Theorem 1) we have the continued fraction algorithm. In general
we shall appeal to an algorithm based on the L?- algorithm, named after Lenstra, Lenstra,
and Lovasz, which gives us an efficient way to find small vectors in a lattice.

Let bi,... b, be a basis for a lattice A in R". The Gram-Schmidt orthogonalization process
produces Vectors by fori=1,... ,n and real numbers y;; for 1 < j < ¢ < n inductively by

3 b, b
_bl_zluijé; with i = (: _])
j=1

(&5,85)

where (,) denotes the standard inner product on R".
By Constructlon b7 is the projection of b; on the orthogonal complement of the Span of
bi,. Further Sp{b%,...,b:} =Sp{by1,... ,bi} fori=1,.

Deﬁnition:

A basis b1,...,b, for a lattice A in R" is said to be reduced if:
i) Juyl <3 forl1<j<i<n.
i) b7 + pimabi4|? > 3br )P fori=2,... ,n.

(Here |z | = (z - 2)Y? = (23 + -+ + 22)'/2, is the Euclidean length of the vector x .)

Remark:
1) The vectors b¥ + p;;—1b}_; and b, are the orthogonal projections of b; and b;_y
respectively on the complement of Sp{bi,...,b,—2}.

2) The notion of a reduced basis is not canonical in the sense that the constant 2 could be
replaced by any real number y with % <y<l.

We’ll now deduce some properties of reduced bases for a lattice. Then we’ll give the algorithm
to transform a given basis to a reduced basis.
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Proposition 3. Let by, ... ,b, be a reduced basis for a lattice A in R"™ and let b7,... b’ be
obtained from the Gram-Schmidt orthogonalization process. Then
i) 1b;* < 2i_1\b*\2 for1<j<i<n.
ii) d(A) < n b < 2" d(A).
iii) |b 1| < 2 T d(A)w.
Proof:
By the definition of a reduced basis
3 1
b7 +/~%‘¢-1Q:—1‘2 > Z|Q:—1|2 with || < 9
Note that
‘b + Hii1b; 1|2 (b + Hii1b; 17Q:+Mz’i—1éf—1) = IQ?\2+M?2-_1\Q?_1\2-
Therefore 5
il = (- )Ib Lff= \b 1l
Thus, by induction,
b2 <277[p;? for1<j<i<n. (13)
Next observe that
i1
2 *|2 2 * |2
|Ql‘ = |Qz‘ +2:uij‘l:)j|
< |b7] +Z Lo b7 by (13)
*|2 1 %
S@A(l+j2—%0
<27
Thus we have
P <2727 =27 forl<j<i<n
This proves 7).
We have d(A) = |det(by,...,by)| and so by Hadamard’s inequality
d(A) < [ba---[banl
By constuction |det(bi,...,b,)| = |det(b,...,b )| But the b} are orthogonal and so by

Hadamard’s inequality

d(A) = |oi] -~ [bnl.

By 1)
bl <27 b forl<j<i<n
Thus
bl |ba <2825 2T (b)) b
< 2:("5)d(A)

which proves ii).
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To prove #ii) we apply i) with j =1 to get

byl <2 bt fori=1,...,n.
Thus . .
buf" < 2% 232" |- [b;)
< 22("57)d(A)
ba] < 2% d(A)7
as required. Il
Proposition 4. Let A be a lattice in R" with reduced basis b1, ... ,b,. Then for any non-zero

vector  in A we have
b1 <27 Yz .

Proof:

Write z out in terms of the basis b1,... by, so

z =gib1+--+gub, with g; € Z.

Further we have
z =Mbi+---+ A0, with \; € R.
Let 7 be the largest index for which g; # 0. Then on examing the Gram-Schmidt process we
see that \; = g;. Then
lz|* > AZbi1* = g?lbil* > 1B7]*

By Prop 3, ' '
27z | > 2RI > o)

and the result follows since i < n. O
Proposition 5. Let A be a lattice in R™ with reduced basis b1, ... ,bn. Letxz1,... 2z be linearly
independent points of A. Then

0,17 < 2" 'max{|z % ..., |z?t forj=1,... ¢t
Proof:
Write

= nggz with 9ij € Z,
=1

for j =1,...,t. For each j let i(j) be the largest index for which g;;y; # 0. As in the proof
of Prop 4,

Let us renumber the z ;’s so that i(1) <i(2) < --- <i(j). Notice that j <i(j) for j=1,... ¢
since if i(j) < j then z4,...,2; would be linearly dependent. Therefore by Prop 3 i)

|Qj‘2 < 2i(j)_1“:);‘k(j)|2 < Qi(j)_1|£j‘2 < 2n_1‘£j‘2 for j=1,...,t
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The L3-algorithm gives an efficient way of transforming a basis for a lattice to a reduced basis.

