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Content

One of the major mathematical triumphs of of the last century is Schmidt’s Subspace Theorem.
We plan to put it in context and derive some of the consequences of it.

Let α ∈ R. Basic question: How well can α be approximated by rational numbers? Since
the rational numbers are dense we know that they can be approximated as well as we want.
So we ask the more interesting question: How well can α be approximated by rationals p/q
with p, q ∈ Z, q > 0 in terms of q?

Theorem 1. (1842 Dirichlet). Let Q be a real number with Q > 1. There exists p, q ∈ Z with

1 ≤ q < Q such that
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Notes:
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-If α is irrational then Dirichlet’s Theorem shows that there are infinitely many rationals
p/q for which
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Clearly this is not true if α is rational.

Algorithmic question: How do we find these good rational approximations to α?
In particular, can it be done efficiently? Yes, because of the continued fraction algorithm.

Given α we produce we produce two sequences (α0, α1, . . . ) and (a0, a1, . . . ) with the αi’s in
R and the ai’s in Z by the following rules:

Put α = α0 and ai = [αi] for i = 0, 1, 2, . . . and αi+1 = (αi − [αi])
−1 for i = 0, 1, 2, . . .

provided that αi 6= [αi]; here for any x ∈ R we denote the greatest integer less than or equal
to x by [x]. Note that if αi = ai for some i we stop the process. In this case α ∈ Q. We put,
for n = 0, 1, 2, . . .

pn

qn
= a0 +

1

a1 + 1
a2+···

.

here we suppose that (pn, qn) = 1 and qn > 0.

We then have
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for n = 0, 1, 2 . . . . Further Legendre showed that if
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then there exists n such that p
q
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qn
.

The pn

qn
are known as the convergents to α.

Remark:

If the ai’s are all eventually 1 then lim
n→∞

q2
n
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.

Given α1, . . . , αn ∈ R. Interesting question: How well can we approximate the αi’s by
rationals of the same denominator?
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Theorem 2. (Dirichlet) Suppose that α1, . . . , αn are real numbers and Q > 1 is an integer.

Then there exists q, p1, . . . , pn with 1 ≤ q < Qn for which
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Corollary 1. Suppose that at least one of the αi’s in Theorem 2 is irrational. Then there exist

infinitely many n + 1-tuples of coprime inegers (q, p1, . . . , pn) with q > 0 for which
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for i = 1, . . . , n.

Proof:

Note that since one of the αi’s is irrational, Theorem 2 yields infinitely many n + 1-tuples.
Further we may assume that (q, p1, . . . , pn) are coprime by factoring out the common factor if
necessary. �

Algorithmically there is no ”good” way of finding these approximations in sense of the
continued fraction algorithm. However there are algorithms which produce some good approx-
imations.

Note: Corollary 1 tells us that the linear forms satisfy |qαi − pi| < 1
q1/n

Theorem 3. Suppose that αi, . . . , αn are real numbers and that Q is an integer with Q > 1.

Then there exist integers p and q1, . . . , qn with 1 ≤ max
i=1,... ,n

|qi| < Q1/n for which

|q1α1 + · · ·+ qnαn − p| ≤ 1

Q
.

Corollary 2. Suppose that α1, . . . , αn are real numbers with 1, α1, . . . , αn linearly independent

over Q. Then there exist infinitely many coprime n + 1-tuples (p, q1, . . . , qn) such that if we
put q = max

i=1,... ,n
|qi| we have q ≥ 1 and |q1α1 + · · ·+ qnαn − p| < 1

qn .

Proof:

Since 1, α1, . . . , αn are linearly independent over Q we see that q1α1 + · · ·+ qnαn − p 6= 0 and
so Theorem 3 produces infinitely many coprime n + 1-tuples of the desired form. �

We can combine Theorems 1,2,3 into a single theorem:

Theorem 4. (1842) Dirichlet
Suppose that αij are real numbers for 1 ≤ i ≤ n, 1 ≤ j ≤ m and that Q is an integer with

Q > 1. Then there exist integers q1, . . . , qm and p1, . . . , pn with 1 ≤ max
i=1,... ,m

|qi| < Qn/m and

|αi1q1 + · · · + αimqm − pi| ≤
1

Q
for i = 1, . . . , n.

Corollary 3. Suppose that 1, αi1, . . . , αim are linearly independent over Q for some i with

1 ≤ i ≤ n. Then there exist infinitely many coprime n + m-tuples (p1, . . . , pn, q1, . . . , qm) such
that with 1 ≤ q = max

i=1,... ,m
|qi| we have

|αi1q1 + · · ·+ αimqm − pi| <
1

qm/n
for i = 1, . . . , n.
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Notation:

Recall that for x ∈ R we denote the greatest integer less than or equal to x by [x] and the
fractional part of x by {x} so {x} = x − [x]. Also we let ‖x‖ denote the distance from x to
the nearest integer. So then ‖x‖ = min({x}, 1 − {x}).

For n ∈ Z+, un denotes the unit cube un = {(t1, . . . , tn) | 0 ≤ ti < 1, for i = 1, . . . , n}
and u n = {(t1, . . . , tn) ∈ Rn | 0 ≤ ti ≤ 1, for i = 1, . . . , n}
Proof:

(Theorem 4) Let us divide u n into Qn subcubes of side length 1
Q

in such a way that the union

of the cubes is u n and so that the intersection of any two subcubes is either a face, edge or
point of a subcube or nothing.

We now consider the points in u n of the form ({α11x1 + . . . + α1mxm}, . . . , {αn1x1 + . . . +
αnmxm}) where the xi’s are integers with 0 ≤ xi < Qn/m for i = 1, . . . , m. The sequence of such
points has Qn elements. If we include the points (1, 1, . . . , 1) we get Qn+1 points and so two of
them are in the same subcube. These points are say ({α11x1 + . . .+α1mxm}, . . . , {αn1x1+ . . .+
αnmxm}) and ({α11x

′
1 + . . . + α1mx′

m}, . . . , {αn1x
′
1 + . . . + αnmx′

m}) or (α11x1 + . . . + α1mxm −
y1, . . . , αn1x1+. . .+αnmxm−ym) and (α11x

′
1+. . .+α1mx′

m−y′
1, . . . , αn1x

′
1+. . .+αnmx′

m−y′
m).

Then

|α11(x1 − x′
1) + . . . + α1m(xm − x′

m) − (y1 − y′
1)| ≤

1

Q

...

|αn1(x1 − x′
1) + . . . + αnm(xm − x′

m) − (yn − y′
n)| ≤

1

Q

and so the result follows on taking qi = xi − x′
i and pj = yj − y′

j for i = 1, . . . , m and

j = 1, . . . , n. Notice that |qi| < Qn/m for i = 1, . . . , m since 0 ≤ xi < Qn/m. �

Notation:

We denote points in Rn by x so x = (x1, . . . , xn) for xi ∈ R, i = 1, . . . , n.

We put |x | = max
i=1,... ,n

(|xi|).
If x = (x1, . . . , xn) is such that xi ∈ Z for i = 1, . . . , n then we say that x is an integer

point.
For any set T in Rn and x ∈ Rn we put T + x = {t + x | t ∈ T}.
Further for λ ∈ R+ we denote λT by λT = {λt | t ∈ T} here λt = (λt1, . . . , λtn).

Theorem 5. (Blichfeldt 1914) Let P be a non-empty set of points in Rn which is invariant

under translation by integer points and we suppose that P has precisely N points in un. Let
A be a subset of Rn of positive Lebesque measure µ(A). Then there exists an x ∈ un such

that A + x contains at least Nµ(A) points of P . Further if A is compact then there exists an
x ∈ un such that A + x contains more than Nµ(A) points of P .

Proof:

For any set S in Rn let ν(S) denote the number of points of P in S. Let P 1, . . . , P N denote
the points of P in un. Let P1, . . . , PN be defined by Pi = {P i + q | q an integer point in Rn}.
Note that P = P1∪P2∪ . . .∪PN and Pi∩Pj = φ if i 6= j since P is invariant under translation
by integer points.
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Now let νi(S) denote the number of points of Pi in S for i = 1, . . . , n. Observe that

ν(S) =
N
∑

i=1

νi(S).

Let χ denote the characteristic function of A. Then for i = 1, . . . , n and x ∈ Rn

νi(A + x ) =
∑

g

χ(P i + g − x )

where the sum is over all integer points g. We have
∫

un
νi(A + x ) dx =

∫

un

∑

g

χ(P i + g − x ) dx =
∫

Rn
χ(z) d(z) = µ(A).

Therefore
∫

un
ν(A + x ) dx = Nµ(A),

and so for some x ∈ un we have
ν(A + x ) ≥ Nµ(A).

Suppose now that A is compact. If Nµ(A) is not an integer the result is immediate so we
may assume Nµ(A) = h ∈ Z+. For k = 1, 2, . . . we define Ak by Ak = (1 + 1

k
)A. By what

we have just proved there is a sequence (x k)
∞
k=1 of points in un for which ν(Ak + x k) ≥ h + 1,

for k = 1, 2, . . . . Since the x k’s are in un we may extract a convergent subsequence (x kj
)∞j=1

which converges to x ′. All of the sets Akj
+ x kj

are uniformly bounded and so contain only
finitely many points of P . Since each set contains h + 1 points of P there exist h + 1 points
µ

1
, . . . , µ

h+1
which occur in infinitely many of these sets.

Since A is compact so is A+x ′ and so either µ
1
, . . . , µ

h+1
are all in A+x ′ or there is one of

them, say µ
1
, which is not and then it is a positive distance from A + x ′. But the maximum

distance from a point of Akj
+ x kj

to A + x ′ tends to zero as j → ∞ since x kj
→ x and

1 + 1
kj

→ 1. This is a contradiction and so µ
1
, . . . , µ

h+1
are in A + x ′. We now choose g ∈ Zn

so that x ′ − g ∈ un and then ν(A + x ′ − g) ≥ h + 1 as required. �

Theorem 4a: Theorem 4 holds for Q ∈ R with Q > 1.

Proof:

Let P be the set of points in Rn of the form

(α11x1 + · · ·+ α1mxm, . . . , αn1x1 + · · · + αnmxm) + g

where g is an integer point in Rn and xi ∈ Z with 0 ≤ xi < Qn/m for i = 1, . . . , m. P is

invariant by translation by integer points. Let N be the number of points P in un. Then either

N ≥ Qn or two points (α11x
(i)
1 + . . . + α1mx(i)

m , . . . , αn1x
(i)
1 + . . . + αnmx(i)

m ) for i = 1, 2 differ by
an integer point. In the latter case we are done.

Let A = {t1, . . . , tn)|0 ≤ ti ≤ 1
Q

for i = 1, . . . , n}. A is compact and µ(A) = 1
Qn . By

Blichfeldt’s Theorem there is a point x ∈ un for which A + x contains more than N 1
Qn = 1

point of P . Thus there are two points of P in A + x and the result follows on taking the
difference of the coordinates of these points. �
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Definition:

A set S in Rn is said to be symmetric about the origin 0 if whenever x ∈ S then −x ∈ S.

S is said to be convex if whenever x and y are in S then the line segment joining x and y is

also in S. In particular x , y ∈ S implies λx + (1 − λ)y ∈ S for 0 ≤ λ ≤ 1,λ ∈ R.

Theorem 6. (Minkowski’s Convex Body Theorem, 1896)

Let A be a convex set in Rn which is bounded, symmetric about the origin and has a positive
volume µ(A). If µ(A) > 2n or A is compact and µ(A) ≥ 2n then there is a non-zero integer

point in A different from 0.

Proof:

Notice that either µ(1
2
A) > 1 or 1

2
A is compact and µ(1

2
A) ≥ 1. We now apply Blichfeldt’s

Theorem to the set 1
2
A where P is the set of integer points in Rn. Thus there is an x ∈ Rn

such that 1
2
A + x contains two integer points, say g

1
and g

2
. Thus there exist x 1 and x 2 ∈ A

such that 1
2
x 1 + x = g

1
and 1

2
x 2 + x = g

2
. By symmetry −x 2 ∈ A and by convexity

1
2
x 1 + 1

2
(−x 2) = g

1
− g

2
is also in A. But g

1
6= g

2
and so g

1
− g

2
is a non-zero integer point

in A. �

Note: The estimate for µ(A) cannot be weakened since A = {(t1, . . . , tn) ∈ Rn| |ti| < 1 for i =
1, . . . , n} is convex, symmetric and bounded with µ(A) = 2n and yet the only integer point in
A is 0.

