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Theorem 0.1. (Dirichlet’s Theorem) Let α be a real irrational number, and let n ∈ N
be a natural number. Then there exist integers p, q with 1 ≤ q ≤ n such that

|qα− p| < 1

n+ 1

Proof. Clearly, we may assume that α > 0. For q = 1, · · · , n, write rq = qα − bqαc.
Then the n+ 2 numbers 0, r1, · · · , rn, 1 (since α is irrational, we have rj 6= 0, 1 for all
j) all lie in [0, 1] and by the pigeonhole principle, some two of them differ by at most

1

n+ 1
. If there is some rq such that |rq − 1| < 1/(n + 1) or |rq| < 1/(n + 1) then

we are done. Otherwise, there are 1 ≤ s, t ≤ n such that |rs − rt| < 1/(n + 1). The
result follows by noting that rs − rt = rs−t if s > t, rs > rt and rs − rt = 1 − rs−t if
s < t, rs > rt.

�

Theorem 0.2. (Duffin-Schaeffer Theorem) There exists a sequence of non-negative

real numbers f(1), f(2), · · · , such that
∞∑
q=1

f(q) = ∞, but nonetheless for almost all

real α the inequality ∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q

has only finitely many solutions for integers p, q.

Proof. Since
∏
p

(
1 +

1

p

)
diverges, there exists a strictly increasing sequence (xn)∞n=0

with x0 = 1 such that
∏

xi−1<p≤xi

(
1 +

1

p

)
> 2i+1 for all i ≥ 1. Define Ni =

∏
xi−1<p≤xi

p.

Note that by construction we have gcd(Ni, Nj) = 1 if i 6= j. Now define f(q) to be

2−i
q

Ni

if q|Ni and 0 otherwise. Now we define

Aq =

[
0,
f(q)

q

]
∪
q−1⋃
j=1

[
j

q
− f(q)

q
,
j

q
+
f(q)

q

]
∪
[
1− f(q)

q
, 1

]
.

Note that the measure of Aq is zero unless q|Ni for some i, and µ(Aq) ≤ q

(
f(q)

q

)
otherwise. Also note that Aq ⊂ ANi

and in fact we have

ANi
=
⋃
q|Ni

Aq.

1
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Therefore, since µ(ANi
) ≤ 2Ni

(
2−i

q

Niq

)
= 2−i, it follows that

µ

⋃
q|Ni

Aq

 ≤ 2−i+1.

Now let A be the set of real numbers α ∈ [0, 1] for which the inequality∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q

has infinitely many solutions in integers p, q. Since only finitely many q’s divide Ni

for any i, it follows that for any k0 ∈ N we have A ⊂
∞⋃

k=k0

⋃
q|Nk

Aq

 =
∞⋃

k=k0

ANi
. By

sub-additivity of measures it follows that µ(A) ≤
∞∑

k=k0

2−k+1 = 2−k0+2. In particular,

letting k0 →∞ we see that µ(A) = 0. On the other hand, we have

∞∑
q=1

f(q) =
∞∑
i=1

2−i
∑

q|Ni,q>1

q

Ni

.

Note that ∑
q|Ni,q>1

q

Ni

=
1

Ni

∏
p|Ni

(1 + p)− 1


=
∏
p|Ni

(
1 +

1

p

)
− 1

Ni

> 2i + 1− 1

Ni

> 2i

by our choice of Ni. Hence, we have

∞∑
q=1

f(q) ≥
∞∑
i=1

2−i2i =∞.

This establishes the existence of a sequence asserted by the theorem. �

If f is as above and we consider the sum
∞∑
q=1

f(q)ϕ(q)

q
we would obtain

∞∑
q=1

f(q)ϕ(q)

q
=
∞∑
i=1

2−i
1

Ni

∑
q|Ni,q>1

ϕ(q) =
∞∑
i=1

2−i
Ni − 1

Ni

<∞.

To investigate the issue further, we will require some further results on the Euler ϕ
function.

Proposition 0.3. Let m,n ∈ Z+. If gcd(n,m) = 1, then ϕ(nm) = ϕ(n)ϕ(m). In
other words, ϕ is a multiplicative function.
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Proof. We have ϕ(mn) = mn
∏
p|mn

(
1− 1

p

)
, and since gcd(m,n) = 1 it follows that

∏
p|mn

(
1− 1

p

)
=
∏
p|m

(
1− 1

p

)∏
p|n

(
1− 1

p

)
and hence ϕ(mn) = ϕ(m)ϕ(n). �

Proposition 0.4. We have
∑
d|n

ϕ(d) = n for all n ∈ N.

Proof. Write Cd to be the subset of 1 ≤ m ≤ n such that gcd(m,n) = d. Clearly

Cd = ∅ if d does not divide n. Otherwide, if m ∈ Cd, then gcd
(m
d
,
n

d

)
= 1, so that

|Cd| = ϕ
(n
d

)
. Hence we have

n =
∑
d|n

|Cd| =
∑
d|n

ϕ
(n
d

)
=
∑
d|n

ϕ(d).

�

Remark 0.5. By the Mobius inversion formula, we also have ϕ(n) = n
∑
d|n

µ(d)

d
.

Proposition 0.6. We have
n∑

m=1

ϕ(m) =
3

π2
n2 +O(n log n).

Proof. We have
n∑

m=1

ϕ(m) =
n∑

m=1

∑
d|m

mµ(d)

d
=
∑
dd′≤n

d′µ(d)

=
n∑
d=1

µ(d)

bn
d
c∑

d′=1

d′

=
n∑
d=1

µ(d)

(
1

2

(⌊n
d

⌋2

+
⌊n
d

⌋))

=
1

2

n∑
d=1

µ(d)

(
n2

d2
+O

(n
d

))

=
n2

2

n∑
d=1

µ(d)

d2
+O

(
n

n∑
d=1

1

d

)

=
n2

2

n∑
d=1

µ(d)

d2
+O(n log n)

=
n2

2

(
∞∑
d=1

µ(d)

d2
−

∞∑
d=n+1

µ(d)

d2

)
+O(n log n)

=
n2

2

∏
p

(
1− 1

p2

)
+O(n log n) =

3

π2
n2 +O(n log n).
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�

For n ∈ N, let τ(n) denote the number of positive divisors of n.

Proposition 0.7. Let n be a positive integer and let u and v be integers with v > 0.
Then ∣∣∣∣∣∣∣∣

∑
u<k≤u+v
gcd(k,n)=1

1− vϕ(n)

n

∣∣∣∣∣∣∣∣ ≤ τ(n).

Proof. ∣∣∣∣∣∣∣∣
∑

u<k≤u+v
gcd(k,n)=1

1− vϕ(n)

n

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

u<k≤u+v

∑
d| gcd(k,n)

µ(d)− vϕ(n)

n

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

u<k≤u+v

∑
d|(k,n)

µ(d)− v
∑
d|n

µ(d)

d

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
d|n

µ(d)
∑

u<k≤u+v
d|k

1−
∑
d|n

µ(d)
v

d

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
d|n

µ(d)

 ∑
u<k≤u+v

d|k

1− v

d


∣∣∣∣∣∣∣∣

≤
∑
d|n

1 = τ(n).

Now note that τ(n) ≤ 2n1/2 since if d is a divisor of n then either d or n/d is bounded
above by n1/2. �

Note that for any ε > 0, we have n1−ε < ϕ(n) < n for n sufficiently large. In
particular, we have the following corollary.

Corollary 0.8. Let ϕλ(n) be the number of positive integers m with m ≤ λn with
gcd(m,n) = 1. Then

|ϕλ(n)− λϕ(n)| ≤ 2n1/2.

In particular, we have ϕλ(n) = ϕ(n)(λ+ ρ) with |ρ| ≤ cn−1/4 for some c > 0.

Proof. Follows immediately from previous propositions. �

Proposition 0.9. Let N and M be positive integers and A > 0 be a positive real
number. The number of positive integer pairs (x, y) with 0 < |Nx −My| ≤ A and
with 1 ≤ x ≤M , 1 ≤ y ≤ N is at most 2A.
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Proof. Let d = gcd(N,M) and write N1 =
N

d
,M2 =

M

d
. It suffices to count the

number of pairs of positive pairs of integers (x, y) for which |N1x−M1y| ≤
A

d
where

1 ≤ x ≤M1d and 1 ≤ y ≤ N1d. Call such a pair (x, y) and admissible pair.

Suppose x1N1 − y1M1 = x2N1 − y2M1, with (x1, y1), (x2, y2) admissible pairs. Then
(x1−x2)N1 = (y1− y2)M1. Since gcd(N1,M1) = 1, it follows that x1−x2, y1− y2 are
multiples of M1, N1 respectively.

If h is an integer with |h| ≤ A

d
and x1N1 − y1M1 = h, we have that there are at

most d solutions in admissible pairs (x, y). To see this, the pair is determined by x,
and since for any two distinct solutions x1, x2 they must lie in the same congruence
class modulo M1, the number of solutions correspond to the number of such con-
gruence classes in the set {1, · · · ,M1d}, which is at most d. Hence the number of

admissible pairs is at most 2d

⌊
A

d

⌋
≤ 2A and we are done. �

Theorem 0.10. (Khintchine’s Theorem - 1924) Let f : R→ R+ and let (f(q))∞q=1 be
a sequence of positive numbers for which

(i)
∞∑
q=1

f(q) =∞,

(ii) The sequence (qf(q))∞q=1 is a decreasing sequence.

Then for all real numbers α with the exception of a set of Lebesgue measure zero,
there exist infinitely many rationals p/q for which∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
.

For example, the theorem applies to the sequence f(q) =
1

q log q
or even

1

q log q log log q
.

Condition (ii) is a stringent one but as the previous Duffin-Schaeffer theorem in-
dicates, some such condition is necessary.

We will derive Khintchine’s theorem from the following result, also due to Duffin-
Schaeffer.

Theorem 0.11. (Duffin and Schaeffer) Let (f(q))∞q=1 be a sequence of non-negative
real numbers which satisfies

(i)
∞∑
q=1

f(q) =∞,

(ii) 0 ≤ f(q) ≤ 1/2 for q ≥ 1, and

(iii) There exist a positive number c such that
∞∑
q=1

f(q)
ϕ(q)

q
> c

n∑
q=1

f(q) for infinitely
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many integers n.

Then for all real numbers α, except for a set of Lebesgue measure zero, there ex-

ist infinitely many rationals p/q such that

∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
.

We will introduce some definitions and propositions to establish the theorem.

Definition 0.12. Let θ be a positive real number with θ ≤ 1/2, and let q > 1 be a
positive integer. Denote Eθ

q ⊂ (0, 1) consisting of ϕ(q) intervals centered at p/q with
gcd(p, q) = 1 of radius θ/q.

Proposition 0.13. Let µ denote the Lebesgue measure of R. Suppose q, n > 1 are
distinct integers and θ1, θ2 are real numbers with 0 ≤ θ1, θ2 ≤ 1/2. Then µ(Eθ1

n ∩
Eθ2
q ) ≤ 8θ1θ2.

Proof. If an interval I1 ⊂ Eθ1
q overlaps an interval I2 ⊂ Eθ2

n with center m/n, then

0 <

∣∣∣∣pq − m

n

∣∣∣∣ < θ1

q
+
θ2

n
or equivalently, 0 < |np −mq| < θ1n + θ2q. First suppose

that θ1n ≥ θ2q, so 0 < |np−mq| < 2θ1n. By proposition 0.9 there are at most 4θ1n
such solutions.

Therefore µ(Eθ1
q ∩ Eθ2

n ) ≤ 4θ1n

(
2θ2

n

)
= 8θ1θ2. Symmetrically, the same arguments

hold when θ2q ≥ θ1n. �

Proposition 0.14. Let A be a subset of (0, 1) consisting of a finite union of intervals.
There exists a positive number c, which depends on A, such that if n > 1 and 0 <
θ ≤ 1/2, then µ(A ∩ Eθ

n) ≤ µ(A)µ(Eθ
n)(1 + cn−1/4).

Proof. We first prove the result in the case when A is a single interval (a, b) ⊂ (0, 1).
The number of intervals in Eθ

n whose centers lie in (a, b] is ϕb(n) − ϕa(n). Thus the
number of intervals of Eθ

n lying entirely in (a, b] is at least ϕb(n)−ϕa(n)−2. Further,
the number of intervals which have some overlap with (a, b] is at most ϕb(n)−ϕa(n)+2.

Thus µ(A ∩ Eθ
n) = (ϕb(n)− ϕa(n) + γ)

2θ

n
where |γ| ≤ 2 is a real number.

By corollary 0.8, we get that

µ(A ∩ Eθ
n) ≤ ϕ(n)((b− a) + c1n

−1/4)
2θ

n
= µ(Eθ

n)µ(A)(1 + c(A)n−1/4),

where c(A) is a constant that depends on A.

Now suppose that A is the union of k disjoint intervals A1, · · · , Ak. Then put
c = max(c(A1), · · · , c(Ak)). Then we have

µ(A ∩ Eθ
n) = µ

((
k⋃
i=1

Ai

)
∩ Eθ

n

)
= µ(Eθ

n)µ(A)(1 + cn−1/4).

�
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Proof. proof of Duffin-Schaeffer theorem Set f(q) = θq, for q = 1, 2, · · · . Denote the

sets E
θq
q by just Eq for brevity. Put E =

∞⋃
q=2

Eq. We first prove that the measure of

E is 1. If we do this then that will show that for almost all α there exists a rational

number p/q with

∣∣∣∣α− p

q

∣∣∣∣ < θq
q

. We shall then show that µ

(
∞⋃
q=k

Eq

)
= 1 for all k ≥ 3

and from this we will find infinitely many solutions to the inequality

∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
.

Suppose to the contrary that µ(E) < 1. Then there exists δ > 0 such that µ(E)(1 +
δ) < 1. Suppose there exists a q1 > 0 such that if we put A = E2 ∪ · · · ∪ Eq1 then
µ(A) > µ(E) − δ. Since A is a finite union of intervals, by proposition 0.14 there
exists a positive number q2 such that if q > q2, then

(0.1) µ(A ∩ Eq) ≤ µ(A)µ(Eq)(1 + δ).

Let m > n be positive integers larger than q1 + q2 and put B = Bm,n = En∪· · ·∪Em.
We have

m∑
j=n

µ(Ej)−
∑

n≤j<k≤m

µ(Ej ∩ Ek) ≤ µ(B) ≤
m∑
j=n

µ(Ej).

By proposition 0.13, µ(Ej ∩ Ek) ≤ 8θjθk and so,

µ(B) ≥
m∑
j=n

µ(Ej)− 4

(
m∑
j=n

θj

)2

.