L3-Algorithm

Letbq,...,b, beabasis for A. Use Gram-Schmidt to compute by, ... ,b; and j,;;. Throughout
the algorlthm we’ll change our basis to a new basis for A many tlmes Each time we do so, we
recalculate the b;’s and the p;;’s

At each step of the algorlthm there is a current subscript £ from {1,2,... ,n+ 1}. We
start with £ = 2. We shall now perform a sequence of steps that starts from and returns to a
situation where

1) |yl <tfor1<j<i<k
and

2) [bF + pii—1big|* = Flbi* for 1 < i <k.

Note that 1) and 2) are trivially satisfied when & = 2. When k = n + 1 the basis is reduced
and the algorithm terminates. So, suppose that k& < n. In this case we first achieve

3)|/~ka—1| < % for k > 1.

If 3) does not hold let r be the integer closest to fixz—1. Then replace by by by — rbj_1.
Plainly this does not change A. Further, the numbers s, are replaced by pu; — rpg—1; for
J <k —1and pgy_; is replaced by prr—1 — r. The other p;;’s are unchanged as are the other
b;’s. We now distinguish two cases:

Case 1) If k > 2 and b} + pre—1b5_1* <
Case 2) k=1 or |bj + puk-1bj[* > b

If we are in Case 1, we interchange b and b;_; and leave all the other b;’s unchanged. Notice
that by, bj_, are recalculated as are the numbers pgg_1, pg—1;, p; for j < k —1 and the

numbers ,uzk 1, pik for ¢ > k. Let us call our new basis c1,... ,cpn. So,c; =b; fori # k, k —
¢k = by—1, and ¢4y = by. Then cj_, = b} + pur—1bj_; is the prOJectlon of by on the
orthogonal compliment of the Sp{b},... ,bj_,}. Thus |c;_4]* < 2|b;_4|*. Therefore the new

bi_y(=cj_y) is such that [bj_,|* is less than 2 of what it was before. We now replace k by

k — 1 and return to the start of the alogirthm.

If we are in Case 2 then we want to achieve |py;| < % for 1 < j <k —1. To accomplish this
we first consider the largest integer [ for which |ug| > % Notice that | < k — 1. Let r be the
nearest integer to g and replace by by by —rb;. The numbers ,ukj with j <[ are replaced by
tr; — iy and g is replaced by pg, — r. Note that the other p;;’s are unchanged and all of
the b7’s are unchanged. We now repeat this procedure until || < 3 s for 1 <j<k—1 We
then replace k by k + 1 and return to the start of the algorithm.

Question: Does the algorithm terminate? Yes! To show this we need to introduce the
following quantities:
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since the determinant is unchanged when we add a multiple of one row to another. In addition
we put

=1

Observe that d,, = d(A)%. Let A; be the lattice generated by by,...,b; in the i-dimensional
space spanned by these vectors. Then d; = [bf]?---|b}]? = d(A;)2.
As we proceed with the L? algorithm, D does not change in Case 2 since the b}’s don’t

change. In Case 1, we interchange b, and b, hence change b and by _;. So, dy, ..., dy_2,d, ...

are unchanged. This leaves dj_; to be considered. The new value of |b}_,|? is less than % of
the old value, so the new value of dj_; is less than % of the old value. Further the new value
of D is less than % of the old value of D.

To show the algorithm terminates it is enough to show that D is bounded from below by a
positive number which depends on A. Put m(A) = min{z -z |z € A,z # 0}. By Proposition
2,
1 2/i
m(A;) <4 (w7 d(Ay))

hence
Since m(A;) > m(A) fori=1,... ,nand A, = A,

d; > (m(A)'47w? fori=1,...,n.

Thus

n(n+1)
D=d1~-~dn2<—> (Wi -+ wp),

as required. Thus we can only pass through case 1 finitely many times. We pass through at
most n — 1 times more than we pass through case 1. Thus the algorithm terminates.

In fact, the algorithm is very efficient. Lentstra, Lenstra and Lovasz proved that if A is a
sublattice of Z" with basis by, ... ,b, and B is a real number with |b;|* < Bfori=1,...,n
then the number of arithmetical operations required for the algorithm is O(n*log B) and the
integers on which these operations are performed have binary length O(nlog B). Thus the
algorithm runs in polynomial time in terms of the input.

Note: An arithmetical operation is an addition, subtraction, multiplication or division of two
integers.

Let aq,... ,a, € R. Given € with 0 < € < 1, how do we efficiently find integers py, ... ,p, and
n(n+1)

q for which 1 < ¢ <277 ¢7" and

lga; —pi| <€ fori=1,... n.