Theorem 7. (Minkowski’s Linear Forms Theorem)

Let B = (βij) be an n × n matrix with entries in R and non-zero determinant. Let c1, . . . , cn

be positive real numbers with c1 · · · cn ≥ | detB|. Then there exists an integer point x =

(x1, . . . , xn) with x 6= 0 such that

|βi1x1 + · · · + βinxn| < ci for i = 1, . . . , n − 1

and

|βn1x1 + · · ·+ βnnxn| ≤ cn

Proof:

Put Li(x ) = βi1x1 + · · · + βinxn for i = 1, . . . , n and
∼
Li(x ) = 1

ci
Li(x ) for i = 1, . . . , n. In

particular, we wish to solve the system

|
∼
Li(x )| < 1 for i = 1, . . . , n − 1

and

|
∼
Ln(x )| ≤ 1 for x ∈ Zn − {0}.

The absolute value of the determinant associated with the system (
∼
Li)i=1,... ,n is at most 1.

Therefore we may assume without loss of generality that c1 = · · · = cn = 1 and 0 < | detB| ≤ 1.
Let A be the set of x ∈ Rn for which |Li(x )| ≤ 1 for i = 1, . . . , n. Note that A is bounded,

symmetric and compact. A is also convex since if λ is a real number with 0 ≤ λ ≤ 1 and x 1

and x 2 are in A then

|Li(λx 1 + (1 − λ)x 2)| ≤ |Li(λx 1)| + |Li((1 − λ)x 2)|
≤ λ|Li(x 1)| + (1 − λ)|Li(x 2)|
≤ λ + 1 − λ ≤ 1 for i = 1, . . . , n
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Further µ(A) = 1
det B

µ(
∼
U

n

) where
∼
U

n

= {(t1, . . . , tn) ∈ Rn| |ti| ≤ 1 for i = 1, . . . , n}.
Thus µ(A) ≥ 2n. We now apply Minkowski’s Convex Body Theorem to conclude that there is
an integer point x in A with x 6= 0. This gives our result with |Li(x )| ≤ 1 for i = 1, . . . , n.
To get strict inequality for the first n − 1 forms we need an additional argument.

For each ǫ > 0 we define the set Aǫ where Aǫ consits of the x ∈ Rn for which

|Li(x )| < 1 for i = 1, . . . , n − 1

and
|Ln(x )| < 1 + ǫ.

Note that Aǫ is bounded, symmetric and convex and µ(Aǫ) = (1 + ǫ)2n > 2n. By Minkowski’s
Convex Body Theorem there is a non-zero integer point x ǫ in Aǫ. Note that ∪0<ǫ<1Aǫ is a
bounded set and so contains only finitely many integer points. Thus there is an integer point
x ∈ Aǫ with x 6= 0 for ǫ = 1

m
for m = 1, 2, . . . and so for this integer point x we have

|Li(x )| < 1 for i = 1, . . . , n − 1

and
|Ln(x )| ≤ 1.

�

Theorem 7 implies Theorem 4a

Proof:

Put l = m + n and consider the linear forms x = (x1, . . . , xl) given by

Li(x ) = xi for i = 1, . . . , m

and
Lm+j(x ) = αj1x1 + · · ·+ αjmxm − xm+j for j = 1, . . . n.

Notice that the determinant of the system of equations given by the linear forms L1, . . . , Ll is
(−1)n.

Let Q be a real number with Q > 1. By Minkowski’s Linear Forms Theorem there is a
non-zero integer point x such that

|Li(x )| < Qn/m for i = 1, . . . , m

and

|Lm+j(x )| ≤ 1

Q
for j = 1, . . . , n.

We now put qi = xi for i = 1, . . . , m and pj = xm+j for j = 1, . . . , n. Then

q = max
i=1,... ,m

|qi| < Qn/m

and

|αj1q1 + · · ·+ αjmqm − pj| ≤
1

Q
for j = 1, . . . , n.

Note that q 6= 0 since if it was then q1 = · · · = qm = 0 and as a consequence p1 = · · · = pn = 0
since Q > 1. This is a contradiction since x = (q1, . . . , qm, p1, . . . , pn) 6= 0. �
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Theorem 8. Let αij ∈ R for i = 1, . . . , n, j = 1, . . . , m. Put

Li(x ) = αi1x1 + · · ·+ αimxm for i = 1, . . . , n.

Put L(x ) = (L1(x ), . . . , Ln(x )). Then there is an integer point (x , y ) = (x1, . . . , xm, y1, . . . , yn) ∈
Rm+n with x 6= 0 such that

|L(x ) − y |n < cm,n
1

|x |m
(1)

where cm,n = mmnn

(m+n)m+n
(m+n)!

m!n!
. Further if whenever x is a non-zero integer point then L(x ) is

not an integer point then there exist infinitely many integer points (x , y ) with x 6= 0 and with

coprime components satisfying (1).

Remark:

1. Note that cm,n < 1 since it is one of the m + n + 1 terms in the binomial expansion

1 = 1m+n =
(

m

m + n
+

n

m + n

)m+n

2. Theorem 4 a) states that for any Q > 1, Q ∈ R, there exists an integer point (x , y ) ∈ Rm+n

such that 1 ≤ |x | < Qn/m and |L(x ) − y | ≤ 1
Q

. Thus |L(x ) − y |n < 1

|x |m .

Lemma 1. Let m and n be positive integers and let t be a positive real number. Let Km,n be
the set of points (x , y ) = (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n satisfying

t−n|x | + tm|y | ≤ 1.

Thus Km,n is compact, symmetric about the origin, convex and has volume 2m+n m!n!
(m+n)!

.

Proof:

Plainly Km,n is compact and symmetric about the origin. To see that Km,n is convex let λ ∈ R

with 0 ≤ λ ≤ 1 and suppose that (x (1), y (1)) and (x (2), y (2)) are in Km,n then

λ(x (1), y (1)) + (1 − λ)(x (2), y (2)) is in Km,n since

t−n|λx (1) + (1 − λ)x (2)|+tm|λy (1) + (1 − λ)y (2)|

≤ t−n
(

λ|x (1)| + (1 − λ)|x (2)|
)

+ tm
(

λ|y (1)| + (1 − λ)|y (2)|
)

≤ λ
(

t−n|x (1)| + tm|y (1)|
)

+ (1 − λ)
(

t−n|x (2)| + tm|y (2)|
)

≤ λ + 1 − λ = 1

We now calculate the volume of Km,n. We first note that the linear transformation that sends
xi to tnxi for i = 1, . . . , m and yj to t−myj for j = 1, . . . , n has determinant tnm · (t−m)n = 1.
Thus the volume of Km,n(t) equals the volume of Km,n(1) for t ∈ R+. Thus we may suppose
t = 1. Put Km,n(1) = Km,n. Further vol(Km,n) = 2m+nvol(K∗

m,n) where

K∗
m,n = {(x , y ) ∈ Rm+n| |x | + |y | ≤ 1, 0 ≤ xi, i = 1, . . . , m, 0 ≤ yi, j = 1, . . . , n}.
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Furthermore the volume of K∗
m,n is m times the volume of K∗∗

m,n where K∗∗
m,n = {(x , y ) ∈

K∗
m,n| x = x1}. Notice that if |x | = x1 then 0 ≤ xi ≤ x1 for i = 2, . . . , m and 0 ≤ yj ≤ 1− x1

for j = 1, . . . , n. Thus

vol(K∗∗
m,n) =

∫ 1

0
xm

1 (1 − x1)
ndx1 = A(m, n).

We claim that the integral is (m−1)!n!
(m+n)!

. To verify the claim we first observe that by integration

by parts

A(m, n) =
∫ 1

0
xm−1

1 (1 − x1)
n dx1 =

xm
1

m
(1 − x1)

n]10 +
∫ 1

0

xm
1

m
n(1 − x1)

n−1 dx1

=
n

m
A(m + 1, n − 1).

We have

A(1, n) =
∫ 1

0
(1 − x1)

n dx1 =
∫ 1

0
xn

1 dx1 =
1

n + 1
.

We now claim that A(m, n) = (m−1)!n!
(m+n)!

for m, n positive integers. Prove by induction on m.

For m = 1 we have A(1, n) = 0!n!
(n+1)!

as required. Suppose for m the result holds. Then

A(m + 1, n) =
m

n + 1
A(m, n + 1) =

m

n + 1

(m − 1)!(n + 1)!

(m + n + 1)!
=

m!n!

(m + 1 + n)!

as required. �

Proof: (of Theorem 8)

Let t ∈ R+ and let Km,n(t) be as before. Put C = 2

(Vm,n)
1

m+n
where Vm,n is the volume of

Km,n(t). Let T : Rm+n → Rm+n be the linear transformation given by the map that sends
(x ,y ) to T (x , y ) where xi is sent to Cxi for i = 1, . . . , m and yj is sent to C(Lj(x ) − yj) for

j = 1, . . . , n.

Put T (Km,n(t)) =
∼
Km,n(t). Note that

∼
Km,n(t) is compact, symmetric about 0 and convex

since these properties are preserved by linear transformations. The determinant of the matrix

associated with T is (−1)nCm+n = (−1)n 2m+n

Vm,n
. Therefore the volume of

∼
Km,n(t) is 2m+n.

Notice that ∼
Km,n(t) = {T (x , y )| t−n|x | + tm|y| ≤ 1}.

T is invertible and so
∼
Km,n(t) = {(x , y )| t−n|x | + tm|L(x ) − y | ≤ C}.

By Minkowski’s Convex Body Theorem there is an integer point (x , y ) 6= 0 in
∼
Km,n(t). In

particular,

t−n|x | + tm|L(x ) − y | ≤ C. (2)

Notice that for each integer point (x , y ) there are only finitely many real numbers t for which

t−n|x | + tm|L(x ) − y | = C. (3)

Thus these exist only countably many real numbers for which (3) has a solution with (x , y )

an integer point. We shall suppose that t is not one of these reals and that

tm > C (4)
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Then we may replace (2) by

t−n|x | + tm|L(x ) − y | < C (5)

By the arithmetic-geometric mean inequality for real numbers z1, . . . , zl with zi ≥ 0 for i =

1, . . . , l we have (z1 · · · zl)
1/l ≤ z1+···+zl

l
. We take l = m + n and z1 = · · · = zm =

t−n|x |
m

and

zm+1 = · · · = zm+n =
tm|L(x )−y |

n

(

t−n|x |
m

)m




tm|L(x ) − y |
n





n

≤
(

t−n|x | + tm|L(x ) − y )|
)m+n

(m + n)m+n
.

Thus by (5)

|L(x ) − y )|n <
mmnn

(m + n)m+n
Cm+n 1

|x |m
< Cm,n

1

|x |m
.

Note that x 6= 0 since if x = 0 then by (4) and (5) we have y = 0 also which is a contradiction

since (x , y ) 6= (0, 0). This completes the proof of the first assertion.

To prove the second assertion note that if (x , y ) satisfies (1) with x 6= 0 and L(x ) is not

an integer point for x an integer point then |L(x ) − y | > 0. Thus, for t sufficiently large

(5) does not hold. Accordingly, we may apply our argument again to get a new integer point

(x 1, y 1) with x 1 6= 0 for which |L(x 1) − y 1|n < Cm,n
1

|x 1|m
. Continuing in this way we produce

infinitely many such integer points. �

If n = m = 1 then C1,1 = 1
2
. Thus if α ∈ R with α 6∈ Q then there exits infinitely many

pairs of coprime integers p, q with q 6= 0 and

|qα − p| <
1

2|q| .

or equivalently
∣

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

∣

<
1

2q2
. (6)

Since in this case we cannot replace 2 by a number larger than
√

5 in (6) when α is a real
number whose continued fraction has partial quotients which are eventually all 1 we might
suspect that for other pairs (m, n), Cm,n can’t be replaced by an arbitrarily small number. In
fact this is the case.

Definition:

Let αij be real numbers for i = 1, . . . , n and j = 1, . . . , m and put

Li(x ) = αi1x1 + · · ·+ αimxm for i = 1, . . . , n.

Put L(x ) = (L1(x ), . . . , Ln(x )). L1, . . . , Ln is said to be a badly approximable system of
linear forms if there is a positive real number γ = γ(L1, . . . , Ln) = γ(α11, . . . , αnm) such that
for all integer points (x , y ) with x 6= 0 we have

|L(x ) − y |n > γ
1

|x |m
.
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Lemma 2. For every positive integer l there exists a real algebraic number θ of degree l over

Q for which all of the conjugates θ = θ1, . . . , θl of θ over Q are real numbers.