By equation (0.1), we have

µ(A ∩B) ≤
m∑
j=n

µ(A ∩ Ej) ≤ µ(A)

(
m∑
j=n

µ(Ej)

)
(1 + δ).

Observe that µ(E) ≥ µ(A ∪B) ≥ µ(A) + µ(B)− µ(A ∩B) and so

µ(E) ≥ µ(A) +
m∑
j=n

µ(Ej)− 4

(
m∑
j=n

θj

)2

− µ(A)

(
m∑
j=n

µ(Ej)

)
(1 + δ).

Hence

(0.2) µ(E) ≥ µ(A) +

(
m∑
j=n

µ(Ej)

)
(1− µ(A)(1 + δ))− 4

(
m∑
j=n

θj

)2

By assumption, there exists 0 < c ≤ 1 and arbitrarily large integers m > n > 0 for
which

m∑
j=n

θj > 1

and
m∑
j=n

θj
ϕ(j)

j
>
c

2

m∑
j=n

θj.
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But
m∑
j=n

µ(Ej) =
m∑
j=n

θj
ϕ(j)

j
> c

m∑
j=n

θj. Thus, by equation (0.2), we have

µ(E) ≥ µ(A) +

(
c

m∑
j=n

θj

)
(1− µ(A)(1 + δ))− 4

(
m∑
j=n

θj

)2

.

Put t =
m∑
j=n

θj and b = c(1− µ(A)(1 + δ)) so that µ(E) ≥ µ(A) + bt− 4t2.

Observe that 0 < b < 1 since 0 < c ≤ 1 and 1 − µ(A)(1 + δ) < 1. The maxi-

mum of yb − 4y2 for y ∈ (0, 1) occurs when y = b/8, at which point yb − 4y2 =
b2

16
.

We shall now modify the Ej’s by replacing θj with 2θj. Denote the set E
zθj
j by E

(1)
j

for j = 2, 3, · · · where z is chosen so that
m∑
j=n

zθj =
b

8
. Keep A as before and replace

B with Bz where

Bz = E(1)
n ∪ · · · ∪ E(1)

m .

Arguing as before, we obtain

µ(E) ≥ µ(A) + btz − 4(tz)2

= µ(A) +
b2

16

= µ(A) +
c2

16
(1− µ(A)(1 + δ))2

Notice that as δ → 0, we have µ(A)→ µ(E) and hence

µ(E) ≥ µ(E) +
c2

16
(1− µ(E)).

This inequality is untenable if µ(E) < 1, and hence we must conclude that µ(E) = 1.

Now put E(k) =
∞⋃
q=k

Eq and observe that the same argument holds as before. This

implies that µ(E(k)) = 1 for all k ∈ N. Thus, if we set E∗ =
∞⋂
k=1

E(k), then we have

µ(E∗) = 1

since E∗ is the intersection of countably many sets of full measure. In particular, for

each α ∈ E∗, we can find infinitely many rationals p/q such that

∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
. �

We now show that Khintchine’s theorem is a consequence of the Duffin-Schaeffer
theorem. In fact, in place of the assumption that (f(q))q≥0 is a decreasing sequence
we will require only (f(q))q≥0 is decreasing. We will replace f(q) with θq for this
argument.
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Notice that we may suppose that θq ≤ 1/2 for sufficiently large q since otherwise

the inequality

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q
certainly has infinitely many solutions for almost all α.

Thus we may replace θq with min(θq, 1/2) to guarantee condition (ii) of the Duffin-
Schaeffer theorem.

It remains to show that there exists c > 0 such that for infinitely many positive
integers n we have

n∑
q=1

θqϕ(q)

q
> c

n∑
q=1

θq.

Notice that since (θq)q≥1 is decreasing, we have

2n∑
q=1

θq
ϕ(q)

q
=

n∑
t=1

2t∑
q=2t−1+1

θq
ϕ(q)

q

≥
n∑
t=1

θ2t

2t∑
q=2t−1+1

ϕ(q)

q

≥
n∑
t=1

θ2t

2t

2t∑
q=2t−1+1

ϕ(q).

By proposition 0.6, we get

2t∑
q=2t−1+1

ϕ(q) =
3

π2
(22t − 22t−2) +O(t2t)

=
9

4π2
22t +O(t2t)

> c122t,

for some c1 > 0. Thus

2n∑
q=1

θq
ϕ(q)

q
≥

n∑
t=1

θ2t

2t
c122t

= c1

n∑
t=1

θ2t2
t

≥ c1

2n+2n−1∑
q=2

θq

≥ c1

2n∑
q=2

θq.
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Since
∞∑
q=1

θq =
∞∑
q=1

f(q) =∞, there exists c2 > 0 such that

c1

2n∑
q=2

θq > c2

2n∑
q=1

θq.

This shows that condition (ii) of the Duffin-Schaeffer theorem is also satisfied, and so
Khintchine’s Theorem is a corollary of the Duffin-Schaeffer theorem.

Gallagher proved the following result: Let (f(q))∞q=1 be a sequence of non-negative
real numbers. Let A be the set of real numbers α in (0, 1) for which the inequality∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
has infinitely many solutions in rationals p/q. The measure of A is

either 0 or 1.

Duffin and Schaeffer conjectured that for almost all α with respect to Lebesgue

measure, the inequality

∣∣∣∣α− p

q

∣∣∣∣ < f(q)

q
has infinitely many solutions if and only

if
∞∑
q=1

f(q)

q
ϕ(q) diverges. The conjecture is still unsolved, but higher dimensional

analogues of it have been proved (Pollington, Vaughan).

Given a real number α, how should we go about finding the good rational approxima-
tions p/q to α? We use an algorithm known as the continued fraction algorithm. For
any x ∈ R recall that bxc denotes the greatest integer less than or equal to x. Put

a0 = bαc. If α 6= a0 then we write α = a0 +
1

α1

. Then write a1 = bα1c. If a1 6= α1, we

write α1 = a1 +
1

α2

. Continue in this way we generate a sequence of positive integers

a1, a2, · · · and real numbers α1, α2, · · · > 1. The sequences are finite if αi = ai for
some i ∈ N, in which case the algorithm terminates.

If the algorithm terminates, say at αn = an, then write

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+
1

an

or more conveniently, α = [a0, a1, · · · , an]. This expression is called a finite continued
fraction.
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If the algorithm does not terminate, then we have

α = a0 +
1

a1 +
1

a2 +
.. .

.

Alternatively, we write α = [a0, a1, a2, · · · ]. These expressions are known as the con-
tinued fraction expression of α.

We will prove that α = lim
n→∞

[a0, a1, · · · , an]. The terms a0, a1, · · · are known as the

partial quotients of α. Further we will put [a0, · · · , an] =
pn
qn

where gcd(pn, qn) = 1

and qn > 0. The rationals
pn
qn

are known as the convergents to α.

We will show that the pn’s and qn’s are generated recursively in the following manner.

Proposition 0.15. Let α be a real number, and let

(
pn
qn

)∞
n=0

be its sequence of

convergents and (an)∞n=0 be its sequence of partial quotients. Then (pn), (qn) both
satisfy the recursion

(0.3) un = anun−1 + un−2, n ≥ 2

with p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1.

Proof. We proceed to prove this result by induction. For n = 2, we have

p2

q2

= a0 +
1

a1 +
1

a2

= a0 +
a2

a1a2 + 1

=
a0a1a2 + a0 + a2

a1a2 + 1

=
a2p1 + p0

a2q1 + q0

.

This establishes the base case. Now assume the result holds for n = k− 1 with k ≥ 2
and we will prove it for n = k. Consider the associated continued fractions [a1, · · · , ak]
and put [a1, · · · , aj+1] =

uj
vj

with gcd(uj, vj) = 1, vj > 0 for j = 0, 1, 2, · · · . By the

inductive hypothesis we have uk−1 = akuk−2 + uk−3 and vk−1 = akvk−2 + vk−3.

But
pj
qj

= a0 +
vj−1

uj−1

, for j = 1, 2, · · · . Hence pj = a0uj−1 + vj−1 and qj = uj−1.

Now set j = k to obtain

pk = a0(akuk−2 + uk−3) + akvk−2 + vk−3

= ak(a0uk−2 + vk−2) + (a0uk−3 + vk−3)

= akpk−1 + pk−2,
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as desired. Similarly, we have

qk = uk−1

= akuk−2 + uk−3

= akqk−1 + qk−2.

This completes the proof. �

Recall from the definition of α1, α2, · · · that

α = [a0, a1, · · · , an, αn+1].

We also have

0 <
1

αn+1

≤ 1

an+1

.

Notice that α ∈
[
pn
qn
,
pn+1

qn+1

]
.

Proposition 0.16. If

(
pn
qn

)∞
n=0

is the sequence of convergents for a real number α,

then

pnqn+1 − qnpn+1 = (−1)n+1

for n = 0, 1, · · · .

Proof. We proceed by induction. For n = 0 we have p0q1−p1q0 = a0a1− (a0a1 + 1) =
−1, so the result holds.

Assume that this holds for n = k − 1. Then by our recursion for pk, qk we have

pkqk+1 − qkpk+1 = pk(ak+1qk + qk−1)− qk(ak+1pk + pk−1)

= pkqk−1 − qkpk−1

= (−1)k+1,

as required. �

Since α ∈
[
pn
qn
,
pn+1

qn+1

]
, we see that∣∣∣∣α− pn

qn

∣∣∣∣ ≤ ∣∣∣∣qn+1pn − pnqn+1

qnqn+1

∣∣∣∣ =
1

qnqn+1

.

We have q0 = 1, q1 = a1 and so qn+1 > qn for n > 0 and thus∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2
n

for n = 1, 2, · · · . Thus the convergents
pn
qn

are good approximations to α.

Remark 0.17. The continued fraction terminates if and only if α is rational. Further,
lim
n→∞

[a0, · · · , an] = α.
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We will now complete the proof of Hurwitz’s Theorem by showing that at least one

of any three consecutive convergents to α, say
pn
qn
,
pn+1

qn+1

,
pn+2

qn+2

must satisfy∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Suppose otherwise for the sake of a contradiction. Then we have∣∣∣∣α− pj
qj

∣∣∣∣ ≥ 1√
5q2
j

for j = n, n+ 1, n+ 2. This implies that∣∣∣∣α− pn
qn

∣∣∣∣+

∣∣∣∣α− pn+1

qn+1

∣∣∣∣ =

∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1

,

and so
1√
5q2
n

+
1√

5q2
n+1

≤ 1

qnqn+1

⇒ 1√
5

qn+1

qn
+

1√
5

qn
qn+1

≤ 1.

Put λn =
qn+1

qn
, and hence

λn√
5

+
1√
5λn
≤ 1⇒ λ2

n −
√

5λn + 1 ≤ 0

⇒

(
λn −

√
5

2

)2

− 1

4
≤ 0.

Since λn ∈ Q, the inequality is strict. Thus

(
λn −

√
5 + 1

2

)(
λn −

√
5− 1

2

)
< 0,

and so

√
5− 1

2
< λn <

√
5 + 1

2
, in particular λn <

1 +
√

5

2
. Now, recall that qn+2 =

an+2qn+1 + qn, so that
qn+2

qn+1

= an+2 +
1

(qn+1/qn)
. Observe also that λn+1 <

1 +
√

5

2
.

But

λn+1 = an+2 +
1

λn

> 1 +
2

1 +
√

5

=
3 +
√

5

1 +
√

5

=
1 +
√

5

2
,

a contradiction. This completes the proof of Hurwitz’s Theorem.

Proposition 0.18. For any real number α, the sequence (|q1α − p1|, |q2α − p2|, · · · )
is a decreasing sequence.
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Proof. The recurrence relations for pn, qn hold for any indeterminates and so we may
apply them with α = [a0, a1, · · · , an, αn+1] to conclude that

α =
pnαn+1 + pn−1

qnαn+1 + qn−1

and so∣∣∣∣qn(pnαn+1 + pn−1

qnαn+1 + qn−1

)
− pn

∣∣∣∣ =

∣∣∣∣qnpnαn+1 + qnpn−1 − pnqnαn+1 − pnqn−1

qnαn+1 − qn−1

∣∣∣∣
=

1

|qnαn+1 + qn−1|
.

But

qnαn+1 + qn−1 ≥ qn + qn−1

≥ anqn−1 + qn−2 + qn−1

= (an + 1)qn−1 + qn−2

≥ αnqn−1 + qn−2,

which implies that∣∣∣∣qn(pnαn+1 + pn−1

qnαn+1 + qn−1

)
− pn

∣∣∣∣ =
1

qnαn+1 + qn−1

≤ 1

qn−1αn + qn−2

,

and we check that it holds for n = 1 also. �

Proposition 0.19. Let α be a real number. The convergents
pn
qn

to α satisfy

1

(an+1 + 2)q2
n

<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

an+1q2
n

.

Proof. By proposition 0.18 we have∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(anαn+1 + qn−1)
.

Since an+1 ≤ αn+1 < an+1 + 1 and qn ≥ qn−1, the result follows. �

The convergents pn/qn give the best approximations to α in the sense that if 0 <

q < qn+1, then |qα− p| ≥ |anα− pn|. To see this, note that since det

[
pn qn
pn+1 qn+1

]
=

(−1)n+1, we can find integers u, v such that p = upn + vpn+1 and q = uqn + vqn+1.
Note that u 6= 0. Further, if v 6= 0 then u, v have opposite signs. Thus

|qα− p| = |u(qnα− pn) + v(qn+1α− pn+1)| ≥ |qnα− pn|.

Proposition 0.20. Let α ∈ R. If p/q is a rational with

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then p/q is

a convergent to α. In other words,
p

q
=
pn
qn

for some n ≥ 0.
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Proof. In fact
p

q
=
pn
qn

where qn ≤ q < qn+1, since∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣+

∣∣∣∣α− pn
qn

∣∣∣∣
≤
(

1

q
+

1

qn

)
|qα− p|

<
2

qn

1

2q
=

1

qqn
.

But if p/q, pn/qn are distinct rational numbers, then the absolute value of their differ-

ence is at least
1

qqn
, so the above inequality shows that they must in fact be equal. �

Definition 0.21. The continued fraction [a0, a1, · · · ] is said to be ultimately periodic
if there exists a non-negative integer n and a positive integer k such that ak+m = am
for all m ≥ n.

Theorem 0.22. (Lagrange’s Theorem) A real number α is a quadratic irrational if
and only if its continued fraction expansion is ultimately periodic.