If ay, ..., are in Q and € is in Q then we can use the L3 algorithm to solve this problem in
polynomial time in terms of the input.
To do so we consider the lattice A generated by the rows of the matrix

1 0 - 0 0
o 1 --- 0 O

0
ap ay e oa, O
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where § = 2= "% "+, We have d(A) = §. By L* we can find a short non-zero vector by =0

in A. It has the form (qa; — p1,gas — po, . .., qty — P, qd) with ¢ and py, ... , p, integers not
all zero. Note that we can suppose that ¢ > 0 by replacing b by —0b if necessary. Further by
Proposition 3, iii)

b| < 2%d(A)7T =212 F e =€ < 1.
Notice that g # 0 since the b = (p1,... ,pn,0) and since |b| < 1 this would mean p; = --- =
Pn = q¢ = 0 which is a contradition. Thus

lgo; —pi| <e fori=1,...,n

and
lgd] < e.

n(n+1)

Therefore we have 1 < ¢ < ed~ ! =277 ¢ ",
Question: Given ay, ... ,q®, in R, how do we find a small linear form in the a;’s?

Let € be a real number with 0 < ¢ < 1. We want to find in an efficient manner integers

Q- -+, ¢y and p not all zero for which |giaq + -+ - + gua| < € and |g;| < 2" e, Let A be
the lattice generated by the rows of the following matrix
1 0 0 --- 0
ap 6 0 .- O L
ay 0 6 T Where<5:<2l/4> )
Do ()
a, 0 -~ 0 ¢

Then the L? algorithm yields a vector b in A with
b] < 2VAd(A)T = 2r/AgwET = 2% =

We have
b =(qoa+- 4 gy —p,q16,¢26, . .. ,qn0).
Thus
lgid] < oMisi =¢ fori=1,...,n.
and
lgraq + -+ + qua, — p| < €.
Note that . .
|gi| < 5211 = 2124 =2 e fori=1,...,n.
i €n

Take € = % to compare with Theorem 3.
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Suppose now that o;; for i =1,...,n, 7 =1,...,m are real numbers. Consider the lattice A
associated with the matrix

1 0 0 0 0

0 1

: - 0O 0 - 0

0 o --- 1 0 - 0
Qi Qo ot Qo 0 0
A1y Oy 0 Opm 0 5

where .y
0= (2_(n+zll>e) S

ntm—1 n+m—1 nt+m—1

By L? we find a vector b # 0 in A with |b| < §7rm 25 .So,|b\§2_( 1) ot —
We have

b = (qro1 + @ai2 + - + gmOim — D1y -+ Q01 + Q02 + - + GuQnm — Prs @10, -+ - 5 Gm0)
for some integers q1,qs, ... , ¢m,P1, - - - , Pn 0Ot all zero. Thus
laiign + -+ 4 QimGm —pi| < e fori=1,...,n
and
lgid] <e fori=1,... ,m.
Thus

nt+m—1nd4+m _ n

€
|qz|§5:2 4 m € m,

Further, since [b| < € and € < 1 not all of the ¢;’s are zero. Taking ¢ = L we obtain the

Q
analogue of Theorem 4.

The special case when all of the o;;’s are algebraic.

Let us first consider a single linear form. Let ay,...,a, be real algebraic numbers with
1,04,...,a, linearly independent over the rationals. Let d be the degree of Q(ay,... ,a,)
over Q. Extend 1,a4,...,q, to a basis 1,aq,... ,q,,... ,aq-1 for Q(aq,... ,a,) over Q. By
Theorem 9, oy, ... ,aq_1 are badly approximable. Thus

laiqy + -+ 4+ ag_1qa1 — p| > 17,

for a positive number ¢; and for all d-tuples of integers (qi, ... ,qs_1,p) where
g =max{|q]|,...,|qa-1]} and ¢ > 0. Thus, on taking g,.1 = -+ = gs—1 = 0, we see that:
Theorem 15. Suppose that oy, . .. , oy, are real algebraic numbers and 1, o, . . . , ay, are linearly

independent over Q. Put d = [Q(ay,...,ay) : Q] then
‘QIQI +-+ QnGn — p| > Clq_d+17
for all n + 1-tuples of integers (q1, ... ,Gn,p) with ¢ = max{|q|, ... ,|q.|} and g > 0.

If n =1 then Theorem 15 is Liouville’s Theorem. For example o = > ﬁ is transcendental.
i=1

The following result is a consequence of Schmidt’s Subspace Theorem:
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Theorem 16. Let o, ... ,«, be real algebraic numbers with 1, aq, ... , ay, linearly independent
over Q. Let § > 0. There are only finitely many n-tuples of non-zero integers (qu, ... ,q,) with
@2 qul - lpan + -+ guan|| < L.
Here for any real number z, ||z|| denotes the distance from z to the nearest integer.