Proof:

Let l ∈ Z+. Put fl(x) = (x − 4)(x − 8) · · · (x − 4l) − 2. Note that fl is irreducible over Q by
Eisenstein’s theorem with p = 2. It remains to show that fl has distinct real roots since we
then take θ to be a root of fl. Notice that for l ≥ 2,

fl(4l + 2) = (2)(6) · · · (4l − 2) − 2 > 0

fl(4l − 2) = (−2)(2)(6) · · · (4(l − 1) − 2) − 2 < 0

...

fl(2) = (−2)(−6) · · · (2 − 4l) − 2







< 0 if l is odd

> 0 if l is even

Note between 2 and 6, 6 and 10, . . . , 4l − 2 and 4l + 2 f changes sign. Therefore fl has l
distinct real zeros as required. �

Theorem 9. Let 1, α1, . . . , αm be a basis for a real algebraic number field of degree m+1 over
Q. Then the linear form L(x ) = α1x1 + · · ·+ αmxm is badly approximable.

Proof:

Let q1, . . . , qm and p be integers with q1, . . . , qm not all zero and for which

|α1q1 + · · · + αmqm − p| < 1. (7)

Let c1, c2, . . . denote positive numbers which can be determined in terms of α1, . . . , αm.
Put q = max

i=1,... ,m
|qi|. Then, by (7), |p| < c1|q|.

Let α
(i)
j for i = 1, . . . , m + 1 denote the conjugates of over Q of αj for j = 1, . . . , m. Then

α
(i)
1 q1 + · · ·+ α(i)

m qm − p is a conjugate of α1q1 + · · ·+ αmqm − p = α
(1)
1 q1 + · · ·+ α(1)

m qm − p for
i = 1, . . . , m + 1. Further, for i = 1, . . . , m + 1,

|α(i)
1 q1 + · · ·+ α(i)

m qm − p| < c2q.

Observe that the norm of (α1q1 + · · ·+ αmqm − p) is a rational number which is non-zero since
since α1, . . . , αm is a basis and since (q1, . . . , qm) 6= 0. Thus |N(α1q1 + · · ·+ αmqm − p)| > 0.

On the other hand

|N(α1q1 + · · ·+ αmqm − p)| ≤ |α1q1 + · · ·+ αmqm − p| · (c2q)
m. (8)

Further there exists a positive integer h such that hα1, . . . , hαm are all algebraic integers.
Then |N(hα1q1 + · · · + hαmqm − hp)| ≥ 1 so

|N(α1q1 + · · · + αmqm − p)| ≥ 1

hm+1
| (9)

By (8) and (9) we see that

|α1q1 + · · · + αmqm − p| ≥ 1

hm+1cm
2

1

qm
.

�
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Theorem 10. (Perron 1921) For each pair of positive integers (m, n) there exist algebraic

numbers αij, 1 ≤ i ≤ n and 1 ≤ j ≤ m for which the associated system of linear forms
Li(x ) = αi1x1 + · · ·+ αimxm, for i = 1, . . . , n is badly approximable.

Proof:

Put l = m + n and let θ1 be a real algebraic integer of degree l with the property that all of
the conjugates θ1, . . . , θl say of θ1 are real numbers. As usual, we put x = (x1, . . . , xm) and
y = (y1, . . . , yn). Next we put

Mk(x , y ) =
n
∑

i=1

θi−1
k yi +

m
∑

j=1

θn+j−1
k xj , for k = 1, . . . , l.

Observe that if (x , y ) is an integer point with (x , y ) 6= (0, 0) then Mk(x , y ) 6= 0 since otherwise

θk would be the root of a polynomial with integer coefficients of degree less than l which
is a contradiction. Further, by construction M1(x , y ), . . . , Ml(x , y ) are conjugate algebraic

integers. Therefore since the norm of a non-zero algebraic integer is a non-zero integer,

|M1(x , y )| · · · |Ml(x , y )| ≥ 1 (10)

for all integer points (x , y ) 6= (0, 0). We now define the linear forms L1, . . . , Ln by the rule

Mk(x , y ) =
n
∑

i=1

θi−1
k (yi − Li(x )), for k = 1, . . . , n.

In other words we require that −∑n
i=1 θi−1

k Li(x ) =
∑m

j=1 θn+j−1
k xj , for k = 1, . . . , n. Hence

−













1 θ1 θ2
1 · · · θn−1

1

1 θ2 θ2
2 · · · θn−1

2
...

...
1 θn θ2

n · · · θn−1
n





















α11 · · · α1m
...

...
αn1 · · · αnm

















x1
...

xm









=









θn
1 · · · θn+m−1

1
...

...
θn

n · · · θn+m−1
n

















x1
...

xm









We can solve this system for the αij ’s since the matrix









1 θ1 · · · θn−1
1

...
...

1 θn · · · θn−1
n









is a vanderMonde

matrix with determinant (−1)
n(n−1)

2
∏

i<j(θi − θj). Since θi 6= θj for i 6= j the determinant is
non-zero and so the matrix is invertible. Further each αij is an algebraic number since it is a
rational function of the θt’s. Next observe that for k = n + 1, . . . , n + m

Mk(x , y ) =
n
∑

i=1

θi−1
k (yi − Li(x )) +

m
∑

j=1

λkjxj ,

where λkj is an algebraic number determined by the θi’s.
Let c1, c2, . . . , denote positive numbers which can be determined in terms of θ1, . . . , θl, n

and m. Let (x , y ) 6= (0, 0) be an integer point and suppose that |L(x ) − y | < 1. Then

|Mk(x , y )| ≤ c1|L(x ) − y |, for k = 1, . . . , n,

and
|Mk(x , y )| ≤ c2|x | for k = n + 1, . . . , n + m.

Thus by (10), 1 ≤ cn
1 |L(x ) − y |n · cm

2 |x |m, for integer points (x , y ) 6= (0, 0). Since

|L(x ) − y | < 1 we have x 6= 0 and thus |L(x ) − y |n > c3
1

|x |m , as required. �
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Observe that Cm,n is Theorem 8 cannot be replaced by an arbitrarily small real number for
any pair of positive integers (m, n). Recall C1,1 = 1

2
and the best possible constant is 1√

5
. If

m = 1 we have C1,n =
(

n
n+1

)n
. In 1914, Blichfeldt improved this to

(

n

n + 1

)n
(

1 +
(

n − 1

n + 1

)n+3
)−1

.

Thus given real numbers α1, . . . , αn with at least one of them irrational there exist, by
Theorem 8, infinitely many integer points (x, y1, . . . , yn) with x > 0 for which

max(|α1x − y1|, . . . , |αnx − yn|) <
(

n

n + 1

)

1

x1/n
.

By Blichfeldt n
n+1

→
(

n
n+1

)

(

1 +
(

n−1
n+1

)n+3
)−1/n

. Thus if n = 2, Theorem 8 gives 2
3

and

Blichfeldt gives .66323 . . . . In fact, for n = 2 the best possible constant is between
√

2/7 =
.534 . . . and .615 . . . .

A badly approximable system of linear forms Li(x) = αix for i = 1, . . . , n satisfies, for x a
non-zero integer,

|x| [max(‖α1x‖, . . . , ‖αnx‖)]n > γ

for some positive real number γ.
Littlewood conjectured that if α1, . . . , αn are real numbers with n ≥ 2 then

lim inf
x→∞

|x| · ‖α1x‖, . . . , ‖αnx‖ = 0,

where the liminf is taken over positive integers x. The conjecture is still open.
In 1926, Khintchine proved that the set of badly approximable n-tuples (α1, . . . , αn) in Rn

is of Lebesgue measure 0.

Let αij with 1 ≤ i ≤ n and 1 ≤ j ≤ m, be real numbers and put

Li(x ) = αi1x1 + · · ·+ αimxm for i = 1, . . . , n.

Associated to the system Li(x ), . . . , Ln(x ) there is a dual system of linear forms Mj(u) with

Mj(u) = α1ju1 + · · · + αnjun, for j = 1, . . . , m.

By a Transference Theorem, Khintchine proved that if L1, . . . , Ln is a badly approximable
system of linear forms then so is M1, . . . , Mm.

Let a 1, . . . , a n be linearly independent vectors in Rn. Consider the set of points

Λ = {g1a 1 + · · ·+ gna n | gi ∈ Z, i = 1, . . . , n}.
This set is known as a lattice in Rn with basis a 1, . . . , a n. Note that if x ∈ Λ then, since
a 1, . . . , a n are linearly independent, there is a unique representation for x of the form x =
g1a 1 + · · · + gna n with gi ∈ Z for i = 1, . . . , n. The basis a 1, . . . , a n for Λ is not uniquely
determined in general since if we put a ′

i =
∑n

j=1 bija j, for i = 1, . . . , n where the bij ’s are
integers and det(bij) = ±1 then a ′

1, . . . , a ′
n is also a basis for Λ. To see this note that

(bij)
−1 = (cij) with cij ∈ Z since det(bij) = ±1. We then have a i =

∑n
j=1 cija

′
j for i = 1, . . . , n.
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Suppose that a 1, . . . , a n is a basis for a lattice Λ in Rn. Suppose that y 1, . . . , y n is another

basis for Λ. Thus

a i =
n
∑

j=1

dijy j with dij ∈ Z,

and

y i =
n
∑

j=1

eija j with eij ∈ Z,

Thus we have
(dij)(eij) = In

so det(dij) det(eij) = 1. Since the dij’s and e′ijs are integers we see that

det(dij) = det(eij) = ±1.

Therefore if a 1, . . . , a n and a ′
1, . . . , a ′

n are two bases for Λ then

det(a 1, . . . , a n) = det(cij) det(a ′
1, . . . , a ′

n)

where (cij) is obtained by expressing a 1, . . . , a n in terms of a ′
1, . . . , a ′

n. We then define d(Λ)
by

d(Λ) = | det(a 1, . . . , a n)|
where a 1, . . . , a n is any basis for Λ.

Note: that d(Λ) > 0 since a 1, . . . , a n are linearly independent.

Minkowski’s Convex Body Theorem, II

Let Λ be a lattice in Rn. Let A be a convex set in Rn which is symmetric about the origin
with positive measure µ(A). If µ(A) > 2nd(Λ) or A is compact and µ(A) ≥ 2nd(Λ) then A
contains a point of Λ different from 0.

Proof:

Suppose that a 1, . . . , a n is a basis for Λ. Then we have

a i = (αi1, . . . , αin) for i = 1, . . . , n

Let T be the linear transformation from Rn to Rn associated with the matrix (αij). Then
Λ = TΛ0 where Λ0 is the lattice of integer points in Rn. Notice that

µ(T−1A) = d(Λ)−1µ(A).

Further, since T is a linear transformation and A is convex and symmetric about 0 then so is
T−1A. We now apply Minkowski’s Theorem I, to conclude the proof. �
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Theorem 11. A subset Λ of Rn is a lattice if and only if

i) a + b ∈ Λ and −a ∈ Λ for all a , b ∈ Λ
ii) Λ contains n linearly independent points.

iii) Λ is discrete.

Proof:

⇒ Immediate from definition of a lattice.

⇐ We’ll prove this by induction on n.
First, consider the case n = 1. By ii) there is a non-zero point a in Λ. By i) we may suppose
that a > 0. Further, we may suppose that a is the smallest positive real number in Λ which
we know exists by iii). Then by i) {ga | g ∈ Z} is contained in Λ. Further there are no other
points in Λ since otherwise we could find a smaller positive real in Λ.

Assume the result holds for n−1 with n ≥ 2. We may choose our coordinate system so that Λ
has n−1 linearly independent points on the set S = {(x1, . . . , xn−1, 0) | (x1, . . . , xn−1) ∈ Rn−1}.
Let Λ′ be the intersection of Λ with the set S. By the inductive hypothesis Λ′ is a lattice in
S. Let b 1, . . . , b n−1 be a basis for Λ′. Then by ii) there is a point b n in Λ which is linearly
independent of b 1, . . . , b n−1. We may choose b n so that the n-th coordinate of b n is positive.
Further we may choose b n = (bn1, . . . , bnn) so that bnn is minimal since otherwise we obtain
an infinite sequence of distinct points in a compact subset of Rn from which we can extract a
convergent subsequence which contradicts iii).

We claim that b 1, . . . , b n is a basis for Λ. For d ∈ Λ say d = (d1, . . . , dn). Notice that dn is

an integral multiple of bnn and then d −
(

dn

bnn

)

b n ∈ S and so, by induction, d −
(

dn

bnn

)

b n is an

integer linear combination of b 1, . . . , b n−1 as required. �

Let a 1, . . . , a n be points in a lattice Λ in Rn with a basis b 1, . . . , b n. Then

(∗) a i =
n
∑

j=1

tijb j with tij ∈ Z.