Proof. Suppose that α = [a0, · · · , ak−1, ak, · · · , an+k−1] where the bar indicates peri-

odicity. Put θ = [ak, · · · , an+k−1] and let
uj
vj

denote the convergents to θ. We have θ =

[ak, · · · , ak+n−1, θ], so that θ =
un−1θ + un−2

vn−1θ + vn−2

. Thus vn−1θ
2+(vn−2+un−1)θ−un−2 = 0.

Further, θ ∈ R \Q since it has an infinite continued fraction expansion. Thus it is a
real quadratic irrational.

But α = [a0, · · · , ak−1, θ] and so α =
pk−1θ + pk−2

qk−1θ + vk−2

and so α is a real quadratic

irrational as well.

Suppose now that α is a real quadratic irrational. Let ax2 + bx + c be the min-
imal polynomial of α in Z[x]. Then b2 − 4ac > 0 since α is real. Suppose that

α = [a0, a1, · · · ]. Then α =
pn−1αn + pn−2

qn−1αn + qn−2

and so

a(pn−1αn + pn−2)2 + b(pn−1αn + pn−2)(qn−1αn + qn−2) + c(qn−1αn + qn−2) = 0.

Set An = ap2
n−1 + bpn−1qn−1 + cq2

n−1, Bn = 2apn−1pn−2 + bpn−1qn−2 + bpn−2qn−1 +
2cqn−1qn−2, and Cn = ap2

n−2 + bpn−2qn−2 + cq2
n−2. In other words, we have

Anα
2
n +Bnαn + Cn = 0.

Notice that An 6= 0 since otherwise ax2 + bx + c = 0 has a rational root. Further,
B2
n − 4AnCn = (b2 − 4ac)(pn−1qn−2 − pn−2qn−1)2 = b2 − 4ac > 0.

Now we have α − pn
qn

=
δn
q2
n

with |δn| ≤ 1, for all n ∈ N. Thus pn = qnα −
δn
qn

,
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hence

An = a

(
qn−1α−

δn−1

qn−1

)2

+ b

(
qn−1α−

δn−1

qn−1

)
qn−1 + cq2

n−1

= (aα2 + bα + c)q2
n−1 − 2aαδn−1 +

aδ2
n−1

q2
n−1

− bδn−1

= −2aαδn−1 + a
δ2
n−1

q2
n−1

− bδn−1,

so that |An| ≤ |2aα|+ |a|+ |b|.

Note that Cn = An−1, so |Cn| ≤ |2aα|+ |a|+ |b|. Finally, we have |Bn| ≤ 4|AnCn|+
|b2 − 4ac|. Since |An|, |Bn|, |Cn| are bounded, the αn’s are the roots of a finite family
of quadratic polynomials, each polynomial has at most two distinct roots (in fact each
has exactly two distinct roots since α is irrational). Therefore αn = αn+k for some
k ∈ N and n ≥ 1. Hence the continued fraction expansion is ultimately periodic. �

We say that the continued fraction expansion [a0, a1, · · · ] is purely periodic if the
period starts at n = 0. In other words, for some integer k, we have an = an+k for all
n ≥ 0.

Proposition 0.23. The continued fraction expansion of a real quadratic irrational α
is purely periodic if and only if α > 1 and the conjugate β of α satisfies −1 < β < 0.

Proof. We claim that the conjugate βn to αn also satisfy −1 < βn < 0. This follows

by induction. Since αn = an +
1

αn+1

we find that βn = an + 1
βn+1

. But now an ≥ 1

and −1 < βn < 0, hence −1 < βn+1 < 0. Observe that since −1 < βn < 0, we have

an =

⌊
−1

βn+1

⌋
.

Since α is a quadratic irrational we know that there exist distinct integers m,n with

αm = αn. But then
1

βm
=

1

βn
and so an−1 = am−1, which implies that αm−1 = αn−1.

Repeating this argument we find that α has a purely periodic continued fraction ex-
pansion.

Suppose that the continued fraction expansion of α is purely periodic. Then α >

a0 ≥ 1. Further, there is a positive integer n such that α =
pnα + pn−1

qnα + qn−1

, so qnα
2 +

(qn−1−pn)α−pn−1 = 0. Consider the polynomial fn(x) = qnx
2 +(qn−1−pn)x−pn−1.

We have fn(0) = −pn−1 < 0 and fn(−1) = (qn − qn−1) + (pn − pn−1) > 0. Thus the
polynomial fn(x) has a root β in (−1, 0), and β is conjugate to α. �

Remark 0.24. Let d be an integer which is positive but not a perfect square.

Consider α =
1√

d− b
√
dc

. Then α > 1 and the conjugate
−1√

d+ b
√
dc

satisfies

−1 <
−1√

d+ b
√
dc

< 0. Thus the continued fraction expansion of
1√

d− b
√
dc

is

purely periodic.
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Consider the rational α = [a0, · · · , an] and the convergents p0/q0, · · · , pn/qn to α.

Then [an, · · · , a0] =
pn
pn−1

and [an, · · · , a1] =
qn
qn−1

. To see this, note that pn =

anpn−1 + pn−2 so
pn
pn−1

= an +
1(

pn−1

pn−2

) , hence

pn
pn−1

= an +
1

an−1 + · · ·+
1

p1/p0

,

but
p1

p0

=
a1a0 + 1

a0

= a1 +
1

a0

. This shows that
pn
pn−1

= [an, · · · , a0]. Similarly,

qn = anqn−1 + qn−2, so
qn
qn−1

= an +
1

qn−1/qn−2

and hence

qn
qn−1

= an +
1

a+ n− 1 + · · ·+
1

q1/q0

.

But q1/q0 = a1/1 = a1, and hence
qn
qn−1

= [an, · · · , a1].

Proposition 0.25. Let α be a quadratic irrational with α > 1 and conjugate β

satisfying −1 < β < 0. Then α = [a0, · · · , an] and
−1

β
= [an, · · · , a0].

Proof. Let θ = [an, · · · , a0] so θ = [an, · · · , a0, θ]. Let
un
vn

be the convergents to θ.

Then θ =
unθ + un−1

vnθ + vn−1

. Now, let
pn
qn

be t he nth convergent to α. By the preceding

paragraph, it follows that
un
vn

=
pn
pn−1

. By proposition 0.16 we have gcd(pn, pn−1) = 1,

so that un = pn, vn = pn−1. Further, we have
un−1

vn−1

=
qn
qn−1

and hence un−1 = qn and

vn−1 = qn−1, since gcd(qn, qn−1) = 1. But then θ =
pnθ + qn

pn−1θ + qn−1

, and therefore

pn−1θ
2 + (qn−1 − pn)θ − qn = 0⇒ −qn

(
1

θ

)2

+ (qn−1 − pn)

(
1

θ

)
+ pn−1 = 0.

This shows that

qn

(
−1

θ

)2

+ (qn−1 − pn)

(
−1

θ

)
− pn−1.

Recall that α is also a root of qnx
2 + (qn−1 − pn)x− pn−1, and therefore

−1

θ
= β, as

desired. �

Let d be a positive integer which is not a perfect square. Then α =
√
d+ b

√
dc has

conjugate β = −
√
d+ b

√
dc so −1 < β < 0. By proposition 0.23, we have

α = [2b
√
dc, a1, · · · , an] = [2a0, a1, · · · , an].
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By proposition 0.25, we get

−1

β
= [an, · · · , a1, 2a0].

But
√
d− b

√
dc = 0 +

1
1√

d−b
√
dc

= [0, an, · · · , 2a0].

On the other hand, α =
√
d+ b

√
dc = [2a0, a1, · · · , an]. Thus

√
d = [a0, a1, · · · , an, 2a0] = [a0, an, · · · , a1, 2a0].

Therefore, an = a1, an−1 = a2, · · · , so
√
d = [a0, a1, a2, · · · , a2, a1, 2a0].

We can use this information to find all solutions in integers (x, y) of the equation
x2 − dy2 = 1.

Equations of the form x2 − dy2 = ±1, x2 − dy2 = ±4 are known as Pell equations.

Fermat had conjectured that for each d with d not a perfect square the equation
x2−dy2 = 1 has a non-trivial solution, different from (x, y) = (±1, 0). This was estab-
lished by Lagrange in 1768. Let’s consider the equations x2− dy2 = 1, x2− dy2 = −1
and suppose that x, y is a non-trivial solution in positive integers to one of them.

Then x ≥
√
dy2 − 1 ≥ y

√
d− 1. Thus

|x−
√
dy| = 1

|x+
√
dy|

=
1

x+
√
dy

≤ 1

y(
√
d+
√
d− 1)

.

Now d ≥ 2 so
√
d+
√
d− 1 > 2 hence |x−

√
dy| < 1/2y, so∣∣∣∣√d− x

y

∣∣∣∣ < 1

2y2
.

By proposition 0.20, x/y is a convergent to
√
d and

x

y
=
pn
qn

for some n ≥ 1.

Then
√
d =

pnαn+1 + pn−1

qnαn+1 + qn−1

so

qnαn+1

√
d+ qn−1

√
d = pnαn+1 + pn−1,

hence

(qn
√
d− pn)αn+1 = pn−1 − qn−1

√
d⇒ (pn − qn

√
d)αn+1 = qn−1

√
d− pn−1.
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Therefore,

(p2
n − q2

nd) = (qn−1

√
d− pn−1)(qn

√
d+ pn)

= (qn−1qnd+ pnqn−1

√
d− pn−1qn

√
d− pnpn−1)

= (pnqn−1 − pn−1qn)
√
d+ (qnqn−1d− pnpn−1)

= (−1)n+1
√
d+ h, h ∈ Z.

Suppose that p2
n − dq2

n = ±1. Then ±αn+1 = (−1)n+1
√
d+ h with h ∈ Z.

The even convergents to
√
d are smaller than

√
d and the odd convergents are larger.

Suppose that p2
n − dq2

n = 1. Then from

(0.4) (p2
n − dq2

n)αn+1 = (−pn−1 + qn−1

√
d)(pn + qn

√
d),

we see that −pn−1 + qn−1

√
d > 0, so we know that

√
d >

pn−1

qn−1

, so n − 1 is even.

Further, if p2
n − dq2

n = −1, then n− 1 has to be odd.

The convergents of even index are smaller than
√
d and those of odd index are larger

than
√
d, and so by equation (0.4) if p2

n − dq2
n = 1 then n− 1 has to be even.

Let us consider the case p2
n − dq2

n = 1. Then αn+1 =
√
d + h. Thus αn+2 = α1.

But
√
d = [a0, a1, · · · , am] where m is the period, so the minimal positive integer for

which α1 = αm+1 = α2m+1 = · · · . Therefore (n + 2) − 1 has to be a multiple of m,
say n = lm− 1 with l ∈ N. Note that in this case lm = n+ 1 is even.

In the case p2
n−dq2

n = −1 we have n−1 is odd and−αn+1 = −
√
d+h so αn+1 =

√
d−h,

hence αn+2 = α1 and we have n = lm−1 as before. Thus lm is odd. This immediately
shows that if m is even, then the equation p2

n − dq2
n = −1 has no solutions.

Theorem 0.26. Let d be a squarefree integer with d > 1. Let m be the length of the
period of the continued fraction expansion of

√
d. Then

(i) (x, y) is a solution of the equation u2 − dv2 = 1 in N if and only if x = pn, y = qn

where
pn
qn

is a convergent to
√
d and n = lm− 1 where l ∈ N and lm is even.

(ii) (x, y) is a solution to u2 − dv2 = −1 in positive integers x, y if and only if

x = pn, y = qn where
pn
qn

is a convergent to
√
d and n = lm− 1 where l is a positive

integer and lm is odd.

Proof. The forward direction in both claims are done already. Hence it suffices to
prove the converses.

Suppose that n = lm− 1. Then αn+2 = α1, by periodicity, and so
√
d =

pn+1αn+2 + pn
qn+1αn+2 + qn

=
pn+1α1 + pn
qn+1α1qn

.
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Recall that α1 =
1√

d− a0

. We have

√
d(qn+1α1 + qn) = (pn+1α1 + pn)⇒

√
d(qn+1 + qn(

√
d− a0)) = pn+1 + pn(

√
d− a0)

⇒
√
d(qn+1 − a0qn − pn) + qnd− pn+1 + a0pn = 0.

But
√
d 6∈ Q so qn+1−a0qn = pn = 0, so that qn+1pn−p2

n = a0pnqn and pn+1qn−dq2
n =

a0pnqn. These imply that

p2
n − dq2

n = pn+1qn − qn+1pn = (−1)n+1,

and the result follows from n+ 1 = lm. �

Are there naturally occurring real numbers with nice continued fractions which do
not lie in Q(

√
d) for any squarefree d?

Yes, for example e− 1 = [1, 1, 2, 1, 1, 4, 1, 1, 6, · · · ].

To see this we introduce the following function. Let c ∈ R \ N ∪ {0} be a real
number. Define

fc(x) =
∞∑
n=0

1

c(c+ 1) · · · (c+ n− 1)

xn

n!
,

for x ∈ R. This series converges absolutely for all x ∈ R.

We can check that fc(x) = fc+1(x) +
x

c(c+ 1)
fc+2(x), since

1

c(c+ 1) · · · (c+ n− 1)

1

n!
=

1

(c+ 1) · · · (c+ n)

1

n!
+

1

c(c+ 1) · · · (c+ n)

1

(n− 1)!
.

Thus, for fc(x) 6= 0, we have

fc+1(x)

fc(x)
=

fc+1(x)

fc+1(x) + x
c(c+1)

fc+2(x)

=
1

1 + x
c(c+1)

fc+2(x)
fc+1(x)

,

when fc+1(x) 6= 0. We put x = z2 to obtain

fc+1(z2)

fc(z2)
=

1

z
c

(
c
z

+ z
c+1

fc+2(z2)
fc+1(z2)

)
so

z

c

fc+1(z2)

fc(z2)
=

1
c
z

+ z
c+1

fc+2(z2)
fc+1(z2)

.

Therefore we have

z

c

fc+1(z2)

fc(z2)
=

[
0,
c

z
,
c+ 1

z
, · · · , c+ n

z
, αn+2

]
.
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Now choose c, z so that
c

z
,
c+ 1

z
, · · · are positive integers. Then αn+2 ≥ 1 for n ≥ 0

and
z

c

fc+1(z2)

fc(z2)
=

[
0,
c

z
,
c+ 1

z
, · · ·

]
.

We observe that if we take c = 1/2 abd z =
1

2y
, y ∈ N then the conditions hold. Thus

1

y

f3/2(1/4y2)

f1/2(1/4y2)
= [0, y, 3y, 5y, · · · ].

Put w = 1/y. Then

f 1
2

(
w2

4

)
= w

∞∑
n=0

1(
1
2

) (
3
2

)
· · ·
(

2n+1
2

) w2n

n!4n

=
∞∑
n=0

4nn!