Corollary 16: Let aq,... ,«, be real algebraic numbers with 1, a4, ... , o, linearly indepen-
dent over Q. Let 0 > 0. Then there are only finitely many n-+ 1-tuples of integers (q1, . .. , gn, p)
with ¢ = max{|q|, ... ,|q.|} > 0 for which

1
|Q1CY1 +-- 4+ qnQn _p| > qn+5'

Proof: Apply Theorem 16 to all of the non-empty subsets of {ay, ..., a,}. O
Schmidt also deduced:
Theorem 17. Let oy, ... , a, be real algebraic numbers with 1, ayq, ... , ay linearly independent
over Q. Let d > 0. Then there are only finitely many positive integers q such that

¢ *lgan ] - - llgen| < 1.
This implies
Corollary 17: Let aq,... ,«, be real algebraic numbers with 1, a4, ..., a, linearly indepen-
dent over Q. Let 6 > 0. Then there are only finitely many rational n-tuples (%, e %") with
g > 0 and

1
ai—g <—— fori=1,... ,n.
q q1+;+(5

Note that if you take n =1 in Corollary 17 or Corollary 16 we get:

Roth’s Theorem: Let a be a real irrational algebraic number. Let o > 0. There exist only
finitely many rationals 2 with ¢ > 0 for which ‘oz — %‘ < #.

Note that Roth’s theorem is ineffective. It doesn’t tell us how to find the approximations. In
1972, W. Schmidt established his Subspace Theorem from which Theorem 16 and 17 follow.
It is a profound generalization of Roth’s Theorem.

Theorem 18. (Schmidt’s Subspace Theorem)

Suppose that Ly(z),... ,Ln,(z) are linearly independent linear forms in x with (real or com-
plex) algebraic coefficients. Let 6 > 0. There are finitely many proper subspaces Ty, ..., Ty, of
R™ such that every integer point x = (xy,... ,x,) # 0 for which |Li(z) - Ly(z)] < == lies

|

wn Ty for some i with 1 <1 < w.

Notes:

1) The Subspace Theorem is ineffective just as Roth’s Theorem in the following sense. Given
the linear forms and ¢ the proof does not yield a method for determining the proper subspaces
Ty, ..., Ty

2) The integer points in a subspace T" span a rational linear subspace, so a subspace de-
termined by a linear equation with rational coefficients. Thus Ti,...,T, are rational linear
subspaces.

3) We won'’t give the proof of the Subspace Theorem.
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Now we’ll deduce Theorem 17 from the Subspace Theorem.

Proof: (of theorem 17) Let ¢ be a positive integer for which ¢**||ayq]| - - - ||ang|| < 1. Let p; be

an integer for which ||a;q|| = cug—p; fori=1,... ,n. Putz = (21,... ,Znt1) = (P1,--- s Q)
and let C',Cs, ... be positive numbers which depend on n and «q, ... ,a, only. Plainly
E| < Olq

Consider the linear forms
Li(z) =axpy —a; fori=1,....n
and
Lpii(z) = Tpta-

Notice that Li(z),..., Lnt1(2z) are n + 1 linearly independent linear forms in z1,... , 2p41

with algebraic coefficients. Then

[La(z) - Lnga(z)] = lleal] - - - landl| - ¢

hence
1 1

B e —
¢ |z
provided that ¢ is sufficiently large. Thus by the Subspace Theorem x lies in one of a finite

collection of proper subspaces T1,...,T, of R**'. Say z lies in T \. Since 7T} is a rational
subspace of R"™! and so there exists rational numbers ¢, ... , ¢,41 not all zero such that

[ Li(z) - Lnga(z)] <

T+ -+ 1Ty =0
hence that
capr+ -+ eppn + cni1qg = 0.
Note that we have

|ci(eng — p1) + c2(@2q — p2) + -+ calang — pu)| = |croug + - -+ + ca@ng — c1p1 — -+ — Capy]
= |laia1q + -+ - + g + criaq|
= |cion + -+ + chay + cniilq.
Since 1,a,...,q, are linearly independent over Q, |cia; + -+ + cpa, + cpy1| = Cy > 0.
Therefore,
lci] lang = pil + -+ eal [ang — pa| = Cag
hence |¢1] + -+ -+ |cn| > Caq. Thus ¢ is bounded. O

We now deduce Theorem 16 from the Subspace Theorem.

Proof: (of theorem 16). We prove the result by induction on n. For n = 1 the result follows
from Theorem 17. Suppose that ¢, ... , g, satisfy the hypotheses of Theorem 16 and choose p
so that

larqr + -+ angl| = g + -+ - + g — p.

Write £ = (q1, ... ,qn,p). Then |z| < C3q where ¢ = max{|q|, ... ,|g.|} > 0. Put
Li(z)=a; fori=1,...,n and Lpyi(z)=ozi+ - a2y — Tni1.
Then Ly, ..., L,y are n+1 linearly independent linear forms with algebraic coefficients. Then

Wlth £ = (Q1>' . aQnap)a
[Li(z) - La(z)| = lg1- gul - longy + -+ + angn — pl
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hence, since ¢, ... , g, are all non-zero,
1 1
Li(z)---Lun(z)] < <=
[ L1(z) (z)] PREPRUR AT
for ¢ sufficiently large. By the Subspace Theorem z = (g1, ... , gn, p) lies in one of finitely many
proper linear subspaces T, ... ,T,, of R*™! say T;. Further there exist rationals ci, ..., Cpi1

such that T} is defined by

c1xy + -+ Cn+1Tn+1 = 0.
Since T is a proper subspace not all of the ¢;’s are zero. Suppose first that ¢; # 0 for some j
with 1 < j < n. Then, without loss of generality, we may suppose that ¢, # 0. We have