The integer I give by

I = | det(tij)| =
| det(a 1, . . . , a n)|
| det(b 1, . . . , b n)| =

| det(a 1, . . . , a n)|
d(Λ)

is called the index of a 1, . . . , a n in Λ. I = 0 if and only if a 1, . . . , a n are linearly dependent.
If a 1, . . . , a n are linearly independent they generate a lattice Λ′ which is a sublattice of Λ.
Then

I =
d(Λ′)

d(Λ)
.

Recall (∗). Suppose D = | det(tij)| 6= 0. Then (tij)
−1 = (wij) with wij rational numbers for

which Dwij ∈ Z for i, j.
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Theorem 12. Let Λ be a sublattice of a lattice M in Rn. Let b 1, . . . , b n be a basis of M .

Then there exists a basis a 1, . . . , a n of Λ such that

a 1 = t11b 1

a 2 = t21b 1 + t22b 2

...

a n = tn1b 1 + · · ·+ tnnb n

where the tij’s are integers with tii > 0 for i = 1, . . . , n and with tij < tii for j = 1, . . . , i − 1.

(Alternatively, we can have an upper triangular arrangement i.e. tji < tii).

Proof:

Let D = | det(tij)|. Then Db i is an integral linear combination of a 1, . . . , a n for i = 1, . . . , n.
In particular, Db i ∈ Λ for i = 1, . . . , n. Then for each i with 1 ≤ i ≤ n there exist x i in Λ of
the form

x i = vi1b 1 + · · · + viib i

with vij ∈ Z and vii 6= 0. We now choose x i so that |vii| is non-zero and minimal. We claim
that x 1, . . . , x n is a basis for Λ.

To see this suppose that c ∈ Λ and c is not a linear combination of x 1, . . . , x n. Then c 6= 0
and c ∈ M and so there exists integers l1, . . . , ln so that c = l1b 1 + · · ·+ lnb n, and in fact we
may write c = l1b 1 + · · · + lkb k with k ≤ n and lk 6= 0.

Suppose that c is chosen with k minimal. Since vkk 6= 0 we can find an integer s such that
|l − svkk| < |vkk|. Then

c − sx k = (l1 − svk1)b 1 + · · · + (l − svkk)b k.

By the minimality of |vkk| we see that l − svkk = 0 and this contradicts the minimality of k
for c . Thus x 1, . . . , x n is a basis for Λ.

We now observe that by replacing x k by −x k if necessary we may suppose that vkk > 0.
To complete our proof we put

a i = hi1x 1 + · · ·+ hii−1x i−1 + x i

where the hij are integers to be determined. Then

a i = ti1b 1 + · · ·+ tiib i

Since

a i =hi1(v11b 1) + hi2(v21b 1 + v22b 2) + · · · + hij(vj1b 1 + · · ·+ vjjb j) + · · · +
hii−1(vi−11b 1 + · · ·+ vi−1i−1b i−1) + 1 · (vi1b 1 + · · · + viib i)

Thus tii = vii > 0. Further

tij = hijvji + hij+1vj+1j + · · ·+ hii−1vi−1j + vij .

We can now choose in order hii−1, hii−2, . . . , hi1 so that 0 ≤ tij < tii for j < i. �
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Recall the following elementary unimodular column operations:

i) exchanging two columns.
ii) multiplying a column by -1.
iii) adding an integer multiple of one column to another column.

Notice that if a matrix represents a sublattice within a lattice with respect to a given basis
then the unimodular column operations on the matrix give a new matrix which represents the
same sublattice. Thus we can recast out theorem in this setting. It suffices then to show that
a non-singular matrix with integer entries can be put in Hermite normal form with integer
entries by a sequence of unimodular column operations.

Proof B of Theorem 12:

Suppose we start with a matrix A. By unimodular column operations we may suppose that the
first row (a11, . . . , a1n) of A is such that a11 ≥ a12 ≥ · · · ≥ a1n ≥ 0, a11 > 0, and a11 + · · ·+a1n

minimal.
Note that a12 = 0 since if a12 > 0 then we could get a smaller sum a11+· · ·+a1n by subtracting

the second column from the first column which is a contradiction. Similarly a13, . . . , a1n are
zero. We repeat the argument with the last n − 1 coordinates of the second row to get
a23 = · · · = a2n = 0. Continuing in this way we obtain a lower-triangular matrix with integer
entries and positive integer entries along the main diagonal.

For i = 2, . . . , n and j = 1, . . . , i − 1 we add an integer multiple of the i-th column of A to
the j-th column of A so that the ij-th entry of A is non-negative and less than aii. Then A is
in integer Hermite normal form as required. �

Theorem 13. Let A and A′ be n × n non-singular matrices with integer entries and (row)

Hermite normal forms B and B′ respectively. Let b 1, . . . , b n be a basis for Rn. Then A
generates the same lattice as A′ with respect to b 1, . . . , b n if and only if B = B′.

Proof:

⇐ We have A = UB and A′ = U ′B′ where U and U ′ are unimodular matrices, so matrices
with integer entries and determinant ±1. Hence they generate the same lattice.

⇒ Let B = (Bij) and B′ = (B′
ij) and suppose that B 6= B′. Let ij be the entry for

which Bij 6= B′
ij with j minimal. Without loss of generality we may assume Bjj ≥ B′

jj. Let
r i = Bi1b 1 + · · ·+Bi1b n and r ′

i = B′
i1b 1 + · · ·+B′

inb n. Then r i ∈ Λ and r ′
i ∈ Λ so r i−r ′

i ∈ Λ.
Thus r i − r ′

i is an integer linear combination of b 1, . . . , b n. By our choice of ij we have

r i − r ′
i = (Bij − B′

ij)b j + · · ·+ (Bin − B′
in)b n

Note that r i−r ′
i is the span of b j , . . . , b n and so (Bij −B′

ij) is an integer multiple of Bjj. But
0 < |Bij −B′

ij | < Bjj since if i = j then 0 < Bjj −B′
jj < Bjj, while if i < j then 0 ≤ Bij < Bjj

and 0 ≤ B′
ij < B′

jj ≤ Bjj which is a contradiction. �

Remark: Since the row Hermite normal form of the matrix associated with a sublattice of a
lattice is uniquely determined the representation given in Theorem 12 is uniquely determined.
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Let Λ be a sublattice of a lattice M . We split the elements of M into equivalence classes
under the equivalence relation ∼. We say that c ∼ d if and only if c − d ∈ Λ.

Lemma 1. Let Λ be a sublattice of M . The index of Λ in M is the number of equivalence
classes under ∼.

Proof:

Let a 1, . . . , a n and b 1, . . . , b n be bases for Λ and M respectively with a 1, . . . , a n chosen in

the form described in Theorem 12. Plainly the index of Λ in M is
n
∏

i=1
tii. It suffices then to

show that every element in M is equivalent to precisely one term of the form

q1b 1 + · · ·+ qnb n where 0 ≤ qi < tii for i = 1, . . . , n. (11)

Let c = c1b 1 + · · · + cnb n be in M . We first show that c is equivalent to an element of M of
the form (11). To see this note that c is equivalent to c − qa n for any q ∈ Z. Thus we may
subtract a multiple of a n to ensure that cn is replaced by an integer qn with 0 ≤ qn < tnn.
Next we subtract a multiple of a n−1 and so replace cn−1 by qn−1 with 0 ≤ qn−1 < tn−1n−1.
Continuing in this way we obtain an element of M equivalent to c and of the form (11).

Finally we show that any two lattice elements of M of the form (11) are distinct. If the
difference of two such lattice elements is in Λ then we have r = r1b 1 + · · · + rnb n ∈ Λ with
|ri| < tii for i = 1, . . . , n, and not all of the ri’s zero. Suppose that j is the largest integer for
which rj 6= 0. Then in that case r is an integer linear combination of a 1, · · · , a j say

r = d1 a 1 + · · ·+ dj a j .

But then by Theorem 12
r = m1 b 1 + · · · + mj b j

with m1, · · · , mj integers and mj = dj tjj. On the other hand mj = rj and 0 < |rj| < tjj
which is a contradiction.

Thus all the elements of the form (11) are in distinct equivalence classes as required. �

Lemma 2. Let n, m and k1, . . . , km be positive integers. Let aij for 1 ≤ i ≤ m, 1 ≤ j ≤ n be
integers. The set Λ of integers points u in Rn satisfying

n
∑

j=1

aijuj ≡ 0 (mod ki), i = 1, . . . , m

is a lattice with d(Λ) ≤ k1 · · ·km.

Proof: Λ is discrete since it is a subset of Λ0. Next since

(k1 · · · km, 0, . . . , 0), (0, k1 · · · km, 0, . . . , 0), . . . , (0, . . . , 0, k1 · · · km) ∈ Λ

we see that Λ contains n linearly independent vectors. Finally if u = (u1, . . . , un) and v =
(v1, . . . , vn) are in Λ then u ± v ∈ Λ since

n
∑

j=1

aij(uj ± vj) ≡ 0 (mod ki) i = 1, . . . , m

Therefore, by Theorem 11, Λ is a lattice and so is a sublattice of Λ0.
We have d(Λ) = d(Λ)

d(Λ0)
is the index of Λ in Λ0. By Lemma 1 this is the number of equivalence

classes of points in Λ0 under ∼. But u ∼ v if and only if
n
∑

j=1

aij(uj − vj) ≡ 0 (mod ki) i = 1, . . . , m.
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Therefore d(Λ) ≤ k1 · · · km. �

Theorem 14. (Lagrange’s Theorem)

Every positive integer is the sum of four squares.

Proof:

We may assume, without loss of generality, that m > 1 and that m is square free. So suppose
m = p1 · · · pr with p1, . . . , pr distinct primes. We first observe that for each prime p there exist
integers ap and bp for which

a2
p + b2

p + 1 ≡ 0 (mod p).

Note that if p = 2 then ap = 1 and bp = 0. Suppose p is odd. Then consider a2 with 0 ≤ a < p
2

and −1 − b2 with 0 ≤ b < p
2
. We have

[

p
2

]

+ 1 terms in each grouping and so two must be the

same modulo p. In particular there exists ap and bp with

a2
p = −1 − b2

p (mod p)

as required.
We now consider the set Λ of integer points (u1, u2, u3, u4) which satisfy the congruences

u1 ≡ api
u3 + bpi

u4 (mod pi)

u2 ≡ bpi
u3 − api

u4 (mod pi)

for i = 1, . . . , r. By Lemma 2, Λ is a lattice and d(Λ) ≤ p2
1 · · · p2

r = m2. Let A be the set of
points

A = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 < 2m}.
Notice that A is symmetric about 0, convex and µ(A) = π2

2
(2m)2 = 2π2m2, since A is the

sphere in R4 of radius
√

2m. By Minkowski’s Convex Body Theorem II, since 24d(Λ) ≤ 24m2 <
2π2m2 = µ(A), there is a non-zero lattice point (u1, u2, u3, u4) in Λ which is in A. In particular

0 < u2
1 + u2

2 + u2
3 + u2

4 < 2m. (12)

But

u2
1 + u2

2 + u2
3 + u2

4 ≡ (a2
pi

+ b2
pi

+ 1)(u2
3 + u2

4) ≡ 0 (mod pi) for i = 1, . . . , r.

Thus
u2

1 + u2
2 + u2

3 + u2
4 ≡ 0 (mod m)

by the Chinese Remainder Theorem. Therefore by (12),

u2
1 + u2

2 + u2
3 + u2

4 = m

as required. �
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Proposition 1. Let R be a positive real number and let n be a positive integer. The volume

of the sphere of radius R in Rn is ωnR
n where ωn = πn/2

Γ(1+ n
2 )

.

Proof:

It suffices to prove that ωn is the volume of the unit sphere {(x1, . . . , xn) | x2
1 + · · ·+ x2

n ≤ 1}.
We have ω1 = 2 and ω2 = π. We then compute ωn inductively for n = 3, 4, . . . by the formula

ωn =
∫

x2
1+···+x2

n≤1
dx1 · · · dxn =

∫ 1

−1

∫ 1

−1

(∫

Rn−2
g(x1, . . . , xn)dx1 · · · dxn−2

)

dxn−1dxn

where g is the characteristic function of the unit sphere in Rn. Thus by our inductive hypothesis

ωn =
∫

x2
n+x2

n−1≤1
ωn−2(1 − x2

n−1 − x2
n)

n−2
2 dxn−1dxn

= ωn−2

∫

x2
n+x2

n−1≤1
(1 − x2

n−1 − x2
n)

n−2
2 dxn−1dxn.