(2n)!

w2n

n!4n

= w

∞∑
n=0

w2n

(2n)!

=
ew + e−w

2
.

Similarly, we have

wf 3
2

(
w2

4

)
= w

∞∑
n=0

1(
3
2

) (
5
2

)
· · ·
(

2n+1
2

) w2n

n!4n

=
∞∑
n=0

w2n+1

(2n+ 1)!

=
ew − e−w

2
.

Hence,

wf3/2(w2/4)

f1/2(w2/4)
=
ew − e−w

ew + e−w

=
e1/y − e−1/y

e1/y + e−1/y

= [0, y, 3y, 5y, · · · ].

If we take y = 2 we find that

e− 1

e+ 1
= [0, 2, 6, 10, 14, · · · ].

Theorem 0.27. e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, · · · ]. That is, a0 = 2, a1 = 1, and
a3k = a3k+1 = 1 for all k ≥ 1, and a3k+2 = 2(k + 1).



22 PURE MATH 944 - DIOPHANTINE APPROXIMATION

Proof. Let α = [2, 1, 2, 1, 1, 4, 1, 1, 6, · · · ] and put θ =
e+ 1

e− 1
= [2, 6, 10, 14, · · · ]. Let

rn
sn

be the nth convergent to θ and let
pn
qn

be the nth convergent to α. Notice that

e =
θ + 1

θ − 1
since

e+1
e−1

+ 1
e+1
e−1
− 1

=
2e+1−1
e−1

e+ 1− e+ 1
e− 1 = e.

Since rn/sn → θ it is enough to show that p3n+1 = rn + sn and q3n+1 = rn − sn since
then

p3n+1

q3n+1

=
rn + sn
rn − sn

=
rn/sn + 1

rn/sn − 1

→ e.

This would then show that α = e.

We will prove p3n+1 = rn + sn and q3n+1 = rn − sn for n = 0, 1, 2, · · · by induc-
tion. For n = 0, we have r0 = 2, s0 = 1 and p1 = 3, q1 = 1 and for n = 1 we
have r1 = 13, s1 = 6, with p4 = 19, q4 = 7 and so we are done for n = 0, 1. For
n ≥ 2 we have rn = (4n + 2)rn−1 + rn−2 and sn = (4n + 2)sn−1 + sn−2. In addition,
we have p3n−3 = p3n−4 + p3n−5, p3n−1 = 2np3n−2 + p3n−3, p3n = p3n−1 + p3n−2, and
p3n+1 = p3n + p3n−1. These imply that

p3n−3 = p3n−4 + p3n−5

−p3n−2 = −p3n−3 − p3n−4

2p3n−1 = 4np3n−2 + 2p3n−3

p3n = p3n−1 + p3n−2

p3n+1 = p3n + p3n−1

Adding these, we obtain

p3n+1 = (4n+ 2)p3n−2 + p3n−5

and similarly, we obtain

q3n+1 = (4n+ 2)q3n−2 + q3n−5.

It now follows from the recurrence for rn, sn and the inductive hypothesis that p3n+1 =
rn + sn and q3n+1 = rn − sn for n = 0, 1, 2, · · · �

It is possible to determine the continued fraction expression of e2/y for all y ∈ N in

this way. Notice that if
pn
qn

are the convergents to e then

q3m−1 ≥
m∏
j=1

(2j) = 2mm! ≥
(

2m

e

)m
.
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By proposition 0.19,

∣∣∣∣e− pn
qn

∣∣∣∣ > 1

(qn+1 + 2)q2
n

. If n + 1 = 3m − 1 for some m ∈ N

then an+1 = 2m = 2
n+ 2

3
and otherwise an+1 = 1. Thus an+2 + 2 ≤ 4n. But

qn > q3bn/3c−1 ≥
(

2bn/3c
e

)bn/3c
.

For n ≥ 3, bn/3c ≥ n/6 so for n ≥ 3, we have qn ≥
( n

3e

)n/6
. Thus there is a positive

real number c such that for n ≥ 4, we have

4n < c
log qn

log log qn
.

Therefore for n ≥ 4, we have ∣∣∣∣e− pn
qn

∣∣∣∣ > 1

c log qn
log log qn

q2
n

.

Recall that if p/q is a rational with

∣∣∣∣e− p

q

∣∣∣∣ < 1

2q2
, then p/q is a convergent to e.

Therefore there is a positive number c1 such that if q > 4 then∣∣∣∣e− p

q

∣∣∣∣ > c1 log log q

(log q)q2
.

Notice that e cannot be as well approximated by rationals as a typical real number
since for almost all reals α the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

q2 log q log log q

has infinitely many solutions in rationals p/q.

The continued fraction expansion for π is π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, · · · ]. No
patter has been discerned to date.

Mahler in 1953 proved that there exists c > 0 such that

∣∣∣∣π − p

q

∣∣∣∣ > c

q42
. In 1993

Hata proved

∣∣∣∣π − p

q

∣∣∣∣ > 1

q8.017
for all sufficiently large q. Salikhov proved that∣∣∣∣π − p

q

∣∣∣∣ > 1

q7.6065··· .

General question: How do we expect the qn’s to grow and how do we expect the
partial quotients to be distributed for a typical real number?

Observe that q0 = 1, q1 = a1 and qn = anqn−1 + qn−2. Note that qn ≥ un where
u0 = 0, u1 = 1 and un = un−1 + un−2 for n ≥ 2. Here un = Fn is the nth Fibonacci
number and

un =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.



24 PURE MATH 944 - DIOPHANTINE APPROXIMATION

Thus qn ≥
1

2
√

5

(
1 +
√

5

2

)n

.

Theorem 0.28. There exists a positive number c such that for all α except a set of
Lebesgue measure zero, such that qn = qn(α) < ecn for all n sufficiently large with
respect to α.

Proof. (Khintchine) Clearly we may restrict to α in (0, 1), since a countable union of
sets of measure 0 remains measure 0. Let g ≥ 1 be a real number and n ∈ N. We
define En(g) to be the set of α ∈ (0, 1) for which a1 · · · an ≥ g.

Let (a1, · · · , an) be a sequence of positive integers. We now determine the mea-
sure of the set of α’s in (0, 1) whose first n partial quotients are a1, · · · , an. That is,
α = [0, a1, · · · , an, αn+1].

We have α =
pnαn+1 + pn−1

qnαn+1 + qn−1

with αn+1 ∈ [1,∞). Therefore α is in an interval

with endpoints
pn
qn
,
pn + pn−1

qn + qn−1

. To see this note that∣∣∣∣α− pn
qn

∣∣∣∣ =

∣∣∣∣pnαn+1 + pn−1

qnαn+1 + qn−1

− pn
qn

∣∣∣∣ =
1

qn(qnαn+1 + qn−1)
,

which is a monotone function of αn+1.

The length of the interval is
1

qn(qn + qn−1)
<

1

q2
n

and since qn > anqn−1 we see that

the length is less than
1

(a1 · · · an)2
.

Recall that En(g) is the set of α in (0, 1) for which a1 · · · an ≥ g. Thus, µ(En(g)) <∑
a1···an≥g

1

(a1 · · · an)2
. Note that

n∏
i=1

1

a2
i

=
n∏
i=1

(
ai + 1

ai

)
1

ai(ai + 1)
≤ 2n

n∏
i=1

1

ai(ai + 1)
.

But
n∏
i=1

1

ai(ai + 1)
=

n∏
i=1

∫ ai+1

ai

dxi
x2
i

=

∫ a1+1

a1

· · ·
∫ an+1

an

dx1 · · · dxn
x2

1 · · ·x2
n

.

Put Jn(g) =

∫
R

dx1 · · · dxn
x2

1 · · ·x2
n

where R is the region of (x1, · · · , xn) ∈ Rn with xi ≥ 1 for

i = 1, 2, · · · , n and x1 · · ·xn ≥ g. We see that µ(En(g)) ≤ 2nJn(g) and so it remains
to estimate Jn(g).

If g ≤ 1, then Jn(g) =

(∫ ∞
1

dx

dx2

)n
= −1.
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We will prove for g > 1 that

Jn(g) =
1

g

n−1∑
i=0

(log g)i

i!
.

We will do this by induction on n. For n = 1 we have J1(g) =

∫ ∞
g

dx1

x2
1

=
1

g
, as

required. Let us assume that the result holds for n = k, for some k ≥ 1. Then

Jk+1(g) =

∫ ∞
1

dxk+1

x2
k+1

Jk

(
g

xk

)
.

Apply the change of variable u =
g

xk+1

so du =
−gdxk+1

x2
k+1

, hence

Jk+1(g) =

∫ 0

g

−1

g
Jk(u)du

=

∫ g

0

1

g
Jk(u)du

=
1

g

∫ 1

0

Jk(u)du+
1

g

∫ g

1

Jk(u)du

=
1

g
+

1

g

∫ g

1

1

u

(
k−1∑
i=0

(log u)i

i!

)
du

=
1

g
+

1

g

k−1∑
i=0

(log u)i+1

(i+ 1)!
|g1

=
1

g
+

1

g

k−1∑
i=0

(log g)i+1

(i+ 1)!

=
1

g

k∑
i=0

(log g)i

i!
,

as desired.

We see that µ(En(g)) ≤ 2nJn(g) = 2n
1

g

n−1∑
i=0

(log g)i

i!
. Now take g = eAn for a pos-

itive real number A ≥ 1. Then

µ(En(g)) ≤ 2n
1

g

n∑
i=0

(An)i

i!

≤ 2nAn
1

eAn

n∑
i=0

ni

i!

≤ e−An2nAnen

= exp((log 2 + logA+ 1− A)n).
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Choose A so that log 2 + logA+ 1−A < 0. Then
∞∑
n=0

µ(En(eAn)) converges. By the

Borel-Cantelli Lemma, we see that almost all α’s in the sense of Lebesgue measure will
belong to only finitely many of the En(eAn)’s. Thus for almost all α, a1 · · · an < eAn

for n sufficiently large in terms of α.

But qn = anqn−1 + qn−2, hence qn ≤ 2anqn−1 and so qn ≤ 2na1 · · · an. Therefore
qn ≤ 2neAn = e(log 2+A)n. �

In 1935 Paul Lévy proved by probabilistic arguments that q
1/n
n → exp(π2/(12 log 2))

for almost all real numbers α. To prove results of thsi sort we will use ergodic theory.

Consider a probability space (Ω,Σ,P) consisting of a set Ω, a σ-algebra Σ on Ω,
and P a probability measure on Σ (so that P(Ω) = 1). We say that T : Ω → Ω is a
measure preserving transformation on (Ω,Σ,P) if for B ∈ Σ we have T−1B ∈ Σ and
P(T−1(B)) = P(B). Let L1 be the measureable functions of f from Ω to Ω which are
integrable. Then if T is measure preserving and f ∈ L1, we have∫

Ω

fdP =

∫
Ω

(f ◦ T )dP.

Definition 0.29. Let T be a measure preserving transformation in a probability
space (Ω,Σ,P). Then T is said to be ergodic if whenever B ∈ Σ and T−1B ⊂ B, we
have µ(B) ∈ {0, 1}.

Theorem 0.30. (Ergodic Theorem) Suppose f ∈ L1 and T is ergodic. Then

lim
n→∞

1

n

n−1∑
j=0

f(T jα) =

∫
Ω

fdP

for almost all α ∈ Ω with respect to P.

Let X = (0, 1) ⊂ R and B the Borel σ-algebra on (0, 1), and µ = P the Lebesgue

measure of (0, 1). Let T : X → X be defined by T (x) =
1

x
−
⌊

1

x

⌋
. T is not measure

preserving with respect to Lebesgue measure, but we can modify µ to give us µ1,
where for all f ∈ L1 we have

µ1(f) =
1

log 2

∫ 1

0

f(x)

1 + x
dx.

Note that µ1 is still a probability measure.

We claim that T is measure preserving with respect to µ1. It suffices to check that T
is measure preserving on any interval (a, b) with (a, b) ⊂ (0, 1).

We have T−1((a, b)) =
∞⋃
n=1

(
1

b+ n
,

1

a+ n

)
. Since if a ≤ 1

x
−
⌊

1

x

⌋
≤ b, then

1

x
= n+θ

for some n ∈ N with a ≤ θ ≤ b. Certainly
∞⋃
n=1

(
1

b+ n
,

1

a+ n

)
is measureable, and
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since the intervals are disjoint, we have

µ1

(
∞⋃
n=1

(
1

b+ n
,

1

a+ n

))
=
∞∑
n=1

µ1

((
1

b+ n
,

1

a+ n

))

=
∞∑
n=1

1

log 2

∫ 1
a+n

1
b+n

dx

1 + x

=
∞∑
n=1

1

log 2
log(1 + x)|1/(a+n)

1/(b+n)

=
1

log 2

∞∑
n=1

(
log

(
1 +

1

a+ n

)
− log

(
1 +

1

b+ n

))

=
1

log 2

∞∑
n=1

[
log

(
a+ n+ 1

a+ n

)
− log

(
b+ n+ 1

b+ n

)]
.

Note that
N∑
n=1

[
log

(
a+ n+ 1

b+ n+ 1

)
− log

(
a+ n

b+ n

)]
= log

(
a+N + 1

b+N + 1

)
− log

(
a+ 1

b+ 1

)
= log

(
b+ 1

a+ 1

)
− log

(
b+N + 1

a+N + 1

)
→ log

(
b+ 1

a+ 1

)
as N →∞. Hence

µ1(T−1((a, b))) =
1

log 2
log

(
b+ 1

a+ 1

)
= µ1((a, b)),

so T is a measure preserving transformation with respect to µ1.

This invariant measure for the transformation T was discovered by Gauss in 1812.

Given α ∈ R, recall that αn = an +
1

αn+1

for n = 0, 1, 2, · · · or αn − an =
1

αn+1

.

This is equivalent to

(
1

αn

)−1

−
(

1

an

)−1

=
1

αn+1

. Note that αn ≥ 1 for n ≥ 1.

Therefore we have that

T

(
1

αn

)
= αn − bαnc

= α + n− an

=
1

αn+1

.