CnGn = —C141 — *** — Cp—1Gn—-1 — Cp41P

hence

CnOnGnp = —C10pq1 — +++ — Cp—10pQn—1 — Cpy10nP
Thus

lenl loaqi+ -+ 4+ @ngn — pl = enaign + - + CunGn — cup|
= |(chonqi — 1o q1) + -+ + (Cn@n—1Gn-1 — Ca—1nGn—1) — (CnP + Cpr104,D)|

= |(chor1 — c1am)q1 + -+ - + (CnOn—1 — Cn10) Q-1 — (¢ + Cng1)P)

CpQl] — C1Ol, CpOlp—1 — Cp—10Qp,
(o) ()

Cn + Cn+10p Cn + Cpn+10p

- |Cn + Cn+1an|

Put of = @2zt forj=1,... ,n— 1, then
? CntCnt10m

lenllargy + -+ + angn — pl = len + copramllofn + -+ + g 1Gno1 — pl

Thus
C 1

<
6™ g g
provided that ¢ = max{qi, ... , ¢, } is sufficiently large. Note that 1,«],... ,«/,_, are Q-linearly
independent since if \jof + -+ A1), + A, =0 with \; € Q fori =1,... ,n then

layg + -4 a1 <

Al(cnal - Clan) +-- 4 )\n—l(cnan—l - Cn—lan) + )\n(cn + Cn—i—lan) =0

Cn()\lOél +--+ )\n—lan—l) — (Cl>\1 + -+ Cn—1>\n—1 — Cn+1)\n)05n + >\nCn =0

Since ¢, # 0 and 1, a4, ... , a, are linearly independent over Q we see that A\ =--- =\, = 0.
Thus by induction, |¢|, ... ,|g.—1| are bounded.
It remains to consider the possibility that ¢y =---=¢, =0 and ¢,,; #0. Then ¢,.1p =0

hence p = 0. In this case

|QI o 'Qn|1+5|a1(h + -+ anQn| < L.

Thus
(07] Ap—1
|q1"'Qn|1+5|O‘n‘ —q + T+ z Gn—1 1 Gn| < 1
aTL n
Put o = &= fori =1,... ,n. Our result now follows by induction since then

g1 g TP lddg 4+ g <1
for ¢ = max |g;| sufficiently large. O
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Theorem 19. Let oy; be real algebraic numbers fori=1,... ,nandj=1,...,m and suppose
that 1,1, ... , Qi are linearly independent over Q for i =1,... ,n. Let 6 > 0. Then there
are only finitely many m-tuples (q1, ... ,qn) of non-zero integers for which

|Q1 o 'Qm|1+6 H ||ai1Q1 + O41’QO|| <L
=1

Note: We have been looking at the "height” of a rational number to be ¢ but this does not
make sense since we are not taking into account the numerator. So a better height would be

H(p/q) = max(|pl, |ql), (p,q) = 1.

Definition:

For any algebraic number a we define the height of «, denoted H(«), to be the maximum of
the absolute values of the coefficients of the minimal polynomial for o over Q. Here we are
taking the minimal polynomial in Z[z] and of content 1.

Note: This is the naive height.

Instead of approximating an algebraic number by rationals we can approximate it by other
algebraic numbers.

Theorem 20. Let n be a positive integer and € > 0. If « is an algebraic number of degree
greater than n then there are only finitely many algebraic numbers 3 of degree at most n for
which

o= pl < H(B)™ '

Proof:

Let m be the degree of 5 over Q. Put a; = o/ for j = 1,... ,m. Certainly 1, ,... ,q, are
linearly independent over Q since « is of degree n > m. Let P(x) be the minimal polynomial
for 3. Then we claim that

|P(e)] < H(3)Clor — 5],
where C' is a positive number which depends on « and m only. To see this let P(z) =
am @™ + -+ a1 + ag = ap (v — B1) - - (v — f,) and we may suppose that 3, = . Then

|P(a)] = lam|la = B - - o = Bl

<la— 8] |an| [] max{2|al,2|5]}
i=2

< o= 812" (max{L, [a]})™ ap| ][ max{1, |5}
=2

<la—p8|-C-CoH(B)

where C depends only on m and « and Cs depends on m only, and C; and C5 are both

positive. By Corollary 16
C3(m, 5)

The result now follows on noting m < n. .
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There is another extension of Roth’s Theorem due to Leveque where we approximate by
algebraic numbers from a fixed field. Let [K : Q] = n. Let a be an algebraic number of degree
d > 2 over K. Let € > 0, then there are only finitely many algebraic numbers 3 for which

o= 8 < H(B)™>
Applications to Diophantine Equations

Let F(z,y) € Z[z,y] be a binary form of degree n, so
F(2,y) = apa™ + ap 12" 'y + -+ arzy™ ' + apy”.
Put f(z) = F(z,1) and suppose
flz) = an(x —on) - (2 —an)

with oy, ... ,q, distinct. For example, let us suppose that f(z) is irreducible and n > 3. Let
m be a non-zero integer. The equation

F(z,y)=m
in integers x and y is known as a Thue equation.
Example:
2> —2y> =6, (x,y)=(2,1) is a solution, in fact, the only solution.
The fact that there are only finitely many solutions is a consequence of Roth’s Theorem.