Change to polar variables r and θ. Thus

ωn = ωn−2

∫ 2π

0

(∫ 1

0
(1 − r2)

n−2
2 rdr

)

dθ

= 2πωn−2[
1
0−

(1 − r2)n/2

n
=

2πωn−2

n
Therefore

ω2n =
2π

2n
· 2π

2(n − 1)
· · · 2π

4
· π =

πn

n!
while

ω2n+1 =
2π

2n + 1
· 2π

2n − 1
· · · 2π

3
· 2

=
π

n + 1
2

· π

n − 1
2

· · · π3
2

· 2

=
πn

(n + 1
2
)(n − 1

2
) · · · 3

2
· 1

2

Recall that Γ function satisfies the relation Γ(x + 1) = xΓ(x) for x ∈ R+ and Γ
(

1
2

)

=
√

π.

The result now follows. �

Proposition 2. Let Λ be a lattice in Rn. There is a non-zero point x in Λ for which

0 < x · x = x2
1 + · · · + x2

n ≤ 4
(

ω−1
n d(Λ)

)2/n
.

Proof:

We apply Minkowski’s Convex Body Theorem II to the set A where

A = {(y1, . . . , yn) ∈ Rn | y2
1 + y2

2 + · · ·+ y2
n ≤ t}

with t = 4 (ω−1
n d(Λ))

2/n
. Since A is convex, symmetric about 0 and

µ(A) = ωnt
n/2 = ωn2nω−1

n d(Λ) = 2nd(Λ).

Further A is compact and our result follows. �
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The natural question to ask is how good this result is.
Minkowski proved that for each n ∈ Z+ there exists a lattice Λ in Rn for which

min
x∈Λ,x 6=0

x · x ≥
(

ω−1
n d(Λ)

)2/n
.

Thus Proposition 2 is best possible up to a factor of 4. For dimensions n < 8 the best possible
version of Proposition 2 is known.

Rogers proved that one can replace 4ω−2/n
n by 4

(

σn

ωn

)2/n
where σn = vol(B)

vol(∆n)
where ∆n is

an equilateral n-simplex in Rn with edge length 2 and B is the set of all points in ∆n with
distance ≤ 1 from a vertex of ∆n. One can prove that

σn ∼ n

2n/2
as n → ∞.

We have

ω−2/n
n ∼ n

2πe
, 4

(

σn

ωn

)2/n

∼ n

πe
, 4ω−2/n

n ∼ 2n

πe
where the former is probably the truth.

We will now address the question of algorithms for producing good approximations given by
Theorem 4.

For Dirichlet’s theorem (Theorem 1) we have the continued fraction algorithm. In general
we shall appeal to an algorithm based on the L3- algorithm, named after Lenstra, Lenstra,
and Lovasz, which gives us an efficient way to find small vectors in a lattice.

Let b 1, . . . , b n be a basis for a lattice Λ in Rn. The Gram-Schmidt orthogonalization process
produces vectors b ∗

i for i = 1, . . . , n and real numbers µij for 1 ≤ j < i ≤ n inductively by

b ∗
i = b i −

i−1
∑

j=1

µijb
∗
j with µij =

(b i, b
∗
j)

(b ∗
j , b

∗
j )

.

where ( , ) denotes the standard inner product on Rn.
By construction b ∗

i is the projection of b i on the orthogonal complement of the Span of
b ∗

1, . . . , b ∗
i−1. Further Sp{b ∗

1, . . . , b ∗
i } = Sp{b 1, . . . , b i} for i = 1, . . . , n.

Definition:

A basis b 1, . . . , b n for a lattice Λ in Rn is said to be reduced if:
i) |µij| ≤ 1

2
for 1 ≤ j < i ≤ n.

ii) |b ∗
i + µii−1b

∗
i−1|2 ≥ 3

4
|b ∗

i−1|2 for i = 2, . . . , n.

(Here |x | = (x · x )1/2 = (x2
1 + · · ·+ x2

n)1/2, is the Euclidean length of the vector x .)

Remark:

1) The vectors b ∗
i + µii−1b

∗
i−1 and b ∗

i−1 are the orthogonal projections of b i and b i−1

respectively on the complement of Sp{b 1, . . . , b i−2}.
2) The notion of a reduced basis is not canonical in the sense that the constant 3

4
could be

replaced by any real number y with 1
4

< y < 1.

We’ll now deduce some properties of reduced bases for a lattice. Then we’ll give the algorithm
to transform a given basis to a reduced basis.
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Proposition 3. Let b 1, . . . , b n be a reduced basis for a lattice Λ in Rn and let b ∗
1, . . . , b ∗

n be

obtained from the Gram-Schmidt orthogonalization process. Then
i) |b j|2 ≤ 2i−1|b ∗

i |2 for 1 ≤ j ≤ i ≤ n.

ii) d(Λ) ≤
n
∏

i=1
|b i| ≤ 2

n(n−1)
4 d(Λ).

iii) |b 1| ≤ 2
n−1

4 d(Λ)
1
n .

Proof:

By the definition of a reduced basis

|b ∗
i + µii−1b

∗
i−1|2 ≥

3

4
|b ∗

i−1|2 with |µii−1| ≤
1

2
.

Note that

|b ∗
i + µii−1b

∗
i−1|2 = (b ∗

i + µii−1b
∗
i−1, b

∗
i + µii−1b

∗
i−1) = |b ∗

i |2 + µ2
ii−1|b ∗

i−1|2.
Therefore

|b ∗
i | ≥ (

3

4
− 1

4
)|b ∗

i−1|2 =
1

2
|b ∗

i−1|.
Thus, by induction,

|b ∗
j |2 ≤ 2i−j|b ∗

i |2 for 1 ≤ j ≤ i ≤ n. (13)

Next observe that

|b i|2 = |b ∗
i |2 +

i−1
∑

j=1

µ2
ij |b ∗

j |2

≤ |b ∗
i |2 +

i−1
∑

j=1

1

4
2i−j|b ∗

i |2 by (13)

≤ |b ∗
i |2
(

1 +
1

4
(2i − 2))

)

≤ 2i−1|b ∗
i |2

Thus we have

|b j |2 ≤ 2j−1 · 2i−j |b ∗
i |2 = 2i−1|b ∗

i |2 for 1 ≤ j ≤ i ≤ n.

This proves i).
We have d(Λ) = | det(b 1, . . . , b n)| and so by Hadamard’s inequality

d(Λ) ≤ |b 1| · · · |b n|.
By constuction | det(b 1, . . . , b n)| = | det(b ∗

1, . . . , b ∗
n)| But the b ∗

i are orthogonal and so by
Hadamard’s inequality

d(Λ) = |b ∗
1| · · · |b ∗

n|.
By i)

|b j | ≤ 2
i−1
2 |b ∗

i | for 1 ≤ j ≤ i ≤ n.

Thus

|b 1| · · · |b n| ≤ 2
0
2 · 2 1

2 · · · 2n−1
2 |b ∗

1| · · · |b ∗
n|

≤ 2
1
2(

n(n−1)
2 )d(Λ)

which proves ii).
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To prove iii) we apply i) with j = 1 to get

|b 1| ≤ 2
i−1
2 |b ∗

i | for i = 1, . . . , n.

Thus

|b 1|n ≤ 2
0
2 · 2 1

2 · · · 2n−1
2 |b ∗

1| · · · |b ∗
n|

≤ 2
1
2(

n(n−1)
2 )d(Λ)

|b 1| ≤ 2
n−1

4 d(Λ)
1
n

as required. �

Proposition 4. Let Λ be a lattice in Rn with reduced basis b 1, . . . , b n. Then for any non-zero

vector x in Λ we have

|b 1|2 ≤ 2n−1|x |2.

Proof:

Write x out in terms of the basis b 1, . . . , b n, so

x = g1b 1 + · · · + gnb n with gi ∈ Z.

Further we have
x = λ1b

∗
1 + · · · + λnb ∗

n with λi ∈ R.

Let i be the largest index for which gi 6= 0. Then on examing the Gram-Schmidt process we
see that λi = gi. Then

|x |2 ≥ λ2
i |b ∗

i |2 = g2
i |b ∗

i |2 ≥ |b 2
i |2.

By Prop 3,
2i−1|x |2 ≥ 2i−1|b ∗

i |2 ≥ |b 1|2
and the result follows since i ≤ n. �

Proposition 5. Let Λ be a lattice in Rn with reduced basis b 1, . . . , b n. Let x 1, . . . x t be linearly

independent points of Λ. Then

|b j |2 ≤ 2n−1 max{|x 1|2, . . . , |x t|2} for j = 1, . . . , t.

Proof:

Write

x j =
n
∑

i=1

gijb i with gij ∈ Z,

for j = 1, . . . , t. For each j let i(j) be the largest index for which gi(j)j 6= 0. As in the proof
of Prop 4,

|x j|2 ≥ |b ∗
i(j)|2 for j = 1, . . . , t.

Let us renumber the x j ’s so that i(1) ≤ i(2) ≤ · · · ≤ i(j). Notice that j ≤ i(j) for j = 1, . . . , t
since if i(j) < j then x 1, . . . , x j would be linearly dependent. Therefore by Prop 3 i)

|b j |2 ≤ 2i(j)−1|b ∗
i(j)|2 ≤ 2i(j)−1|x j |2 ≤ 2n−1|x j |2 for j = 1, . . . , t.

�
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The L3-algorithm gives an efficient way of transforming a basis for a lattice to a reduced basis.

L3-Algorithm

Let b 1, . . . , b n be a basis for Λ. Use Gram-Schmidt to compute b ∗
1, . . . , b ∗

n and µij. Throughout
the algorithm we’ll change our basis to a new basis for Λ many times. Each time we do so, we
recalculate the b ∗

i ’s and the µij’s.
At each step of the algorithm there is a current subscript k from {1, 2, . . . , n + 1}. We

start with k = 2. We shall now perform a sequence of steps that starts from and returns to a
situation where

1) |µij| ≤ 1
2

for 1 ≤ j < i < k
and

2) |b ∗
i + µii−1b

∗
i−1|2 ≥ 3

4
|b ∗

i−1|2 for 1 < i < k.
Note that 1) and 2) are trivially satisfied when k = 2. When k = n + 1 the basis is reduced

and the algorithm terminates. So, suppose that k ≤ n. In this case we first achieve
3)|µkk−1| ≤ 1

2
for k > 1.

If 3) does not hold let r be the integer closest to µkk−1. Then replace b k by b k − rb k−1.
Plainly this does not change Λ. Further, the numbers µkj are replaced by µkj − rµk−1j for
j < k − 1 and µkk−1 is replaced by µkk−1 − r. The other µij’s are unchanged as are the other
b ∗

i ’s. We now distinguish two cases:

Case 1) If k ≥ 2 and |b ∗
k + µkk−1b

∗
k−1|2 < 3

4
|b ∗

k−1|2.
Case 2) k = 1 or |b ∗

k + µkk−1b
∗
k−1|2 ≥ 3

4
|b ∗

k−1|2.

If we are in Case 1, we interchange b k and b k−1 and leave all the other b i’s unchanged. Notice
that b ∗

k, b ∗
k−1 are recalculated as are the numbers µkk−1, µk−1j, µkj for j < k − 1 and the

numbers µik−1, µik for i > k. Let us call our new basis c 1, . . . , c n. So, c i = b i for i 6= k, k− 1,
c k = b k−1, and c k−1 = b k. Then c ∗

k−1 = b ∗
k + µkk−1b

∗
k−1 is the projection of b k on the

orthogonal compliment of the Sp{b ∗
1, . . . , b ∗

k−2}. Thus |c ∗
k−1|2 < 3

4
|b ∗

k−1|2. Therefore the new

b ∗
k−1(= c ∗

k−1) is such that |b ∗
k−1|2 is less than 3

4
of what it was before. We now replace k by

k − 1 and return to the start of the alogirthm.

If we are in Case 2 then we want to achieve |µkj| ≤ 1
2

for 1 ≤ j ≤ k − 1. To accomplish this

we first consider the largest integer l for which |µkl| > 1
2
. Notice that l < k − 1. Let r be the

nearest integer to µkl and replace b k by b k − rb l. The numbers µkj with j < l are replaced by
µkj − rµlj and µkl is replaced by µkl − r. Note that the other µij’s are unchanged and all of
the b ∗

i ’s are unchanged. We now repeat this procedure until |µkj| ≤ 1
2

for 1 ≤ j ≤ k − 1. We
then replace k by k + 1 and return to the start of the algorithm.