It can be proved that T is ergodic with respect to µ1. We can take f to be the

characteristic function of

(
1

k + 1
,

1

k

)
for k ∈ N and apply the ergodic theorem to
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conclude that for almost all α in the sense of the measure µ1 and hence in the sense
of Lebesgue measure,

lim
n→∞

∞∑
j=0

f(T jα) =
1

log 2

∫
X

fdµ1

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x

=
1

log 2
log(1 + x)|1/k1/(k+1)

=
1

log 2
log

(
(k + 1)2

k(k + 2)

)
Therefore for almost all real numbers α, in the sense of Lebesgue measure, the fre-
quency with which k appears as a partial quotient in the continued fraction expan-

sion of α is
1

log 2
log

(
(k + 1)2

k(k + 2)

)
. Gauss had conjectured this and it was proved by

Kuzman in the 1920s. Thus the expected frequency of 1’s is 0.41503 · · · , of 2’s is
0.169925 · · · , etc.

Observe that if α = α0 ∈ (0, 1), then T n(α) = 1/αn+1 for n = 0, 1, · · · . Further,
an = bαnc. Thus

(a1 · · · an)1/n = (bT 0(α)−1c · · · bT n−1(α)−1c)1/n

and so
1

n

∞∑
i=1

log ai =
1

n

∞∑
i=0

log

⌊
1

T i(α)

⌋
.

We now take f(x) = log

⌊
1

x

⌋
and apply the ergodic theorem to deduce that for almost

all α ∈ (0, 1), in the sense of Lebesgue measure, that

lim
n→∞

1

n

n∑
i=1

log ai =

∫ 1

0

1

log 2

logb1/xc
1 + x

dx

=
1

log 2

∞∑
n=1

log n

∫ 1/n

1/(n+1)

dx

1 + x

=
1

log 2

∞∑
n=1

(log n) log

(
1 + 1/n

1 + 1/(n+ 1)

)

=
1

log 2

∞∑
n=2

log n log

(
(n+ 1)2

n(n+ 2)

)
Equivalently, we have

(a1 · · · an)1/n →
∞∏
n=2

(
(n+ 1)2

n(n+ 2)

) logn
log 2
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for almost all α in the sense of Lebesgue measure.

We will deduce the Khintchine-Lévy result about the growth of qn for almost all
α. First we observe that if [0, a1, a2, · · · ] = pn/qn, then

(0.5) qn = [a1, · · · , an][a2, · · · , an] · · · [an]

since if [aj, · · · , an] =
x

b
then [aj+1, · · · , an] =

b

c
and so we get equation (0.5) by a

telescoping product with first term
qn
pn

and last term an/1.

As an aside, note that [aj, · · · , a1] = qj/qj−1 so qn = [an, · · · , a1] · · · [a1].

We will first show that if the first n + 1 partial quotients of α are [0, a1, · · · , an]

then | log(T i(α)) − log(T i(pn/qn))| < 2
−1
2

(n−1−i)+1. We do this by induction on n. It

suffices to prove this for i = 0. Since α is in an interval with end points
pn
qn

and

pn + pn−1

qn + qn−1

, we have

∣∣∣∣log

(
α

pn/qn

)∣∣∣∣ ≤
∣∣∣∣∣log

(
pn+pn−1

qn+qn−1

pn/qn

)∣∣∣∣∣ =

∣∣∣∣log

(
qn(pn + pn−1)

pn(qn + qn−1)

)∣∣∣∣ .
But ∣∣∣∣qn(pn + pn−1)

pn(qn + qn−1)
− pn(qn + qn−1)

pn(qn + qn−1)

∣∣∣∣ =

∣∣∣∣qnpn−1 − pnqn−1

pn(qn + qn−1)

∣∣∣∣ =
1

pn(qn + qn−1)
.

Thus log

(
α

pn/qn

)
= log(1 + t), with |t| ≤ 1

pn(qn + qn−1)
. Now | log(1− x)| < 2x for

0 < x ≤ 1/2 and | log(1+x)| < x for the same range. Therefore

∣∣∣∣logα− log

(
pn
qn

)∣∣∣∣ <
2

pn(qn + qn−1)
for n = 1, 2, · · · , and since qn ≥ 2

1
2

(n−1), so∣∣∣∣logα− log

(
pn
qn

)∣∣∣∣ < 2

2
1
2

(n−1)
,

for n = 1, 2, · · · . Therefore∣∣∣∣∣
n−1∑
i=0

(
log(T i(α))− log

(
T i
(
pn
qn

)))∣∣∣∣∣ <
n−1∑
i=0

2
−1
2

(n−1−i)+1

< 2
∞∑
j=0

(
1√
2

)j
= 2

1

1− 1/
√

2

=
2
√

2√
2− 1

< 7.
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Since − log qn =
n−1∑
i=0

log

(
T i
(
pn
qn

))
we have

∣∣∣∣∣
n∑
i=0

log
(
T i(α)

)
+ log qn

∣∣∣∣∣ < 7.

Hence, we have ∣∣∣∣∣ 1n
n∑
i=0

log(T i(α))−1 − log qn

∣∣∣∣∣ < 7

n
.

Therefore for all irrational α we have

lim
n→∞

1

n

(
n−1∑
i=0

log(T i(α))−1 − log qn

)
= 0.

Thus by the ergodic theorem, with f(x) = log(1/x), we find that for almost all α, in
the sense of Lebesgue measure, we have

lim
n→∞

log qn
n

= lim
n→∞

1

n

n−1∑
i=0

log(T i(α))−1 =
1

log 2

∫ 1

0

log(1/x)

1 + x
dx.

Or equivalently,

lim
n→∞

q1/n
n = exp

(
1

log 2

∫ 1

0

log(1/x)

1 + x
dx

)
.

It remains to show that

∫ 1

0

log(1/x)dx

1 + x
=
π2

12
.

Let f(x) = log x and g(x) = log(1 + x). Then

∫ 1

0

(
log(x+ 1)

x
+

log x

1 + x

)
dx = log(x) log(x+ 1)|10.

Since lim
x→0+

log(x) log(1 + x) = 0 and lim
x→1−

log(x) log(1 + x) = 0, we have

∫ 1

0

(
log(1 + x)

x
+

log x

1 + x

)
dx = 0.
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Hence ∫ 1

0

log(1/x)

1 + x
dx =

∫ 1

0

log(1 + x)

x
dx

=

∫ 1

0

−1

x

(
∞∑
n=1

(−1)nxn

n

)
dx

=
∞∑
n=1

∫ 1

0

xn−1(−1)n−1

n
dx

=
∞∑
n=1

xn(−1)n

n2

∣∣∣1
0

= 1− 1

4
+

1

9
− · · ·

=
π2

8
− π2

24
=
π2

12
,

as required.

Recall the Euclidean algorithm. Given positive integers u and v with v ≥ u we
compute the gcd of u, v by putting r0 = v, r1 = u and rm−1 = amrm + rm+1 for
m = 1, 2, · · · where ai’s are positive integers and r0 ≥ r1 > r2 > · · · rn+1 = 0. Thus
gcd(u, v) = rn.

Notice that if gcd(u, v) = 1 then
v

u
= [am, · · · , a1]. Thus the number of applica-

tions of the division algorithm in the Euclidean algorithm for u and v correspond to
the length of the continued fraction expression of v/u.

Given two positive numbers u and v with u ≤ v let L(u, v) be the number of steps
in the Euclidean algorithm to determine gcd(u, v). In 1970 J. Dixon proved that for
ε > 0 there exists c0(ε) > 0 such that∣∣∣∣L(u, v)− 12 log 2

π2
log v

∣∣∣∣ < (log v)
1
2

+ε

for all except at most x2 exp(−c0(log(x))ε/2) of the pairs (u, v) with 1 ≤ u ≤ v ≤ x.

Heilbronn had proved earlier that for each positive integer v > 10, we have

1

ϕ(v)

v∑
u=1

gcd(u,v)=1

L(u, v)− 12 log 2

π2
log v = O((log log v)4).

How well can we approximate real algebraic numbers of degree at least 3? The first
result of interest was proved by Liouville in 1844.

Theorem 0.31. (Liouville) Let α be an algebraic number of degree d with d > 1.
There exists a positive number c(α), which us effectively computable in terms of α,
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such that ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd
,

for every p/q with q > 0.

Proof. Let f be the minimal polynomial for α over Z. That is, f is the polynomial in
Z[x] of degree d, with coprime coefficients and positive leading coefficient which has
α as a root.

We may assume α is real since if α is not real we may take c(α) =
1

2
min
θ∈R
|α − θ|.

Since d > 1 we have f

(
p

q

)
6= 0. Thus by the mean value theorem, we get

1

qd
≤
∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣f(α)− f
(
p

q

)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ |f ′(θ)|
where θ is a real number between α and p/q. Note that if

∣∣∣∣α− p

q

∣∣∣∣ ≥ 1 the result

holds with c(α) = 1/2, and so we may suppose that

∣∣∣∣α− p

q

∣∣∣∣ < 1.

If f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 then f ′(x) = dadx
d−1 + · · ·+ a1 and so

|f ′(θ)| ≤ dad(|α|+ 1)d−1 + · · ·+ |a1|.
Here we can take c(α)−1 = 2(dad(|α|+ 1)d−1 + · · ·+ |a1|). �

Liouville constructed the first numbers known to be transcendental with his result.

Theorem 0.32. The number
∞∑
n=1

1

10n!
is transcendental.

Proof. Let α =
∞∑
n=1

1

10n!
and sN =

N∑
n=1

1

10n!
. Clearly, if sN = pN/qN for positive

integers pN , qN with gcd(pN , qN) = 1, then qN = 10N !. Thus we have∣∣∣∣α− pN
qN

∣∣∣∣ =
∞∑

n=N+1

1

10n!

<
1

10N(N !)

=
1

qNN

Which shows that the conditions of Liouville’s theorem do not hold, and hence α is
not algebraic. �

Let α be an algebraic number of degree d. The inequality

∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
has only

finitely many solutions in rationals p/q if µ > d (Liouville’s Theorem), if µ > d/2 + 1

(Thue), if µ > 2
√
d (Siegel), if µ >

√
2d (Dyson), and if µ > 2 (Roth).
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Theorem 0.33. (Roth’s Theorem) Let α be an algebraic number and let ε > 0 be a
positive real number. Then there exist only finitely many distinct rationals p/q with
q > 0 for which ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε
.

Remark 0.34. In light of Dirichlet’s Theorem, Roth’s Theorem is essentially best
possible. In view of Khintchine’s Theorem one might expect improvements of Roth’s

Theorem with
1

q2+ε
replaced by

1

q2(log q)1+ε
, but no progress has been made in this

direction.

Notice that Roth’s Theorem tells us that an+1 < qεn for n sufficiently large. Recall
that q0 = 1, q1 = a1, qn = anqn−1+qn−2 for n = 2, 3, · · · . Thys qn ≤ (an+1) · · · (a1+1),
whence

an+1 < ((a1 + 1) · · · (an + 1))δ

for n sufficiently large. It follows that log log qn < c(α)n where c(α) is a positive
number which depends on α. Davenport and Roth (1955) proved that for each real
algebraic number α there is a positive number c1(α), which depends on α, such that

log log qn < c1(α)
n√

log n
.

Perhaps the most important applications of Roth’s Theorem is to the study of Dio-
phantine equations. Let m ∈ N. Consider the Diophantine equation x3 − 2y3 = m,
in integers x, y. This equations implies that∣∣∣∣x3

y3
− 2

∣∣∣∣ =
m

y3

which by Roth’s Theorem can only be satisfied by at most finitely many pairs of x, y.

Let F (x, y) = anx
n + an−1x

n−1y + · · · + a0y
n ∈ Z[x, y]. Suppose that F is not the

zero-form. Then F factors over C in the form F (x, y) = L1(x, y)L2(x, y) · · ·Ln(x, y)
where Li(x, y) = γix + δiy for i = 1, 2, · · · , n. Suppose that the discriminant of F is
non-zero, or equivalently i 6= j implies that Li and Lj are linearly independent over C
so F does not have multiple factors. Let (x, y) be an integer point with F (x, y) 6= 0.
Then by re-ordering the forms we may suppose that

0 < |L1(x, y)| ≤ |L2(x, y)| ≤ · · · ≤ |Ln(x, y)|.

If γ1 = 0 or γ1 6= 0 and
δ1

γ1

∈ Q then |L1(x, y)| > c1 for some positive number c1. If

γ1 6= 0 and y = 0 then |L1(x, y)| = |γ1|(|x| + |y|). Finally if γ1 6= 0,
δ1

γ1

is irrational,

and y 6= 0 then L1(x, y) = γ1y

(
x

y
−
(
−δ1

γ1

))
. Therefore, by Roth’s Theorem, for

each ε > 0 there exists a positive number c2

(
ε,
−δ1

γ1

)
such that

|L1(x, y)| ≥ c2|y|−1−ε ≥ c2

(|x|+ |y|)1+ε
.
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Since L1 and L2 are linearly independent over C, we have

|L2(x, y)| ≥ 1

2
(|L2(x, y)|+ |L1(x, y)|) > c3(|x|+ |y|)

for some c3 > 0. Thus

|F (x, y)| > c2

(|x|+ |y|)1+ε
cn−1

3 (|x|+ |y|)n−1 = c2c
n−1
3 (|x|+ |y|)n−2−ε.

We conclude that if F (x, y) is a binary form of degree n with non-zero discrim-
inant, then for each ε > 0 there are only finitely many integers x, y for which
|F (x, y)| < (|x| + |y|)n−2−ε. In particular, if n ≥ 3 and m ∈ N then the equa-
tion F (x, y) = m has only finitely many solutions in integers x, y.

The equation F (x, y) = m is known as Thue equation.

Since the constant in Roth’s Theorem is not effectively computable, it is not pos-
sible to bound the size of the solutions in Thue equations. However, it is possible to
bound then number of solutions. The critical point in showing that F (x, y) = m has
only finitely many solutions is that one needs an improvement on Liouville’s Theorem.
If this can be accomplished effectively then one can ‘solve’ Thue equations. In fact,
there exist effective improvements on Liouville’s Theorem. They follow from Baker’s
estimates for linear forms in the logarithm of algebraic numbers.

We will follow Cassel’s version of Roth’s Theorem. Thue, Siegel, and Dyson proved
their results by examining polynomials in two variables. Roth used polynomials in
several variables.

First note that we may assume α is an algebraic integer for the proof of Roth’s
Theorem, for if α has minimal polynomial anx

n + · · · + a1x + a0 ∈ Z[x], then anα is
a root of

xn + an−1x
n−1 + anan−2x

n−2 + · · ·+ a1a
n−1
n x+ a0a

n−1
n .

anα is thus an algebraic integer. Suppose that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
<

1

q2+δ/2

for q sufficiently large. Thus we may suppose α is an algebraic integer.

Let α be an algebraic integer with minimal polynomial xn + an−1x
n−1 + · · · + a0.