Plainly there are only finitely many solutions with y = 0, so suppose (z,¥) is a solution with
y # 0. Then

m| = |F(2,9)] = an][z — ary] -+« |z — any]
Thus
i T T
—n:‘an‘al__ oy, — — .
Y Y

Suppose, without loss of generality, that % is closest to a; among the roots of f(x). Then

x| |m|] 1 1
YT W Tan] o -z :
Note that
x X |042—041|
ay— —| > |y —ay| — |y — —| > ———
Yy Yy 2
hence that
x x 2oy — g
a2__...an__2 L
y Y 1;[2 2

Observe that the roots al, ..., «, are distinct since f is irreducible over Q. Therefore

ml 12 COm.)

I1

Tyl fan] i e — aq y|"

where C' is a positive number which depends on m and f. by Roth’s Theorem with ¢ = % say

there is a positive number C; (1), which depends on «ay, such that

01(041)

ly[**+2
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therefore

C(m7 f) n—(2+l)
— > 27,
Cala) ]

But n > 3 and so |y| is bounded thus |z| is also bounded.

Note: Since Roth’s theorem is ineffective we can’t determine C(c;) from the proof and so we
can’t use the theorem to find all solutions of a Thue equation.

In 1909, Thue proved that " Thue equations” have only finitely many solutions and he deduced
his result from the following:

Let a be an algebraic number of degree n with n > 3. Let ¢ > 0. There exist only finitely
many rationals %’ with ¢ > 0 for which

1
gz e

b
a__

q

<

In 1921, Siegel replaced 5 + 1 by m%ri s + 547 hence we can take 2\/n.
sE€

In 1947, Dyson and Gelfond independently showed that one can replace 24/n by v/2n.

In 1955, Roth proved that we can take 2 + €.

Question: How can one overcome the ”ineffectiveness” in Roth’s theorem? This is still open.
There are three approaches to the problem that have been fruitful. The first is due to Thue

and it depends on examining Pade” approximates to hypergeometric functions and it works for
some n-th roots of rationals.

In 1964, Baker proved that

Y% C

a__ _’
q|  ¢*

where a = v/2, ¢ = 107% and k = 2.955. Baker used the fact that 128 = 27 is close to 125 = 5°.
He also proved (14) with a = /19, k = 107 and k = 2.56.

Chudnovsky 1983 refined Baker’s work:

> (14)

;5 P 1
V2 - 5 > PREE
for ¢ > C with C effectively computable.
Easton 1986 proved that
5 P 1076
\/7—5 > q2'8

Bennett showed for ¢ > 3

This approach works for some n-th roots!

Bombieri 1982 and Bombieri + Mueller 1983 showed that in some cases one can make Thue’s
original argument effective.
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The only general effective improvement on the Liouville estimates is due to Baker 1968 and it
follows from his work on estimates for linear forms in the logarithms of algebraic numbers. In
1986, Baker and Stewart proved the following by this method:

Let a be a positive integer which is not a perfect cube. Let ¢ be the fundamental unit in
the ring of algebraic integers of Q(+/a). Here the fundamental unit is the smallest unit larger
than 1 in the ring. Then for all rationals g with ¢ > 0,

C
\:77 - ]_j > ko
q q
where C' = £~ and k = 3 — = where ¢; = e(30loglog)* and ¢, = 102loge. For example, if

1 2
a =14 then C = 10719 and £k = 2.9999999999998.

A Thue equation is a special case of a norm form equation. Let K be an algebraic number
field of degree d over Q. Let ¢, ..., ¢q be the isomorphic embeddings of K into C. For any
element « in K we denote ¢;(a) by a”. The norm of a, Norm(a) is o™ - - - (@,

Let aq,...,qa, € K. Consider the linear form
M(z) = VX, 4+l X,

Then
d

N(M(z)) = [T(ed" X1 + -+ + a X,)
i=1
is the norm form associatd to M and K.
For example, if K = Q(v/2) and

M(l’l,l’g) =T — \4/5113'2

then
N(M(x1,25)) = 27 — 225.
If
M (1,29, 23) = 21 + V219 + Va3
then
N(M (21,79, 73)) = 7] — 225 + da; — 42575 + 8717573,
Let m € Z\{0}. N(M(z)) = m is said to be a norm form equation in integers z1,... , x,.
Observe that if o, ... , o, are algebraic integers then N(M(z)) is a homogeneous polynomial
of degree d in the variables xy, ..., z, with integer coefficients.