Question: Does the algorithm terminate? Yes! To show this we need to introduce the
following quantities:

di = det
(

(b k, b l)
)

k=1,... ,i
l=1,... ,i

for i=1, . . . ,n

= det
(

(b 1, . . . , b i)(b 1, . . . , b i)
tr
)

= det
(

(b ∗
1, . . . , b ∗

i )(b
∗
1, . . . , b ∗

i )
tr
)
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since the determinant is unchanged when we add a multiple of one row to another. In addition
we put

D =
n
∏

i=1

di.

Observe that dn = d(Λ)2. Let Λi be the lattice generated by b 1, . . . , b i in the i-dimensional
space spanned by these vectors. Then di = |b ∗

1|2 · · · |b ∗
i |2 = d(Λi)

2.
As we proceed with the L3 algorithm, D does not change in Case 2 since the b ∗

i ’s don’t
change. In Case 1, we interchange b k and b k−1 hence change b ∗

k and b ∗
k−1. So, d1, . . . , dk−2, dk, . . . , dn

are unchanged. This leaves dk−1 to be considered. The new value of |b ∗
k−1|2 is less than 3

4
of

the old value, so the new value of dk−1 is less than 3
4

of the old value. Further the new value
of D is less than 3

4
of the old value of D.

To show the algorithm terminates it is enough to show that D is bounded from below by a
positive number which depends on Λ. Put m(Λ) = min{x · x |x ∈ Λ, x 6= 0}. By Proposition
2,

m(Λi) ≤ 4
(

ω−1
i d(Λi)

)2/i

hence
di = d(Λi)

2 ≥ m(Λi)
i4−iω2

i .

Since m(Λi) ≥ m(Λ) for i = 1, . . . , n and Λn = Λ,

di ≥ (m(Λ))i4−iω2
i for i = 1, . . . , n.

Thus

D = d1 · · · dn ≥
(

m(Λ)

4

)

n(n+1)
2

(ω1 · · ·ωn)2,

as required. Thus we can only pass through case 1 finitely many times. We pass through at
most n − 1 times more than we pass through case 1. Thus the algorithm terminates.

In fact, the algorithm is very efficient. Lentstra, Lenstra and Lovasz proved that if Λ is a
sublattice of Zn with basis b 1, . . . , b n and B is a real number with |b i|2 ≤ B for i = 1, . . . , n
then the number of arithmetical operations required for the algorithm is O(n4 log B) and the
integers on which these operations are performed have binary length O(n log B). Thus the
algorithm runs in polynomial time in terms of the input.

Note: An arithmetical operation is an addition, subtraction, multiplication or division of two
integers.

Let α1, . . . , αn ∈ R. Given ǫ with 0 < ǫ < 1, how do we efficiently find integers p1, . . . , pn and

q for which 1 ≤ q ≤ 2
n(n+1)

4 ε−n and

|qαi − pi| < ǫ for i = 1, . . . , n.

If α1, . . . , αn are in Q and ǫ is in Q then we can use the L3 algorithm to solve this problem in
polynomial time in terms of the input.

To do so we consider the lattice Λ generated by the rows of the matrix
















1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 · · · 0 1 0
α1 α2 · · · αn δ
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where δ = 2−
n(n+1)

4 εn+1. We have d(Λ) = δ. By L3 we can find a short non-zero vector b 1 = b
in Λ. It has the form (qα1 − p1, qα2 − p2, . . . , qαn − pn, qδ) with q and p1, . . . , pn integers not
all zero. Note that we can suppose that q ≥ 0 by replacing b by −b if necessary. Further by
Proposition 3, iii)

|b | ≤ 2
n
4 d(Λ)

1
n+1 = 2

n
4 2−

n
4 · ǫ = ǫ < 1.

Notice that q 6= 0 since the b = (p1, . . . , pn, 0) and since |b | < 1 this would mean p1 = · · · =
pn = q = 0 which is a contradition. Thus

|qαi − pi| < ǫ for i = 1, . . . , n

and
|qδ| < ǫ.

Therefore we have 1 ≤ q ≤ ǫδ−1 = 2
n(n+1)

4 ǫ−n.

Question: Given α1, . . . , αn in R, how do we find a small linear form in the αi’s?

Let ǫ be a real number with 0 < ǫ < 1. We want to find in an efficient manner integers

q1, . . . , qn and p not all zero for which |q1α1 + · · · + qnαn| < ǫ and |qi| ≤ 2
n+1

4 ε−
1
n . Let Λ be

the lattice generated by the rows of the following matrix


















1 0 0 · · · 0
α1 δ 0 · · · 0

α2 0 δ
. . .

...
...

...
. . .

. . . 0
αn 0 · · · 0 δ



















where δ =

(

ε1/n

21/4

)n+1

.

Then the L3 algorithm yields a vector b in Λ with

|b | ≤ 2n/4d(Λ)
1

n+1 = 2n/4δ
n

n+1 = 2
n
4 ǫ2−

n
4 = ǫ.

We have
b = (q1α1 + · · · + qnαn − p, q1δ, q2δ, . . . , qnδ).

Thus
|qiδ| ≤ 2n/4δ

n
n+1 = ǫ for i = 1, . . . , n.

and
|q1α1 + · · ·+ qnαn − p| < ǫ.

Note that

|qi| ≤
2

n
4

δ
1

n+1

=
2

n
4 2

1
4

ǫ
1
n

= 2
n+1

4 ǫ−
1
n for i = 1, . . . , n.

Take ǫ = 1
Q

to compare with Theorem 3.
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Suppose now that αij for i = 1, . . . , n, j = 1, . . . , m are real numbers. Consider the lattice Λ
associated with the matrix































1 0 · · · 0 0 · · · 0

0 1
...

...
...

...
. . . 0 0 · · · 0

0 0 · · · 1 0 · · · 0
α11 α21 · · · αn1 δ 0
...

...
...

. . .

α1m α2m · · · αnm 0 δ































where

δ =
(

2−(n+m−1
4 )ǫ

) n
m

+1

.

By L3 we find a vector b 6= 0 in Λ with |b | ≤ δ
m

n+m 2
n+m−1

4 . So, |b| ≤ 2−(n+m−1
4 ) · 2n+m−1

4 ǫ = ǫ.
We have

b = (q1α11 + q2α12 + · · · + qmα1m − p1, . . . , q1αn1 + q2αn2 + · · ·+ qmαnm − pn, q1δ, . . . , qmδ)

for some integers q1, q2, . . . , qm, p1, . . . , pn not all zero. Thus

|αi1q1 + · · ·+ αimqm − pi| ≤ ǫ for i = 1, . . . , n

and
|qiδ| ≤ ǫ for i = 1, . . . , m.

Thus
|qi| ≤

ǫ

δ
= 2

n+m−1
4

n+m
m ǫ−

n
m .

Further, since |b | ≤ ǫ and ǫ < 1 not all of the qi’s are zero. Taking ǫ = 1
Q

we obtain the
analogue of Theorem 4.

The special case when all of the αij’s are algebraic.

Let us first consider a single linear form. Let α1, . . . , αn be real algebraic numbers with
1, α1, . . . , αn linearly independent over the rationals. Let d be the degree of Q(α1, . . . , αn)
over Q. Extend 1, α1, . . . , αn to a basis 1, α1, . . . , αn, . . . , αd−1 for Q(α1, . . . , αn) over Q. By
Theorem 9, α1, . . . , αd−1 are badly approximable. Thus

|α1q1 + · · ·+ αd−1qd−1 − p| > c1q
−d+1,

for a positive number c1 and for all d-tuples of integers (q1, . . . , qd−1, p) where
q = max{|q1|, . . . , |qd−1|} and q > 0. Thus, on taking qn+1 = · · · = qd−1 = 0, we see that:

Theorem 15. Suppose that α1, . . . , αn are real algebraic numbers and 1, α1, . . . , αn are linearly
independent over Q. Put d = [Q(α1, . . . , αn) : Q] then

|α1q1 + · · · + αnqn − p| > c1q
−d+1,

for all n + 1-tuples of integers (q1, . . . , qn, p) with q = max{|q1|, . . . , |qn|} and q > 0.

If n = 1 then Theorem 15 is Liouville’s Theorem. For example α =
∞
∑

i=1

1
10n! is transcendental.

The following result is a consequence of Schmidt’s Subspace Theorem:
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Theorem 16. Let α1, . . . , αn be real algebraic numbers with 1, α1, . . . , αn linearly independent

over Q. Let δ > 0. There are only finitely many n-tuples of non-zero integers (q1, . . . , qn) with

|q1q2 · · · qn|1+δ · ‖q1α1 + · · · + qnαn‖ < 1.

Here for any real number x, ‖x‖ denotes the distance from x to the nearest integer.

Corollary 16: Let α1, . . . , αn be real algebraic numbers with 1, α1, . . . , αn linearly indepen-
dent over Q. Let δ > 0. Then there are only finitely many n+1-tuples of integers (q1, . . . , qn, p)
with q = max{|q1|, . . . , |qn|} > 0 for which

|q1α1 + · · ·+ qnαn − p| >
1

qn+δ
.

Proof: Apply Theorem 16 to all of the non-empty subsets of {α1, . . . , αn}. �

Schmidt also deduced:

Theorem 17. Let α1, . . . , αn be real algebraic numbers with 1, α1, . . . , αn linearly independent
over Q. Let δ > 0. Then there are only finitely many positive integers q such that

q1+δ‖qα1‖ · · · ‖qαn‖ < 1.

This implies

Corollary 17: Let α1, . . . , αn be real algebraic numbers with 1, α1, . . . , αn linearly indepen-
dent over Q. Let δ > 0. Then there are only finitely many rational n-tuples (p1

q
, . . . , pn

q
) with

q > 0 and
∣

∣

∣

∣

∣

αi −
p

q

∣

∣

∣

∣

∣

<
1

q1+ 1
n

+δ
for i = 1, . . . , n.

Note that if you take n = 1 in Corollary 17 or Corollary 16 we get:

Roth’s Theorem: Let α be a real irrational algebraic number. Let δ > 0. There exist only

finitely many rationals p
q

with q > 0 for which
∣

∣

∣α − p
q

∣

∣

∣ < 1
q2+δ .

Note that Roth’s theorem is ineffective. It doesn’t tell us how to find the approximations. In
1972, W. Schmidt established his Subspace Theorem from which Theorem 16 and 17 follow.
It is a profound generalization of Roth’s Theorem.

Theorem 18. (Schmidt’s Subspace Theorem)
Suppose that L1(x ), . . . , Ln(x ) are linearly independent linear forms in x with (real or com-

plex) algebraic coefficients. Let δ > 0. There are finitely many proper subspaces T1, . . . , Tw of
Rn such that every integer point x = (x1, . . . , xn) 6= 0 for which |L1(x ) · · ·Ln(x )| < 1

|x |δ lies

in Ti for some i with 1 ≤ i ≤ w.

Notes:

1) The Subspace Theorem is ineffective just as Roth’s Theorem in the following sense. Given
the linear forms and δ the proof does not yield a method for determining the proper subspaces
T1, . . . , Tw.

2) The integer points in a subspace T span a rational linear subspace, so a subspace de-
termined by a linear equation with rational coefficients. Thus T1, . . . , Tw are rational linear
subspaces.

3) We won’t give the proof of the Subspace Theorem.
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Now we’ll deduce Theorem 17 from the Subspace Theorem.

Proof: (of theorem 17) Let q be a positive integer for which q1+δ‖α1q‖ · · · ‖αnq‖ < 1. Let pi be
an integer for which ‖αiq‖ = αiq−pi for i = 1, . . . , n. Put x = (x1, . . . , xn+1) = (p1, . . . , pn, q)
and let C1, C2, . . . be positive numbers which depend on n and α1, . . . , αn only. Plainly

|x | < C1q.

Consider the linear forms

Li(x ) = αixn+1 − xi for i = 1, . . . , n

and

Ln+1(x ) = xn+1.

Notice that L1(x ), . . . , Ln+1(x ) are n + 1 linearly independent linear forms in x1, . . . , xn+1

with algebraic coefficients. Then

|L1(x ) · · ·Ln+1(x )| = ‖α1q‖ · · · ‖αnq‖ · q
hence

|L1(x ) · · ·Ln+1(x )| <
1

qδ
<

1

|x |δ/2

provided that q is sufficiently large. Thus by the Subspace Theorem x lies in one of a finite
collection of proper subspaces T1, . . . , Tw of Rn+1. Say x lies in T1. Since T1 is a rational
subspace of Rn+1 and so there exists rational numbers c1, . . . , cn+1 not all zero such that

c1x1 + · · ·+ cn+1xn+1 = 0

hence that

c1p1 + · · ·+ cnpn + cn+1q = 0.