We denote the height of α by h = max{1, |an−1|, · · · , |a0|}. For the proof we will
employ polynomials of the form

R(x1, · · · , xm) =
∑

0≤ji≤ri
1≤i≤m

c(j1, · · · , jm)xj11 · · · xjmm ,

where c(j1, · · · , jm) ∈ R for all (j1, · · · , jm).
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We define R by R = max
0≤ji≤ri
1≤i≤m

|c(j1, · · · , jm)| and we define

Ri1,··· ,im(x1, · · · , xm) =
1

i1!
· · · 1

im!

∂i1

∂xi11
· · · ∂

im

∂ximm
R(x1, · · · , xm).

Proposition 0.35. If R has integer coefficients then Ri1,··· ,im has integer coefficients
for any non-negative integers i1, · · · , im. If R has degree ru in variable xu for u =
1, 2, · · · ,m then Ri1,··· ,im has degree ru − iu for u = 1, 2, · · · ,m. Further, we have

Ri1,··· ,iu ≤ 2r1+···+rmR.

Proof. Since

Ri1,··· ,im =
∑

iu≤ju≤ru

(
j1

i1

)
· · ·
(
jm
im

)
c(j1, · · · , jm)xj1−i11 · · · xjm−imm ,

the result follows on noting that

(
j1

i1

)
· · ·
(
jm
im

)
≤ 2j1+···+jm ≤ 2r1+···+rm . �

By Taylor’s Theorem in several variables, we have

(0.6) R(x1 + y1, · · · , xm + ym) =
∑

0≤iu≤ru

yi11 · · · yimm Ri1,··· ,im(x1, · · · , xm)

We shall say that R has index I at (α1, · · · , αm) with respect to (s1, · · · , sm), where

(α1, · · · , αm) ∈ Rm and s1, · · · , sm ∈ N, if I is the least value of the sum
m∑
u=1

iu
su

for

which Ri1,··· ,im(α1, · · · , αm) does not vanish. Note by equation (0.6) I exists provided
that R is not identically zero. If R ≡ 0, we put I =∞.

Proposition 0.36. Let ind denote the index of R at (α1, · · · , αm) with respect to
(s1, · · · , sm). Then

(i) indRi1,··· ,im ≥ indR−
m∑
u=1

iu
su

,

(ii) ind(R(1) +R(2)) ≥ min{indR(1), indR(2)}, and

(iii) ind(R(1)R(2)) = indR(1) + indR(2).

Proof. (i) is immediate and for (ii) and (iii) put s = s1 · · · sm and I = indR. Then by
(i) tsI is the least power of t occurring in R(x1 + ts/s1y1, · · · , xm + ts/smym) considered
as a polynomial in the variable t. �

Proposition 0.37. (Siegel’s Lemma) Let N and M be positive integers with N > M .
Let aj,k ∈ Z for 1 ≤ j ≤ M, 1 ≤ k ≤ N with |aj,k| ≤ A, and A ≥ 1. Consider the

system of linear equations Lj(x1, · · · , xN) =
N∑
k=1

aj,kxk = 0, for j = 1, 2, · · · ,M .

There exists a solution in integers x1, · · · , xN , not all zero, with

max
1≤i≤N

|xi| ≤
⌊
(NA)

N
N−M

⌋
.
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Proof. Put X =
⌊
(NA)

M
N−M

⌋
. Then NA < (X + 1)

N−M
M , hence

NAX ≤ (NA)(X + 1) < (X + 1)
N
M .

Notice that for any (z1, · · · , zN) ∈ ZN with 0 ≤ zi ≤ X, i = 1, 2, · · · , N we have

−BjX ≤ Lj(z1, · · · , zm) ≤ CjX

where −Bj is the sum of the negative coefficients of Lj and Cj is the sum of positive
coefficients of Lj. Note that Bj+Cj ≤ NA for j = 1, 2, · · · ,M . Thus Lj((z1, · · · , zm))
takes on at most NAX + 1 different values.

Notice that there are (X+1)N different values of (z1, · · · , zm) but at most (NAX+1)M

different values of (L1((z1, · · · , zN)), · · · , LM((z1, · · · , zN))). Since (NAX + 1)M <
(X + 1)N we see that there exist two distinct vectors z1, z2 for which

(L1(z1), · · · , LM(z1)) = (L1(z2), · · · , LM(z2)).

Hence if we put x = z1 − z2, we obtain

(L1(x), · · · , LM(x)) = (0, · · · , 0)

and the result follows since max
i
|xi| ≤ X. �

Proposition 0.38. For each integer l ≥ 0, there are rational integers a
(l)
j with 0 ≤

j ≤ n such that

αl = a
(l)
n−1α

n−1 + · · ·+ a
(l)
0

with |a(l)
j | ≤ (a+ 1)l.

Proof. This is immediate from the fact that αn−1, · · · , α, 1 form a basis of Q(α) as a
vector space over Q. �

Proposition 0.39. For any positive integers r1, · · · , rm and real number λ the number

of m-tuples of non-negative integers i1, · · · , im such that
m∑
u=1

iu
ru
≤ 1

2
(m − λ) with

0 ≤ iu ≤ ru, u = 1, 2, · · · ,m is at most (2m)1/2λ−1(r1 + 1) · · · (rm + 1).

Proof. Proof is by induction on m. Note that for m = 1 the result is immediate since
the number of solutions is at most r+ 1 and is at most 0 if λ > 1. Assume the result
for m− 1. Then for fixed r = rm and i = im the number of (m− 1)-tuples of integers
satisfying

m−1∑
u=1

iu
ru

+
i

r
≤ 1

2
(m− λ)
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is the same as the number of (m − 1)-tuples satisfying
m−1∑
u=1

iu
ru
≤ 1

2

(
m− λ− 2i

r

)
,

which is bounded above by (2(m− 1))1/2 1(
λ+ 2i

r
− 1
)(r1 + 1) · · · (rm−1 + 1). But

r∑
i=0

2

λ− 1 + 2i
r

=
r∑
i=0

(
1

λ− 1 + 2i
r

+
1

λ+ 1− 2i
r

)

=
r∑
i=0

(
λ+ 1− 2i

r
+ λ− 1 + 2i

r

λ2 − (1− 2i/r)2

)

=
r∑
i=0

2λ

λ2 − (1− 2i/r)2

≤ 2(r + 1)
λ

λ2 − r
.

Therefore the total number of m-tuples is at most

(0.7) (2(m− 1))1/2 λ

λ2 − 1
(r1 + 1) · · · (rm−1 + 1)(r + 1)

If λ ≤ (2m)1/2, then this bound is subsumed by the trivial bound (r1 +1) · · · (rm+1).
Thus assume λ > (2m)1/2. We then obtain

λ2 − 1 > λ2

(
1− 1

2m

)
> λ2

(
1− 1

m

)1/2

and the result follows from (0.7). �

Theorem 0.40. Let 0 < ε < 1 and let α be an algebraic integer of degree n, with min-
imal polynomial f(x) = xn +an−1x

n−1 + · · ·+a0 and put a = max(1, |an−1|, · · · , |a0|).
Let m be an integer with m > 8n2ε−2, and let r1, · · · , rm be positive integers. There
exists a polynomial R(x1, · · · , xm) with integer coefficients and degree at most ru in
xu for u = 1, 2, · · · ,m which

(i) does not vanish identically,

(ii) has index at least
1

2
m(1− ε) at (α, · · · , α) ∈ Rm,

(iii) R ≤ 4(a+ 1)r1+···+rm.

Proof. We write

R(x1, · · · , xm) =
∑

0≤ju≤ru
1≤u≤m

c(j1, · · · , jm)xj11 · · ·xjmm ,

where c(j1, · · · , jm) are (r1 + 1) · · · (rm + 1) integers to be determined. Put N =
(r1 + 1) · · · (rm + 1). We want

(0.8) Ri1,··· ,im(α, · · · , α) = 0
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for all non-negative integers i1, · · · , im for which
m∑
u=1

iu
ru
≤ 1

2
(m − ε). Plainly (0.8)

holds if iu > ru for some u with 1 ≤ u ≤ m. In (0.8) we express the powers of
α as integer linear combinations of 1, α, · · · , αn−1 using proposition 0.38. Then we
find that solving (0.8) is the same as solving n-linear equations in the coefficients
c(j1, · · · , jm). Since

Ri1,··· ,im(α, · · · , α) =
∑

iu≤ju≤ru
1≤u≤m

(
j1

i1

)
· · ·
(
jm
im

)
c(j1, · · · , jm)αj1−i1 · · ·αjm−im ,

it follows that Ri1,··· ,im(α, · · · , α) = 0 is equivalent to the system of equations∑
iu≤ju≤ru
1≤u≤m

(
j1

i1

)
· · ·
(
jm
im

)
a

(j1−i1+···+jm−im)
k c(j1, · · · , jm) = 0

for k = 0, · · · , n − 1. Since

(
ju
iu

)
≤ 2ju ≤ 2ru for u = 1, 2, · · · ,m and since

(j1 − i1) + · · · + (jm − im) ≤ r1 + · · · + rm, by proposition 0.38 the coefficients
are at most (2(a+ 1))r1+···+rm in absolute value.

Now take λ = mε in proposition 0.39. The number of m-tuples of non-negative
integers is at most (2m)1/2(mε)−1(r1 + 1) · · · (rm + 1), hence the number of linear
equations with integer coefficients satisfied by the c(j1, · · · , jm)’s is at most

M ≤ n(2m)1/2(mε)−1N ≤ N/2,

since m > 8n2ε−2. Thus, by Siegel’s Lemma, there exist integers c(j1, · · · , jm), not all

zero, such that (0.8) holds for all non-negative integers i1, · · · , im for which
m∑
u=1

iu
ru
≤

1

2
m(1− ε) and A = (2(a+ 1))r1+···+rm with

max |c(j1, · · · , jm)| ≤ (NA)
M

N−M

≤ NA

≤ (r1 + 1) · · · (rm + 1)(2(a+ 1))r1+···+rm

≤ (4(a+ 1))r1+···+rm .

�

Theorem 0.41. Let 0 < δ < 1/12, 0 < ε < δ/20 be positive real numbers. Sup-

pose that pu/qu ∈ Q, u = 1, 2, · · · ,m are such that

∣∣∣∣α− pu
qu

∣∣∣∣ < 1

q2+δ
u

and qεu >

64(a+ 1) max(1, |α|) for u = 1, 2, · · · ,m. Let r1, · · · , rm ∈ N be such that r1 log q1 ≤
ru log qu ≤ (1 + ε)r1 log q1 for u = 1, 2, · · · ,m. Then the index of the polynomial R

constructed in Theorem 0.40 at

(
p1

q1

, · · · , pm
qm

)
with respect to (r1, · · · , rm) is at least

δm

8
.
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Proof. Let k1, · · · , km be non-negative integers for which

m∑
u=1

ku
ru

<
δm

8
.

Put T (x1, · · · , xm) = Rk1,··· ,km(x1, · · · , xm). We must show that T

(
p1

q1

, · · · , pm
qm

)
=

0. By Theorem 0.40 and proposition 0.35 we see that T has integer coefficients and
T ≤ (8(a + 1))r1+···+rm . Since T has degree at most ru in xu for u = 1, 2, · · · ,m, T
has at most (r1 + 1) · · · (rm + 1) terms and hence at most 2r1+···+rm terms. Thus for
any non-negative integers i1, · · · , im we have, by proposition 0.35,

|Ti1,··· ,im(α, · · · , α)| ≤ (2 · 2 · (8(a+ 1)) max(1, |α|))r1+···+rm

so that

(0.9) |Ti1,··· ,im(α, · · · , α)| ≤ (32(a+ 1) max(1, |α|))r1+···+rm .

By theorem 0.40 the index of R at (α, · · · , α) with respect to (r1, · · · , rm) is at least
1

2
m(1 − ε). By proposition 0.36 (ii), the index of T at (α, · · · , α) with respect to

(r1, · · · , rm) is at least

1

2
m(1− ε)−

m∑
u=1

ku
qu
≥ 1

2
m(1− ε)− δm

8

=
1

2
m

(
1− ε− δ

4

)
.

Since 0 < ε < δ/20 the index is at least
1

2
m

(
1− δ

3

)
. Put βu =

pu
qu
− α for u =

1, 2, · · · ,m. By Taylor’s Theorem, we have

(0.10) T

(
p1

q1

, · · · , pm
qm

)
=

∑
0≤iu≤ru
1≤u≤m

Ti1,··· .im(α, · · · , α)βi11 · · · βimm .
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But Ti1,··· ,im(α, · · · , α) = 0 unless
m∑
u=1

iu
ru

>
1

2
m

(
1− δ

3

)
. For such i1, · · · , im we

have, since |βu| <
1

q2+δ
u

for u = 1, 2, · · · ,m and

− log |βi11 · · · βimm | ≥ (2 + δ)
m∑
u=1

iu log qu

= (2 + δ)
m∑
u=1

iu
ru

(ru log qu)

≥ (2 + δ)r1 log q1

m∑
u=1

iu
ru

> (2 + δ)r1 log q1

(
1

2

(
m− δ

3

))
≥
(

1 +
δ

2

)(
1− δ

3

) m∑
u=1

ru log qu

(
1

1 + ε

)
.

Remark 0.42. The coefficient 1/2 in
1

2
m

(
1− δ

3

)
is the exponent 2 in Roth’s The-

orem.

Observe that

(
1 +

δ

2

)(
1− δ

3

)
=

(
1 +

δ

6
− δ2

6

)
and that 0 < δ < 1/12, so(

1 +
δ

2

)(
1− δ

3

)
> 1 +

δ

8
. Since 0 < ε < δ/20 we have

(
1 +

δ

8

)
> (1 + ε)2. Thus

|βi11 · · · βimm | < (qr1 · · · qrmm )−1−ε .

There are at most (r1 + 1) · · · (rm + 1) ≤ 2r1+···+rm terms in the sum (0.10). Thus by
(0.9), we have∣∣∣∣qr11 · · · qrmm T

(
p1

q1

, · · · , pm
qm

)∣∣∣∣ < 2r1+···+rm(32(a+ 1) max(1, |α|))r1+···+rm (qr11 · · · qrmm )−ε

< 2r1+···+rm
(
2−(r1+···+rm)

)
< 1

by the choice of the qu’s.

Since

∣∣∣∣qr11 · · · qrmm T

(
p1

q1

, · · · , pm
qm

)∣∣∣∣ is an integer less than 1, it must be zero, so we

are done. �

We must now extract a contradiction. To this end we introduce Wronskians. Let

∆ denote an operator of the form
∂i1

∂xi1
· · · ∂

im

∂xim
. We say that i1 + · · ·+ im is the order

of ∆.