We wish to study solutions in the integers of the equation N(M(z)) = m. Put M =
{M(zy,...,2,) ]| (21,...,2,) € Z"}. Note that M is a Z-module since it is as additive abelian
group under + and for all ;s € Z and m,n € M we have rm € M and

i) r(m+n)=rm+rn

i) (r+s)m=rm+ sm

i) r-(sm)=(r-s)-m

iv) 1-m=m
Therefore N(M(z)) = m can be rewritten as N(u) = m for p € M
We'll now discuss finitely generated Z-module in K. Our first step will be to show that these

objects have a basis. That is a set of generators {«;,... , o} which is Z-linearly indpendent.
In particular if ;a1 + -+ - + ¢, = 0 with ¢1,... ,¢, € Zthen ¢y =--- =¢, = 0.
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Theorem 21. If an abelian group has no non-zero torsion element and it is finitely generated
then it has a basis.

Proof:

Let a1, ..., a4 be a system of generators for the group. Denote the abelian group by M. Then
M = {ay,...,as}. Observe that if k € Z then M = {ag + kag,as, ... ,as}. To see this put
oy = a1 + kas. Suppose that a € M and

a=coa;+---+cay withe €Z

then
a =1y + (co — key)ag + czas + -+ + e,
Thus
M =Aa,... a5} ={a],as,... s}

If oy, ..., a4 are Z-linearly independent then {ag, ..., a,} form a basis as required. If not

then there exist integers ¢y, ... , ¢, not all zero for which
ciaq + -+ csas = 0.

We may suppose that {aq,...,as} are chosen such that the smallest non-zero of the ¢;’s is
minimal over generators {aj,...,as}. Suppose, without loss of generality, that ¢; has the
smallest non-zero absolute value among the ¢;’s. Then ¢ |¢; for i = 1,... s for if not we may

suppose, without loss of generality, that ¢; fco. Then ¢y = gy +r with 0 < r < |¢;|. We now
replace a; by o) = a1 + gay and then by our earlier remarks

/
M={a,... a5} ={a],q0,... a5}
and since ciaq + - - - + c;a = 0 we have

/
c1oq +rog + czas + -+ -+ csas = 0.

This contradicts the minimal choice of aq, ... ,as. Thus ¢;|¢; fori=1,...,s. In particular,
0414—20(24""—'—%0&5:0
C1 C1
hence a; = byay + - -+ + bsas with b; € Z for i = 2,... | s. In particular, M = {as, ..., as}.
We repeat the argument with as, ..., a,. We continue until we get a Z-linearly independent
set. Since M is finitely generated the process terminates after finitely many steps. O

Return to the case when [K : Q] < oco. If M is a finitely generated Z-module in K then
M has a basis. Since the characteristic of K is zero there are no non-trivial torsion elements.
Since [K : Q] < 0o, M will be finitely generated.

The number of generators in a basis for such a Z-module is said to be the rank. The rank is
well defined since two bases for such a Z-module have the same number of elements. In fact, if
the rank is m then there is an invertible m x m matrix with integer entries which transforms
one base to the other.

We say that M is a full module or a module of full rank if the rank of M is equal to [K : Q.
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Theorem 22. The norm form N(oixy + -+ + aux,) is irreducible over Q if and only if
K = Q(OQ/ah R 7an/a1)'

Proof:

Since N(ajz1+ -+ apz,) = N(ag)N (:cl + S2ro 4+ g—’;xn) we may suppose without loss
of generality that a; = 1.
Put L = Q(ayq, ... ,y,). Then

N(z1 4+ agwy + -+ apry) = Ng((21 + an®e + -+ + apxy)
= NL(LL’l + Qoo + -+ + Oénl’n)[K:L]

Thus if N(z1 + agzs + - - - + apxy,) is irreducible then [K : L] =1so K = L.

On the other hand, if K = L then K = Q(f3) for some € K so € L. But then there
exist rationals ¢y, . .. , ¢, for which 8 = caag + - - - + ¢ . Let [K : Q] = d. Since 3 has degree
d over Q then N(x + By) is irreducible over Q. Therefore

N(z+ fy) = N(x + co00y + - - - + ch0y)

is irreducible hence N(x + agzy + -+ - + v, 2,,) is also irreducible over Q. O

An irreducible binary form with integer coefficients F'(z,y) over Q can be written as a norm
form N(ajz + asy). Further the associated Thue equation has only finitely many solutions if
the degree of the form is > 3.

On the other hand, for forms in more than two variables the two notions are different. In
particular, there are irreducible forms which are not norm forms. In fact, this is the generic
situation.

Definition:
A full module in K which contains 1 and is a ring is said to be an order of K.

For example the algebraic integers of K form an order of K.