Note that we have

|c1(α1q − p1) + c2(α2q − p2) + · · ·+ cn(αnq − pn)| = |c1α1q + · · · + cnαnq − c1p1 − · · · − cnpn|
= |c1α1q + · · · + cnαnq + cn+1q|
= |c1α1 + · · · + cnαn + cn+1|q.

Since 1, α1, . . . , αn are linearly independent over Q, |c1α1 + · · · + cnαn + cn+1| = C2 > 0.
Therefore,

|c1| |α1q − p1| + · · ·+ |cn| |αnq − pn| ≥ C2q

hence |c1| + · · ·+ |cn| ≥ C2q. Thus q is bounded. �

We now deduce Theorem 16 from the Subspace Theorem.

Proof: (of theorem 16). We prove the result by induction on n. For n = 1 the result follows
from Theorem 17. Suppose that q1, . . . , qn satisfy the hypotheses of Theorem 16 and choose p
so that

‖α1q1 + · · ·+ αnq‖ = α1q1 + · · ·+ αnqn − p.

Write x = (q1, . . . , qn, p). Then |x | < C3q where q = max{|q1|, . . . , |qn|} > 0. Put

Li(x ) = xi for i = 1, . . . , n and Ln+1(x ) = α1x1 + · · ·αnxn − xn+1.

Then L1, . . . , Ln+1 are n+1 linearly independent linear forms with algebraic coefficients. Then
with x = (q1, . . . , qn, p),

|L1(x ) · · ·Ln(x )| = |q1 · · · qn| · |α1q1 + · · ·+ αnqn − p|
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hence, since q1, . . . , qn are all non-zero,

|L1(x ) · · ·Ln(x )| <
1

|q1 · · · qn|δ
<

1

|x |δ/2

for q sufficiently large. By the Subspace Theorem x = (q1, . . . , qn, p) lies in one of finitely many
proper linear subspaces T1, . . . , Tw of Rn+1, say T1. Further there exist rationals c1, . . . , cn+1

such that T1 is defined by
c1x1 + · · ·+ cn+1xn+1 = 0.

Since T1 is a proper subspace not all of the ci’s are zero. Suppose first that cj 6= 0 for some j
with 1 ≤ j ≤ n. Then, without loss of generality, we may suppose that cn 6= 0. We have

cnqn = −c1q1 − · · · − cn−1qn−1 − cn+1p

hence

cnαnqn = −c1αnq1 − · · · − cn−1αnqn−1 − cn+1αnp

Thus

|cn| |α1q1+ · · ·+ αnqn − p| = |cnα1q1 + · · · + cnαnqn − cnp|
= |(cnα1q1 − c1αnq1) + · · · + (cnαn−1qn−1 − cn−1αnqn−1) − (cnp + cn+1αnp)|
= |(cnα1 − c1αn)q1 + · · ·+ (cnαn−1 − cn−1αn)qn−1 − (cn + cn+1αn)p|

= |cn + cn+1αn|
∣

∣

∣

∣

∣

(

cnα1 − c1αn

cn + cn+1αn

)

q1 + · · ·+
(

cnαn−1 − cn−1αn

cn + cn+1αn

)

qn−1 − p

∣

∣

∣

∣

∣

Put α′
i = cnαi−ciαn

cn+cn+1αn
for i = 1, . . . , n − 1, then

|cn||α1q1 + · · · + αnqn − p| = |cn + cn+1αn||α′
1q1 + · · · + α′

n−1qn−1 − p|
Thus

‖α′
1q1 + · · · + α′

n−1qn−1‖ <
C

|q1 · · · qn|1+δ
<

1

|q1 · · · qn−1|1+
δ
2

provided that q = max{q1, . . . , qn} is sufficiently large. Note that 1, α′
1, . . . , α′

n−1 are Q-linearly
independent since if λ1α

′
1 + · · ·+ λn−1α

′
n−1 + λn = 0 with λi ∈ Q for i = 1, . . . , n then

λ1(cnα1 − c1αn) + · · · + λn−1(cnαn−1 − cn−1αn) + λn(cn + cn+1αn) = 0

cn(λ1α1 + · · ·+ λn−1αn−1) − (c1λ1 + · · · + cn−1λn−1 − cn+1λn)αn + λncn = 0

Since cn 6= 0 and 1, α1, . . . , αn are linearly independent over Q we see that λ1 = · · · = λn = 0.
Thus by induction, |q1|, . . . , |qn−1| are bounded.

It remains to consider the possibility that c1 = · · · = cn = 0 and cn+1 6= 0. Then cn+1p = 0
hence p = 0. In this case

|q1 · · · qn|1+δ|α1q1 + · · ·+ αnqn| < 1.

Thus

|q1 · · · qn|1+δ|αn|
∣

∣

∣

∣

α1

αn
q1 + · · · + αn−1

αn
qn−1 + qn

∣

∣

∣

∣

< 1

Put α′
i = αi

αn
for i = 1, . . . , n. Our result now follows by induction since then

|q1 · · · qn−1|1+δ/2‖α′
1q1 + · · ·+ αn−1qn−1‖ < 1

for q = max
i

|qi| sufficiently large. �
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Theorem 19. Let αij be real algebraic numbers for i = 1, . . . , n and j = 1, . . . , m and suppose

that 1, αi1, . . . , αim are linearly independent over Q for i = 1, . . . , n. Let δ > 0. Then there
are only finitely many m-tuples (q1, . . . , qm) of non-zero integers for which

|q1 · · · qm|1+δ
n
∏

i=1

‖αi1q1 + · · ·+ αimqm‖ < 1.

Note: We have been looking at the ”height” of a rational number to be q but this does not
make sense since we are not taking into account the numerator. So a better height would be
H(p/q) = max(|p|, |q|), (p, q) = 1.

Definition:

For any algebraic number α we define the height of α, denoted H(α), to be the maximum of
the absolute values of the coefficients of the minimal polynomial for α over Q. Here we are
taking the minimal polynomial in Z[x] and of content 1.

Note: This is the naive height.

Instead of approximating an algebraic number by rationals we can approximate it by other
algebraic numbers.

Theorem 20. Let n be a positive integer and ǫ > 0. If α is an algebraic number of degree
greater than n then there are only finitely many algebraic numbers β of degree at most n for

which

|α − β| < H(β)−n−1−ǫ.

Proof:

Let m be the degree of β over Q. Put αj = αj for j = 1, . . . , m. Certainly 1, α1, . . . , αm are
linearly independent over Q since α is of degree n > m. Let P (x) be the minimal polynomial
for β. Then we claim that

|P (α)| ≤ H(β)C|α − β|,
where C is a positive number which depends on α and m only. To see this let P (x) =
amxm + · · ·+ a1x + a0 = am(x − β1) · · · (x − βm) and we may suppose that β1 = β. Then

|P (α)| = |am||α − β1| · · · |α − βm|

≤ |α − β| · |am|
m
∏

i=2

max{2|α|, 2|βi|}

≤ |α − β|2m−1(max{1, |α|})m−1|am|
m
∏

i=2

max{1, |βi|}

≤ |α − β| · C1 · C2H(β)

where C1 depends only on m and α and C2 depends on m only, and C1 and C2 are both
positive. By Corollary 16

|P (α)| >
C3(m, δ)

H(β)m+δ

The result now follows on noting m ≤ n. �.
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There is another extension of Roth’s Theorem due to Leveque where we approximate by
algebraic numbers from a fixed field. Let [K : Q] = n. Let α be an algebraic number of degree
d ≥ 2 over K. Let ǫ > 0, then there are only finitely many algebraic numbers β for which
|α − β < H(β)−2−ǫ.

Applications to Diophantine Equations

Let F (x, y) ∈ Z[x, y] be a binary form of degree n, so

F (x, y) = anx
n + an−1x

n−1y + · · ·+ a1xyn−1 + a0y
n.

Put f(x) = F (x, 1) and suppose

f(x) = an(x − α1) · · · (x − αn)

with α1, . . . , αn distinct. For example, let us suppose that f(x) is irreducible and n ≥ 3. Let
m be a non-zero integer. The equation

F (x, y) = m

in integers x and y is known as a Thue equation.

Example:

x3 − 2y3 = 6, (x, y) = (2, 1) is a solution, in fact, the only solution.

The fact that there are only finitely many solutions is a consequence of Roth’s Theorem.

Plainly there are only finitely many solutions with y = 0, so suppose (x, y) is a solution with
y 6= 0. Then

|m| = |F (x, y)| = |an||x − α1y| · · · |x − αny|
Thus

|m|
|y|n = |an|

∣

∣

∣

∣

∣

α1 −
x

y

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

αn − x

y

∣

∣

∣

∣

∣

.

Suppose, without loss of generality, that x
y

is closest to α1 among the roots of f(x). Then
∣

∣

∣

∣

∣

α1 −
x

y

∣

∣

∣

∣

∣

=
|m|
|y|n · 1

|an|
· 1
∣

∣

∣α2 − x
y

∣

∣

∣ · · ·
∣

∣

∣αn − x
y

∣

∣

∣

Note that
∣

∣

∣

∣

∣

α2 −
x

y

∣

∣

∣

∣

∣

≥ |α2 − α1| −
∣

∣

∣

∣

∣

α1 −
x

y

∣

∣

∣

∣

∣

≥ |α2 − α1|
2

hence that
∣

∣

∣

∣

∣

α2 −
x

y

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

αn − x

y

∣

∣

∣

∣

∣

≥
n
∏

i=2

|αi − α1|
2

Observe that the roots α1, . . . , αn are distinct since f is irreducible over Q. Therefore
∣

∣

∣

∣

∣

α1 −
x

y

∣

∣

∣

∣

∣

≤ |m|
|y|n · 1

|an|
n
∏

i=2

2

|αi − α1|
<

C(m, f)

|y|n

where C is a positive number which depends on m and f . by Roth’s Theorem with ǫ = 1
2

say
there is a positive number C1(α1), which depends on α1, such that

∣

∣

∣

∣

∣

α1 −
x

y

∣

∣

∣

∣

∣

>
C1(α1)

|y|2+ 1
2
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therefore
C(m, f)

C1(α1)
> |y|n−(2+ 1

2
).

But n ≥ 3 and so |y| is bounded thus |x| is also bounded.

Note: Since Roth’s theorem is ineffective we can’t determine C1(α1) from the proof and so we
can’t use the theorem to find all solutions of a Thue equation.

In 1909, Thue proved that ”Thue equations” have only finitely many solutions and he deduced
his result from the following:

Let α be an algebraic number of degree n with n ≥ 3. Let ǫ > 0. There exist only finitely
many rationals p

q
with q > 0 for which

∣

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

∣

<
1

q
n
2
+1+ǫ

.

In 1921, Siegel replaced n
2

+ 1 by min
s∈Z+

s + n
s+1

hence we can take 2
√

n.

In 1947, Dyson and Gelfond independently showed that one can replace 2
√

n by
√

2n.

In 1955, Roth proved that we can take 2 + ǫ.

Question: How can one overcome the ”ineffectiveness” in Roth’s theorem? This is still open.

There are three approaches to the problem that have been fruitful. The first is due to Thue
and it depends on examining Pade’ approximates to hypergeometric functions and it works for
some n-th roots of rationals.

In 1964, Baker proved that
∣

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

∣

>
c

qk
, (14)

where α = 3
√

2, c = 10−6 and k = 2.955. Baker used the fact that 128 = 27 is close to 125 = 53.
He also proved (14) with α = 3

√
19, k = 10−9 and k = 2.56.

Chudnovsky 1983 refined Baker’s work:
∣

∣

∣

∣

∣

3
√

2 − p

q

∣

∣

∣

∣

∣

>
1

q2.43

for q > C with C effectively computable.

Easton 1986 proved that
∣

∣

∣

∣

∣

3
√

2 − p

q

∣

∣

∣

∣

∣

>
10−6

q2.8

Bennett showed for q > 3
∣

∣

∣

∣

∣

3
√

2 − p

q

∣

∣

∣

∣

∣

>
1

4q2.5

This approach works for some n-th roots!