If ∆1, · · · ,∆h have orders at most 0, 1, · · · , h − 1 respectively and ϕ1, · · · , ϕh are
functions of x1, · · · , xm we call det(∆iϕj)1≤i,j≤h a (generalized) Wronskian.
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If m = 1 then there is only one ∆ of order i, given by
di−1

dxi−1
1

. As a consequence

the only Wronskian that don’t vanish identically are of the form det
(
di−1

dxi−1
1

ϕj

)
Proposition 0.43. Let ϕ1, · · · , ϕh be rational functions (quotients of polynomials)
of variables x1, · · · , xm with coefficients in Q. Suppose that the only rational numbers
c1, · · · , ch with c1ϕ1 + · · · + chϕh = 0 are c1 = · · · = ch = 0. Then some Wronskian
det(∆iϕj) does not vanish.

Remark 0.44. If there is a non-trivial linear combination among the qi’s then all of
the Wronskians vanish.

Proof. We shall prove the result by induction on h. When h = 1 the only Wronskian
is ϕ1 itself, and by assumption ϕ1 is not identically 0.

Suppose that the result holds for h − 1. Note that ϕ1 is not identically 0. We
put ϕ∗j = ϕ−1

1 ϕj for j = 1, 2, · · · , h. By the rule for differentiating products we
can express a Wronskian of ϕ∗1, · · · , ϕ∗h as a sum of Wronskians of ϕ1, · · · , ϕh each
multiplied by rational functions of ϕ1. It now suffices to look for a non-vanishing
Wronskian of ϕ∗1, · · · , ϕ∗h. Notice that any non-trivial linear relation over Q between
ϕ∗1, · · · , ϕ∗h gives us such a relation for ϕ1, · · · , ϕh. Thus, without loss of generality
we may suppose that ϕ1 ≡ 1.

If ϕh is a constant, say c, then cϕ1 − ϕh = 0, contradicting ϕ1, · · · , ϕh being linearly

independent over Q. Therefore there is some variable, say x1, for which
∂ϕh
∂x1

6= 0.

Suppose there is a non-trivial rational linear combination of ϕ2, · · · , ϕh which is in-
dependent of x1, say c2ϕ2 + · · ·+ chϕh. Then one of c2, · · · , ch−1 is non-zero and there
is no loss of generality in assuming c2 6= 0, and indeed we may take c2 = 1.

Thus
∂

∂x1

(c2ϕ2+· · ·+chϕh) = 0. Observe that if we replace ϕ2 by ϕ2+c3ϕ3+· · ·+chϕh

we don’t change the Wronskians. By doing so we may suppose that
∂ϕ2

∂x1

= 0. We

can repeat this argument and in this way we find an integer k with 1 ≤ k < h for
which

∂ϕ1

∂x1

=
∂ϕ2

∂x1

= · · · = ∂ϕk
∂x1

and for which there is no non-trivial linear combination of ϕk+1, · · · , ϕh over Q which
is independent of x1, or equivalently there is no non-trivial rational linear combina-

tion of
∂ϕk+1

∂x1

, · · · , ∂ϕh
∂x1

.

By the inductive hypothesis there exist operators ∆̃1, · · · , ∆̃k of orders at most
0, 1, · · · , k − 1 respectively such that

W1 = det(∆̃iϕj)1≤i,j≤k 6= 0.
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Further, since there are no non-trivial linear relations over Q between
∂ϕk+1

∂x1

, · · · , ∂ϕh
∂x1

there are operators ∆̃k+1, · · · , ∆̃h of orders at most 0, 1, · · · , h−(k+1)−1 respectively
for which

W2 = det

(
∆̃i
∂ϕj
∂x1

)
k+1≤i,j≤h

6= 0

Put ∆i = ∆̃i for i = 1, 2, · · · , k and ∆i = ∆̃i
∂
∂x1

for i = k + 1, · · · , h. Notice that
∆i is an operator of order at most i − 1 for i = 1, 2, · · · , h. Then the Wronskian W
given by

W = det (∆iϕj)1≤i,j≤h

is non-zero since
∂ϕ1

∂x1

= · · · = ∂ϕk
∂x1

= 0 and so we have W = W1W2 6= 0. �

Theorem 0.45. Put w = w(m, ε) = 24 ·2−m
( ε

12

)2m−1

, for m ∈ N and 0 < ε < 1/12.

Let r1, · · · , rm be positive integers for which wru ≥ ru+1 for u = 1, 2, · · · ,m− 1, and
let qu > 0 and pu be co-prime integers such that qruu ≥ qr11 for u = 1, 2, · · · ,m and
qwu ≥ 23m for u = 1, · · · ,m.

Suppose that S(x1, · · · , xm) is a polynomial of degree at most ru in xu, for u =
1, · · · ,m, with integer coefficients and S ≤ qwr11 . If S does not vanish identically,

then S has index at most ε at the point

(
p1

q1

, · · · , pm
qm

)
with respect to (r1, · · · , rm).

Remark 0.46. Some condition on the ri’s is necessary since for example S(x1, x2) =
(x1 − x2)r has index 1 at any point (p/q, p/q) with respect to (r, r).

Proof. The proof proceeds by induction on m. We first prove the result when m = 1.

Suppose that S

(
p1

q1

)
= S ′

(
p1

q1

)
= · · · = S(t−1)

(
p1

q1

)
and S(t)

(
p1

q1

)
6= 0. Here we

suppose that p1, q1 are coprime integers with q1 > 0. Then S(x) =

(
x− p1

q1

)t
T (x)

for some T ∈ Q[x].

We have S(x) = (q1x − p1)t(q−t1 T (x)), since S has integer coefficients, by Gauss’s

Lemma, we have
1

qt1
T (x) ∈ Z[x]. Therefore qt1 ≤ S ≤ qwr11 and hence t ≤ wr1. For

m = 1, w = w(m, ε) = 24 · 2−1(ε/12) = ε. Equivalently, t1/r1 ≤ ε as required.

We shall now suppose that the result holds for 1 ≤ t < m. We can write S in
the form

S(x1, · · · , xm) =
∑

1≤j≤h

ϕj(x1, · · · , xm−1)ψ(xm),

where ϕj, ψj are polynomials with rational coefficients.

In particular, we can take h = rm + 1 and ψj(xm) = xj−1
m . We take such a de-

composition with h minimal. Then certainly h ≤ rm + 1. Suppose there exists a
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linear relation c1ϕ1 + · · · + chϕh = 0 with c1, · · · , ch rational and not all zero. Then

without loss of generality we may suppose ch 6= 0. Then ϕh = − c1

ch
ϕ1−· · ·−

ch−1

ch
ϕh−1

and so

S =
h−1∑
j=1

ϕj

(
ψj −

cj
ch
ψh

)
which contradicts the minimality of h. Thus there exists no non-trivial linear relation
among ϕ1, · · · , ϕh over the rationals. Similarly, suppose that there exist rationals
e1, · · · , eh not all zero such that e1ψ1 + · · ·+ ehψh = 0. Without loss of generality we
suppose that eh 6= 0. Then

S =
h−1∑
j=1

ψj

(
ϕj −

ej
eh
ϕh

)
which again contradicts the minimality of h. Again, there is no non-trivial rational
linear combination among ψ1, · · · , ψh over Q.

We choose h minimal and conclude there is no non-trivial relation over Q of ϕ1, · · · , ϕh
and the same holds for ψ1, · · · , ψh. Therefore proposition 0.43,

U(xm) = det

(
1

(i− 1)!

∂i−1

∂xi−1
m

ϕj

)
1≤i,j≤h

6= 0.

Further, by proposition 0.43, there exist operators ∆′i for i = 1, · · · , h of the form

∆′i =
1

i1!
· · · 1

im!

∂i1+···+im

∂xi11 · · · ∂im
with i1 + · · ·+ im ≤ i− 1 ≤ h− 1 ≤ rm such that

V (x1, · · · , xm) = det(∆′iϕj)1≤i,j≤h 6= 0.

Next we define W (x1, · · · , xm) by

W (x1, · · · , xm) = det

(
∆′i

1

(j − 1)!

∂j−1

∂xj−1
m

S(x1, · · · , xm)

)
1≤i,j≤h

Thus

W = det

(
∆′i

1

(j − 1)!

∂j−1

∂xj−1
m

(
h∑
k=1

ϕkψk

))
1≤i,j≤h

= det

(
(∆′iϕk)1≤i,j≤h

(
1

(j − 1)!

∂j−1

∂xj−1
m

ψk

)
1≤j,k≤h

)
= U(xm)V (x1, · · · , xm) 6= 0

But

∆′i
1

(j − 1)!

∂j−1

∂xj−1
m

S(x1, · · ·xm) = Si1,··· ,im−1,j−1(x1, · · · , xm)

and since S has integer coefficients so does Si1,··· ,im−1,j−1 and therefore W has inte-
ger coefficients. By Gauss’s Lemma we may write W = v(x1, · · · , xm)u(xm) where
v(x1, · · · , xm) and u(xm) have integer coefficients. Since Si1,··· ,im−1,j−1 has degree at
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most ru in xu for u = 1, 2, · · · ,m and since W is given by the determinant of an h×h
matrix, W has degree at most hru in xu for u = 1, 2, · · · ,m. In particular, v has de-
gree at most hru in xu for u = 1, 2, · · · ,m−1 and u(xm) has degree at most hrm in xm.

Now, by proposition 0.35, we have Si1,··· ,im−1,j−1 ≤ 2r1+···+rmqwr11 . There are at most
(r1 + 1) · · · (rm + 1) monomials in Si1,··· ,im−1,j−1 and (r1 + 1) · · · (rm + 1) ≤ 2r1+···+rm .
There are at most h! ≤ hh−1 products in the determinant expansion of W . Since
h ≤ rm + 1, this is at most hrm ≤ 2hrm . Thus

W ≤ h!((r1 + 1) · · · (rm + 1))h
(
2r1+···+rmqwr11

)h
≤ 2hrm2h(r1+···+rm)2h(r1+···+rm)qwr1h1

≤ 23h(r1+···+rm)qwr1h1

≤ 23mr1hqwr1h1

≤ (q2w
1 )r1h = q2wr1h

1 ,

by hypothesis. Since W = uv and v(x1, · · · , xm−1) and u(xm)have integer coef-
ficients and each coefficient of W is obtained as a product of a coefficient of v
and a coefficient of u, we see that u, v ≤ q2wr1h

1 . By the definition of w we have

w(m, ε) =
1

2
w

(
m− 1,

ε2

12

)
. We now apply the inductive hypothesis to u and v. First

apply it to v with hr1, · · · , hrm−1 in place of r1, · · · , rm and ε2/12 for ε and 2w for w.

Then the hypotheses are satisfied and v has index at most ε2/12 at

(
p1

q1

, · · · , pm−1

qm−1

)
with respect to hr1, · · · , hrm−1. Thus the index of v as a function of x1, · · · , xm at(
p1

q1

, · · · , pm
qm

)
with respect to r1, · · · , rm is at most hε2/12.

Secondly we apply our inductive hypothesis to u with hrm in place of r1, · · · , rm
and ε2/12 in place of ε and 2w in place of w. Since w = w(m, ε) ≤ 1

2
w

(
1,
ε2

12

)
and

since qr11 ≤ qrmm , we have u ≤ q2wrmh
m .

Thus the index of u at pm/qm with respect to hrm is at most ε2/12. Thus the index
of u as a function of x1, · · · , xm is at most hε2/12. Thus, by proposition 0.36, the

index IW of W at

(
p1

q1

, · · · , pm
qm

)
with respect to r1, · · · , rm is at most

hε2

12
+
hε2

12
=
ε2

6
.

We should now estimate IW in terms of θ where θ is the index of S at

(
p1

q1

, · · · , pm
qm

)
with respect to r1, · · · , rm. By proposition 0.36 the index of Si1,··· ,im−1,j−1 is at least

θ − i1
r1

− · · · − im−1

rm−1

− j − 1

rm
≥ θ − i1 + · · ·+ im−1

rm−1

− j − 1

rm
,

since i1 + · · ·+ im−1 ≤ i− i ≤ h− 1 ≤ rm, we have

θ − i1 + · · ·+ im−1

rm−1

− j − 1

rm
≥ θ − rm

rm−1

− j − 1

rm
.



PURE MATH 944 - DIOPHANTINE APPROXIMATION 45

By hypothesis, rm/rm−1 ≤ w, and thus we obtain

θ − rm
rm−1

− j − 1

rm
≥ θ − w − j − 1

rm
.

But m ≥ 2, whence w ≤ 24 · 2−2
( ε

12

)2

=
ε2

24
, and so the index of Si1,··· ,im−1,j−1 at(

p1

q1

, · · · , pm
qm

)
with respect to r1, · · · , rm is at least θ − ε2

24
− j − 1

rm
.

Developing W as a determinant expansion and using the fact that the index is non-
negative and proposition 0.36, we find that

IW ≥
n∑
j=1

max

(
θ − ε2

24
− j − 1

rm
, 0

)

≥ −hε
2

24
+

h∑
j=1

max

(
θ − j − 1

rm
, 0

)
.

But IW ≤
hε2

6
, and therefore

5ε2h

24
≥

h∑
j=1

max

(
θ − j − 1

rm
, 0

)
⇒ ε2

4
>

1

h

h∑
j=1

max

(
θ − j − 1

rm
, 0

)
.

We have 1 ≤ h ≤ rm + 1, so if θ ≥ h− 1

rm
then

h∑
j=1

max

(
θ − j − 1

rm
, 0

)
=

1

h

h∑
j=1

(
θ − j − 1

rm

)
= θ − h− 1

2rm

=
θ

2
+

1

2

(
θ − h− 1

rm

)
≥ θ

2
.

Hence, θ/2 < ε2/4 and so θ < ε. Otherwise, we have θ <
h− 1

rm
. Then we have

1

h

h∑
j=1

max

(
θ − j − 1

rm
, 0

)
=

1

h

∑
1≤j≤θrm+1

(
θ − j − 1

rm

)
≥ 1

h
(bθrmc+ 1)

(
θ − bθrmc

2rm

)
≥ 1

h
(bθrmc+ 1)

(
θ

2

)
≥ θ2rm

2h
.
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Since h ≤ rm + 1 ≤ 2rm we see that

1

h

h∑
j=1

(
θ − j − 1

rm
, 0

)
≥ θ2

4
.

Hence θ2 < ε2, so θ < ε as required. �

Proof. (Roth’s Theorem) Suppose that 0 < δ < 1/12 and that there are infinitely
many solutions in rationals p/q, with q > 0, to the inequality

(0.11)

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
.