Notice that if © is an order of K and j € © then " € © for h = 1,2, .... For each Z-module
M in K there is a non-zero integer ¢ such that ¢m is an algebraic integer for all m € M. Thus
cu is an algebraic integer for h = 1,2,.... Therefore y is an algebraic integer. Hence every
order of K is a subset of the order of algebraic integers of K. As a consequence we call the
ring of algebraic integers of K the maximal order of K.

The units € in an order O in a field K are the elements for which there exist ¢; in O with

ee; = 1.

Note that 1 = N(1) = N(eey) = N(e)N(ep).

Since O is an order € and €, are algebraic integers and thus N(e€), N(¢;) are rational integers.
Thus N(e) = £1.

Suppose € is in O and N(e) = +1. Then € is an algebraic integer and so is the root of a
polynomial with integer coefficients of the form

2+ +ax+ N(e) =0.
Therefore

—N (e +1
Ed_1—|—"'+a1: 6():—

Thus % isin O and thus € is a unit.
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Proposition 6. Let O be an order of a number field K. Then the group of units is infinite
except when K = Q or when K is an imaginary quadratic extension of Q.

Proof: This is a consequence of Dirichlet’s unit theorem extended to orders. (Borevich +
Shafarevich).

Proposition 7. Let M be a finitely generated abelian group with no non-zero element of finite
order. All subgroups N of M have a finite number of generators and so possess a basis. Further
if wi, ... ,wny is a basis for M then there is a basis 0y, ... ,nx of N such that

Th = C11Wi + CraWz + * * * + CimWi

N2 = CooWs + -+ + + CopmWw,

Nk = CrkWk + ++ + + ChomWm

where ¢;;’s are in Z, ¢;; > 0 and k < m.

Proof: Similar to the proof of Theorem 12.

Thus a submodule of a module of K is a finitely generated Z-module.

Let M be a finitely generated Z-module in a number field K. Suppose that M is a full module.
Define Oy, the stabilizer of M to be the set of A in K for which AM C M. In particular
A € M for each € M. (Oy¢ is also called the coefficient ring of M)

Proposition 8. If M is a full module in K then Oy s an order of K.

Proof:

First note that Oy is a ring since it is a subring of K. Note that if a,b € Oy then a — b and ab
are in Oy¢. Plainly Oy is non-empty since 1 € Oy Next we observe that Oy is a Z-module
since it is an additive abelian group under addition and properties i) - iv) hold. To prove that
Oy is an order, it remains to show that O is a full Z-module in K.

Let v € M with v # 0. Then ay € M for all &« € Oyp¢. Thus 7O € M. Hence 70y
is a subgroup of M hence a submodule of M. Therefore it has a basis of the form given by
Proposition 7. Note that Oy = 77 1(7On). It remains to show that YOy, is a full module.

Let {ay,...,aq} be a basis for K over Q. Recall that M is full and so M = {uq, ..., pua}-
Let a € K. We can write

d
oy = Z [ with ai; € @
j=1

fori=1,...,dand j =1,...,d. By clearing denominators we see that there is an integer ¢;
such that
d
C;al; = Z(ciaij),ui with Ci Q5 € 7.
j=1

Then take ¢ = ¢y -- - ¢4 and we see that ca € Oy. In particular there exist non-zero integers
Vo D such that ¢Pa; € Oy for i = 1,... ,d. Thus Oy is full and hence is an order. [
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Let M be a full module in K. Let Uy be the group of units € in Oy for which N(e) = 1.
Uy is a subgroup of the groups of units in Oy of index 1 or 2. Thus Uy is infinite except if
K = Q or K is an imaginary quadratic extension by Proposition 6 and 8. Now notice that if
1€ M is a solution of

N(p) =a (15)
for some integer a and € is in Uy, then
N(ep) = N(e)N(p) = a.
Thus if M is a full module in K and K is not exceptional then whenever (15) has one solution
1 € M it has infinitely many solutions in M. But this is not the only situation where we can
have infinitely many solutions to (15).

Suppose that L is a subfield of K and that L is not exceptional and that M is a module
of K which is proportional to a full module of L. Say My = vL where L is a full module of
L and 7 is a non-zero element of K. Since L is not exceptional there exists an integer b for
which there are infinitely many A € £ such that

Np(A) =0b.
But then notice
N(yA) = N(V)N(A) = N(y) - Np (W = N () - b,
So, take a = N ()blXH,
Definition:

A module M in K is said to be degenerate if it contains a submodule proportional to a full
module in a subfield of K which is neither Q nor an imaginary quadratic field.

Note that if M is degenerate then there are integers a for which the equation N(u) = a has
infinitely many solutions 1 € M.

Theorem 23. (Schmidt’s Norm Form Theorem, 1972)
Let M be a module of K. There ezists an a € Q for which N(u) = a has infinitely many
solutions p € M if and only if M is degenerate.

Proof:

We already proved <. To prove = apply Schmidt’s Subspace Theorem.