Bombieri 1982 and Bombieri + Mueller 1983 showed that in some cases one can make Thue’s
original argument effective.
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The only general effective improvement on the Liouville estimates is due to Baker 1968 and it
follows from his work on estimates for linear forms in the logarithms of algebraic numbers. In
1986, Baker and Stewart proved the following by this method:

Let a be a positive integer which is not a perfect cube. Let ǫ be the fundamental unit in
the ring of algebraic integers of Q( 3

√
a). Here the fundamental unit is the smallest unit larger

than 1 in the ring. Then for all rationals p
q

with q > 0,
∣

∣

∣

∣

∣

3
√

a − p

q

∣

∣

∣

∣

∣

>
C

qk
,

where C = 1
3ac1

and k = 3 − 1
c2

where c1 = e(50 log log ǫ)2 and c2 = 1012 log ǫ. For example, if

a = 14 then C = 10−11000 and k = 2.9999999999998.

A Thue equation is a special case of a norm form equation. Let K be an algebraic number
field of degree d over Q. Let φq, . . . , φd be the isomorphic embeddings of K into C. For any
element α in K we denote φi(α) by α(i). The norm of α, Norm(α) is α(1) · · ·α(d).

Let α1, . . . , αn ∈ K. Consider the linear form

M(x ) = α
(1)
1 X1 + · · ·+ α(1)

n Xn.

Then

N(M(x )) =
d
∏

i=1

(α
(i)
1 X1 + · · ·+ α(i)

n Xn)

is the norm form associatd to M and K.
For example, if K = Q( 4

√
2) and

M(x1, x2) = x1 − 4
√

2x2

then

N(M(x1, x2)) = x4
1 − 2x4

2.

If

M(x1, x2, x3) = x1 +
4
√

2x2 +
4
√

4x3

then

N(M(x1, x2, x3)) = x4
1 − 2x4

2 + 4x4
3 − 4x2

1x
2
3 + 8x1x

2
2x3.

Let m ∈ Z\{0}. N(M(x )) = m is said to be a norm form equation in integers x1, . . . , xn.
Observe that if α1, . . . , αn are algebraic integers then N(M(x )) is a homogeneous polynomial
of degree d in the variables x1, . . . , xn with integer coefficients.

We wish to study solutions in the integers of the equation N(M(x )) = m. Put M =
{M(x1, . . . , xn) | (x1, . . . , xn) ∈ Zn}. Note that M is a Z-module since it is as additive abelian
group under + and for all r, s ∈ Z and m, n ∈ M we have rm ∈ M and

i) r(m + n) = rm + rn
ii) (r + s)m = rm + sm
iii) r · (sm) = (r · s) · m
iv) 1 · m = m

Therefore N(M(x )) = m can be rewritten as N(µ) = m for µ ∈ M

We’ll now discuss finitely generated Z-module in K. Our first step will be to show that these
objects have a basis. That is a set of generators {α1, . . . , αt} which is Z-linearly indpendent.
In particular if c1α1 + · · ·+ cnαn = 0 with c1, . . . , cn ∈ Z then c1 = · · · = cn = 0.
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Theorem 21. If an abelian group has no non-zero torsion element and it is finitely generated

then it has a basis.

Proof:

Let α1, . . . , αs be a system of generators for the group. Denote the abelian group by M. Then
M = {α1, . . . , αs}. Observe that if k ∈ Z then M = {α1 + kα2, α2, . . . , αs}. To see this put
α′

1 = α1 + kα2. Suppose that α ∈ M and

α = c1α1 + · · ·+ csαs with ci ∈ Z

then
α = c1α

′
1 + (c2 − kc1)α2 + c3α3 + · · ·+ csαs.

Thus
M = {α1, . . . , αs} = {α′

1, α2, . . . , αs}.
If α1, . . . , αs are Z-linearly independent then {α1, . . . , αs} form a basis as required. If not

then there exist integers c1, . . . , cs not all zero for which

c1α1 + · · · + csαs = 0.

We may suppose that {α1, . . . , αs} are chosen such that the smallest non-zero of the ci’s is
minimal over generators {α1, . . . , αs}. Suppose, without loss of generality, that c1 has the
smallest non-zero absolute value among the ci’s. Then c1 | ci for i = 1, . . . , s for if not we may
suppose, without loss of generality, that c1 6 | c2. Then c2 = qc1 + r with 0 < r < |c1|. We now
replace α1 by α′

1 = α1 + qα2 and then by our earlier remarks

M = {α1, . . . , αs} = {α′
1, α2, . . . , αs}

and since c1α1 + · · ·+ csαs = 0 we have

c1α
′
1 + rα2 + c3α3 + · · ·+ csαs = 0.

This contradicts the minimal choice of α1, . . . , αs. Thus c1 | ci for i = 1, . . . , s. In particular,

α1 +
c2

c1

α2 + · · · + cs

c1

αs = 0

hence α1 = b2α2 + · · · + bsαs with bi ∈ Z for i = 2, . . . , s. In particular, M = {α2, . . . , αs}.
We repeat the argument with α2, . . . , αs. We continue until we get a Z-linearly independent
set. Since M is finitely generated the process terminates after finitely many steps. �

Return to the case when [K : Q] < ∞. If M is a finitely generated Z-module in K then
M has a basis. Since the characteristic of K is zero there are no non-trivial torsion elements.
Since [K : Q] < ∞, M will be finitely generated.

The number of generators in a basis for such a Z-module is said to be the rank. The rank is
well defined since two bases for such a Z-module have the same number of elements. In fact, if
the rank is m then there is an invertible m × m matrix with integer entries which transforms
one base to the other.

We say that M is a full module or a module of full rank if the rank of M is equal to [K : Q].



PMATH 744 - DIOPHANTINE INEQUALITIES 35

Theorem 22. The norm form N(α1x1 + · · · + αnxn) is irreducible over Q if and only if

K = Q(α2/α1, . . . , αn/α1).

Proof:

Since N(α1x1 + · · ·+αnxn) = N(α1)N
(

x1 + α2

α1
x2 + · · ·+ αn

α1
xn

)

we may suppose without loss

of generality that α1 = 1.
Put L = Q(α1, . . . , αn). Then

N(x1 + α2x2 + · · ·+ αnxn) = NK((x1 + α2x2 + · · · + αnxn)

= NL(x1 + α2x2 + · · · + αnxn)[K:L]

Thus if N(x1 + α2x2 + · · · + αnxn) is irreducible then [K : L] = 1 so K = L.
On the other hand, if K = L then K = Q(β) for some β ∈ K so β ∈ L. But then there

exist rationals c2, . . . , cn for which β = c2α2 + · · ·+ cnαn. Let [K : Q] = d. Since β has degree
d over Q then N(x + βy) is irreducible over Q. Therefore

N(x + βy) = N(x + c2α2y + · · · + cnαny)

is irreducible hence N(x + α2x2 + · · ·+ αnxn) is also irreducible over Q. �

An irreducible binary form with integer coefficients F (x, y) over Q can be written as a norm
form N(α1x + α2y). Further the associated Thue equation has only finitely many solutions if
the degree of the form is ≥ 3.

On the other hand, for forms in more than two variables the two notions are different. In
particular, there are irreducible forms which are not norm forms. In fact, this is the generic
situation.

Definition:

A full module in K which contains 1 and is a ring is said to be an order of K.

For example the algebraic integers of K form an order of K.
Notice that if Θ is an order of K and µ ∈ Θ then µh ∈ Θ for h = 1, 2, . . . . For each Z-module

M in K there is a non-zero integer c such that cm is an algebraic integer for all m ∈ M. Thus
cµh is an algebraic integer for h = 1, 2, . . . . Therefore µ is an algebraic integer. Hence every
order of K is a subset of the order of algebraic integers of K. As a consequence we call the
ring of algebraic integers of K the maximal order of K.

The units ǫ in an order O in a field K are the elements for which there exist ε1 in O with

ǫǫ1 = 1.

Note that 1 = N(1) = N(ǫǫ1) = N(ǫ)N(ǫ1).
Since O is an order ǫ and ǫ1 are algebraic integers and thus N(ǫ), N(ǫ1) are rational integers.

Thus N(ǫ) = ±1.
Suppose ǫ is in O and N(ǫ) = ±1. Then ǫ is an algebraic integer and so is the root of a

polynomial with integer coefficients of the form

xd + · · ·+ a1x + N(ǫ) = 0.

Therefore

ǫd−1 + · · · + a1 =
−N(ǫ)

ǫ
=

±1

ǫ
.

Thus 1
ǫ

is in O and thus ǫ is a unit.
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Proposition 6. Let O be an order of a number field K. Then the group of units is infinite

except when K = Q or when K is an imaginary quadratic extension of Q.

Proof: This is a consequence of Dirichlet’s unit theorem extended to orders. (Borevich +
Shafarevich).

Proposition 7. Let M be a finitely generated abelian group with no non-zero element of finite
order. All subgroups N of M have a finite number of generators and so possess a basis. Further

if ω1, . . . , ωm is a basis for M then there is a basis η1, . . . , ηk of N such that

η1 = c11ω1 + c12ω2 + · · ·+ c1mωm

η2 = c22ω2 + · · ·+ c2mωm

...

ηk = ckkωk + · · ·+ ckmωm

where cij’s are in Z, cij > 0 and k ≤ m.

Proof: Similar to the proof of Theorem 12.

Thus a submodule of a module of K is a finitely generated Z-module.

Let M be a finitely generated Z-module in a number field K. Suppose that M is a full module.
Define OM, the stabilizer of M to be the set of λ in K for which λM ⊆ M. In particular
λµ ∈ M for each µ ∈ M. (OM is also called the coefficient ring of M)

Proposition 8. If M is a full module in K then OM is an order of K.

Proof:

First note that OM is a ring since it is a subring of K. Note that if a, b ∈ OM then a− b and ab
are in OM. Plainly OM is non-empty since 1 ∈ OM. Next we observe that OM is a Z-module
since it is an additive abelian group under addition and properties i) - iv) hold. To prove that
OM is an order, it remains to show that OM is a full Z-module in K.

Let γ ∈ M with γ 6= 0. Then αγ ∈ M for all α ∈ OM. Thus γOM ⊆ M. Hence γOM

is a subgroup of M hence a submodule of M. Therefore it has a basis of the form given by
Proposition 7. Note that OM = γ−1(γOM). It remains to show that γOM is a full module.

Let {α1, . . . , αd} be a basis for K over Q. Recall that M is full and so M = {µ1, . . . , µd}.
Let α ∈ K. We can write

αµi =
d
∑

j=1

aijµi with aij ∈ Q

for i = 1, . . . , d and j = 1, . . . , d. By clearing denominators we see that there is an integer ci

such that

ciαµi =
d
∑

j=1

(ciaij)µi with ciaij ∈ Z.

Then take c = c1 · · · cd and we see that cα ∈ OM. In particular there exist non-zero integers
c(1), . . . , c(d) such that c(i)αi ∈ OM for i = 1, . . . , d. Thus OM is full and hence is an order. �
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Let M be a full module in K. Let UM be the group of units ǫ in OM for which N(ǫ) = 1.
UM is a subgroup of the groups of units in OM of index 1 or 2. Thus UM is infinite except if
K = Q or K is an imaginary quadratic extension by Proposition 6 and 8. Now notice that if
µ ∈ M is a solution of

N(µ) = a (15)

for some integer a and ǫ is in UM then

N(ǫµ) = N(ǫ)N(µ) = a.

Thus if M is a full module in K and K is not exceptional then whenever (15) has one solution
µ ∈ M it has infinitely many solutions in M. But this is not the only situation where we can
have infinitely many solutions to (15).

Suppose that L is a subfield of K and that L is not exceptional and that M0 is a module
of K which is proportional to a full module of L. Say M0 = γL where L is a full module of
L and γ is a non-zero element of K. Since L is not exceptional there exists an integer b for
which there are infinitely many λ ∈ L such that

NL(λ) = b.

But then notice

N(γλ) = N(γ)N(λ) = N(γ) · NL(λ)[K:L] = N(γ) · b[K:L].

So, take a = N(γ)b[K:L].

Definition:

A module M in K is said to be degenerate if it contains a submodule proportional to a full
module in a subfield of K which is neither Q nor an imaginary quadratic field.

Note that if M is degenerate then there are integers a for which the equation N(µ) = a has
infinitely many solutions µ ∈ M.

Theorem 23. (Schmidt’s Norm Form Theorem, 1972)
Let M be a module of K. There exists an a ∈ Q for which N(µ) = a has infinitely many

solutions µ ∈ M if and only if M is degenerate.

Proof:

We already proved ⇐. To prove ⇒ apply Schmidt’s Subspace Theorem.