Choose ε > 0 to be a real number with 0 < ε < δ/20. Next let m > 8n2ε−2 (here n

is the degree of α over Q). Then put w = w(m, ε) = 24 · 2−m
( ε

12

)2m−1

. Let p1/q1 be

a solution to (0.11) with q1 so large that
(i) qε1 > 64(a+ 1) max(1, |α|),
(ii) qw1 ≥ 23m, and
(iii) qw1 ≥ (4(a+ 1))m.

Now choose pu/qu for u = 2, · · · ,m to be solutions of (0.11) in co-prime integers
pu, qu with qu > 0 successively such that

(iv)
1

2
w log qu+1 ≥ log qu.

Since qu+1 > qu for u = 1, 2, · · · ,m− 1, we have
(v) qεu > 64(a+ 1) max(1, |α|) and also
(vi) qwu ≥ 23m.
(v), (vi) hold for u = 2, 3, · · · ,m.

Next choose r1 to be an integer so large that εr1 log q1 ≥ log qm. Put ru =

⌊
r1 log q1

log qu

⌋
+

1, for u = 2, 3, · · · ,m. Then

r1 log q1 ≤ ru log qu

≤ r1 log q1 + log qu

≤ (1 + ε)r1 log q1

for u = 1, 2, · · · ,m.

Then the conditions of theorems 0.40 and 0.41 are satisfied. Further,

ru+1

ru
≤ 2 log qu

log qu+1

≤ w.

Since
r1 log q1

log qu+1

≥ r1 log q1

log qm
≥ 1

ε
≥ 240

and

ru ≥
r1 log q1

log qu
⇒ qruu ≥ qr11
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for u = 1, 2, · · · ,m, the conditions of Theorem 0.45 are also satisfied.

Next observe that the polynomial R constructed in theorem 0.40 has integer coef-
ficients of size, in absolute value, at most (4(a + 1))r1+···+rm ≤ (4(a + 1))mr1 and by
(iii) this is at most qwr11 , hence theorem 0.45 applies with S = R. Let IR be the index

of R at

(
p1

q1

, · · · , pm
qm

)
with respect to r1, · · · , rm. By theorem 0.41, IR is at least

δm

8
. By Theorem 0.40 R is not the zero polynomial. Hence by theorem 0.45, IR is at

most ε. Therefore
δm

8
< ε, but 0 < ε < δ/20, and so we have a contradiction. This

proves Roth’s Theorem. �

Remark 0.47. Roth’s Theorem is not effective and it is a very important problem
to make the proof effective.

Remark 0.48. Roth’s Theorem can be used to prove that numbers of the form
∞∑
n=1

2−3n are transcendental.

Remark 0.49. In 1959 Cugiani proved that if
p1

q1

,
p2

q2

, · · · are solutions to

∣∣∣∣α− p

q

∣∣∣∣ <
1

q2+20(log log log q)−1/2
with 0 < q1 < q2 < · · · , then lim sup

k→∞

qk+1

qk
=∞.

For the proof of Roth’s Theorem we supposed the existence of several good ap-
proximations to α. For the Thue-Siegel approach one can get by with one very good
approximation. This is important for effective results. Bombieri used such an ap-
proach to improve on the Liouville estimate in some cases. For example, let r ≥ 40.
He proved that there is a positive number m0(r) which is effectively computable such
that if α is a root of xr − mxr−1 + 1 and m > m0(r) then there is an effectively

computable positive number q0(α) such that if q > q0(α) then

∣∣∣∣α− p

q

∣∣∣∣ > 1

q39.2574
.

The first effective and explicit refinement of Liouville’s estimate is due to Baker in
1964, although such results are implicit in the works of Thue. For example Baker in

1964 proved that

∣∣∣∣21/3 − p

q

∣∣∣∣ > 10−6

q2.955
for all p, q with q > 0. Chudnovsky and Easton

refined this. In 1997 Bennett proved

∣∣∣∣21/3 − p

q

∣∣∣∣ > 1

4

1

q2.5
for all p, q with q > 0.

The first non-trivial effective improvement of the Liouville result which applies to
all algebraic numbers α of degree at least 3 is due to Baker and it depends on es-
timates for linear forms in the logarithm of algebraic numbers. This work in turn
builds on earlier work of Gelfond and Schneider who resolved Hilbert’s 7th problem.
The improvement was small but it sufficed to effectively solve Thue equations. For
instance, in 1986 Baker and Stewart proved

Theorem 0.50. Let a be a positive integer which is not a perfect cube. Let ε be the
fundamental unit in the ring of algebraic integers of the field Q(a1/3) (that is, the
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smallest unit larger than 1). Then, for all rationals p/q with q > 0, we have∣∣∣∣a1/3 − p

q

∣∣∣∣ > c

qκ

where c =
1

32c1

and κ = 3− 1

c2

with

c1 = ε(50 log log ε)2 , c2 = 1012 log ε.

This translates into

Theorem 0.51. Let a and n be positive integers with a not a perfect cube. All
solutions in integers x, y of x3 − ay3 = n satisfy max(|x|, |y|) < (c1n)c2 with c1, c2 as
in the previous theorem.

There have been extensions of Roth’s Theorem. The first one was to estimate ho
well α can be approximated by an element β from a fixed finite extension of Q, say
K. We need a measure of the size of β and for this we introduce a height function.
Let f ∈ Z[x] be of the form f(x) = anx

n + · · · + a1x + a0. We put H(f) = maxi |ai|
and we put H(β) = H(g), where g is the minimal polynomial of β over Z. If β = p/q
is rational, then H(β) is simply max(|p|, |q|).

In 1955, Levesque proved

Theorem 0.52. Let α be algebraic, let K be a finite extension of Q, and let δ > 0.
There are only finitely many elements β of K for which |α− β| < H(β)−2−δ.

Notice that we do not insist that α is real.

What happens if instead of fixing the extension field K in which β lies we only require
that β is of degree at most d? Siegel, Ramachandra, and Wirsing made progress on
this problem.

Theorem 0.53. (Schmidt) Let d ∈ N and let α be a real algebraic number of degree
greater than d. Set δ > 0. Then there are only finitely many algebraic numbers β of
degree at most d for which |α− β| < H(β)−d−1−δ.

Theorem 0.54. (Wirsing) Let d be a positive integer and suppose that α is a real
algebraic number of degree greater than d. Then for every δ > 0 there are infinitely
many real β of degree at most d for which |α− β| < H(β)−d−1+δ.

Theorem 0.55. (Mahler) Let α be a real non-zero algebraic number and let p1, · · · , pr
be distinct primes. Suppose δ > 0. There are only finitely many rationals p/q with
p = pa11 · · · parr p′ and q = pb11 · · · pbrr q′ where a1, · · · , ar and b1, · · · , br are non-negative

integers and p′, q′ are co-prime with p1, · · · , pr for which

∣∣∣∣α− p

q

∣∣∣∣ < 1

|p′q′||pq|δ
.

Mahler used such a result to prove thati f p1, · · · , pr are distinct primes and F (x, y)
is a binary form with integer coefficients, non-zero discriminant and degree at least
3 then the equation F (x, y) = pz11 · · · pzrr has only finitely many solutions in coprime
integers x and y and non-negative integers z1, · · · , zr. This is known as the Thue-
Mahler equation.
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Using ideas from the geometry of numbers and building on the work of Roth, Schmidt
proved

Theorem 0.56. For any algebraic numbers α1, · · · , αn with 1, α1, · · · , αn linearly
independent over Q and for any ε > 0 there are only finitely many positive integers q
for which

q1+ε‖qα1‖ · · · ‖qαn‖ < 1,

where ‖·‖ is the distance to the nearest integer.

Remark 0.57. It follows from the above theorem that if 1, α1, · · · , αn are Q-linearly
independent then for each ε > 0 there are only finitely many integers p1, · · · , pn and
q with q > 0 for which ∣∣∣∣αi − pi

q

∣∣∣∣ < 1

q1+1/n+ε
.

The exponent can be shown to be best possible.

The above theorem can be applied to the study of norm form equations - a gener-
alization of the Thue equation. There are also p-adic versions of this work. One con-
sequence is due to Evertse in 1984. Let p1, · · · , pr be distinct prime numbers and let
n be a positive integer. There are only finitely many n-tuples of integers (x1, · · · , xn)
with the xi’s composed only of primes from {p1, · · · , pr} with x1 + · · ·+ xn = 0, and
gcd(x1, · · · , xn) = 1 and such that xi1 + · · ·+xil 6= 0 whenever {i1, · · · , il} is a proper
subset of {1, · · · , n}. For example, 2a−3b+5c+7d = 0 has only finitely many solutions.

Suppose we are given a sequence (xn)∞n=1 of real numbers in [0, 1). We can ask how
well distributed the sequence is in the interval. The first question to ask is whether
the sequence is dense. Let α be a real number and consider the sequence ({nα})∞n=1

where {nα} = nα − bnαc. If α is rational, then ({nα})∞n=1 is finite and hence not
dense. Conversely, if α is irrational, then ({nα})∞n=1 is dense. To see this, note that
all of the terms of the sequence are distinct, since

{n1α} = {n2α} ⇒ n1α− n2α = bn1αc − bn2αc ⇒ α =
bn1αc − bn2αc

n1 − n2

∈ Q.

Next note that for each ε > 0 we can find distinct positive integers n1 > n2 such that
|{n1α} − {n2α}| < ε. But then {(n1 − n2)α} = (n1 − n2)α− b(n1 − n2)αc. Thus

{(n1 − n2)α} = {n1α}+N1 + {n2α}+N2 −N3,

where N1 = bn1αc, N2 = bn2αc, N3 = b(n1 − n2)αc. Thus {(n1 − n2)α} is either in
(0, ε) or (1− ε, 1).

In the former case, {m(n1 − n2)α} = m{(n1 − n2)α} for m = 1, 2, · · · , k where k
is the largest integer such that kε < 1. For every real number β ∈ [0, 1), there is
j, 1 ≤ j ≤ k such that |β −m{(n1 − n2)α}| < ε.

Similarly, in the other case we have {m(n1 − n2)α} = 1 − m(1 − {(n1 − n2)α})

for m = 1, 2, · · · , k where k =

⌊
1

1− {(n1 − n2)α}

⌋
and again every β ∈ [0, 1) is
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within ε of one of the multiples. Hence if α is irrational then ({nα})∞n=1 is dense in
[0, 1).

The result is the one-dimensional version of a result of Kronecker. Kronecker proved
that if α1, · · · , αk are real numbers with 1, α1, · · · , αk linearly independent over Q,
then ({nα1}, · · · , {nαk})∞n=1 is dense in [0, 1]k.

A more refined notion than that of being dense is the following:

Definition 0.58. A sequence (xn)∞n=1 of real numbers is said to be uniformly dis-
tributed modulo 1 (u.d. mod 1) if for every pair of real numbers a, b with 0 ≤ a <
b ≤ 1 we have

lim
N→∞

A(a, b,N)

N
= b− a,

where A(a, b,N) = #{xn : n ≤ N, a ≤ {xn} < b}.

Let χ[a,b) be the characteristic function of [a, b). Then (xn)∞n=1 is u.d. mod 1 if and

only if lim
N→∞

1

N

N∑
n=1

χ[a,b)({xn}) = b− a for all intervals [a, b) with 0 ≤ a < b ≤ 1.

Theorem 0.59. A sequence (xn)∞n=1 ⊂ R is u.d. mod 1 if and only if for every real
valued continuous function f on [0, 1] we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx.

Proof. Suppose first that (xn)∞n=1 is u.d. mod 1 . Let g be a step function on [0, 1]
so there exist real numbers 0 ≤ a0 < a1 < · · · < ak = 1 and s1, · · · , sk such that

g =
k∑
i=1

siχ[ai, ai+1). Then we have

lim
N→∞

1

N

N∑
n=1

g({xn}) =
k∑
i=1

si(ai − ai−1) =

∫ 1

0

g(x)dx.

The step functions are uniformly dense in the real valued continuous functions, so
there exist step functions f1, f2 with f1(x) ≤ f(x) ≤ f2(x) and for which f2(x) −
f1(x) < ε for all x ∈ [0, 1]. But then∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f1(x)dx

= lim
N→∞

1

N

N∑
n=1

f1({xn})

≤ lim inf
N→∞

1

N

N∑
n=1

f({xn}).
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Likewise ∫ 1

0

f(x)dx+ ε ≥
∫ 1

0

f2(x)dx

= lim
N→∞

1

N

N∑
n=1

f2({xn})

≥ lim sup
N→∞

1

N

N∑
n=1

f({xn}).

Since ε was arbitrary, it follows that lim
N→∞

1

N

N∑
n=1

f({xn}) exists and

∫ 1

0

f(x)dx = lim
N→∞

1

N

N∑
n=1

f({xn}).

Given ε > 0 and [a, b) with 0 ≤ a < b ≤ 1 there exist continuous functions g1, g2

on [0, 1] for which g1(x) ≤ χ[a,b)(x) ≤ g2(x) and for which

∫ 1

0

(g2(x) − g1(x))dx < ε.

Then

(b− a)− ε ≤
∫ 1

0

g2(x)dx− ε

≤
∫ 1

0

g1(x)dx

= lim
N→∞

1

N

N∑
n=1

g1({xn})

≤ lim inf
N→∞

A(a, b,N)

N

≤ lim sup
N→∞

A(a, b,N)

N

≤ lim
N→∞

1

N

N∑
n=1

g2({xn})

=

∫ 1

0

g2(x)dx

≤ (b− a) + ε.

Therefore, lim
N→∞

A(a, b,N)

N
exists and is b− a. �

Theorem 0.60. A sequence (xn)∞n=1 ⊂ R is u.d. mod 1 if and only if for every
complex valued continuous function f on R with period 1, we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx.
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Proof. “⇒” Let f be periodic with period 1. Then we have that f(xn) = f({xn}).
Fur there there exist real valued continuous functions of period 1 f1, f2 such that
f = f1 + if2. It then follows that

lim
N→∞

1

N

N∑
n=1

f(xn) = lim
N→∞

1

N

N∑
n=1

f1({xn}) + lim
N→∞

1

N

N∑
n=1

if2({xn})

=

∫ 1

0

f1(x)dx+ i

∫ 1

0

f2(x)dx

=

∫ 1

0

f(x)dx.

We are done by the previous theorem.

“⇐” For every real valued continuous function f1 on R we have lim
N→∞

1

N

N∑
n=1

f1({xn}) =∫ 1

0

f1(x)dx and since f1 is periodic, we have f1({xn}) = f1(xn) and the result fol-

lows. �

We shall use the above theorem to establish a very useful criterion for a sequence
to be u.d. mod 1 due to Herman Weyl in 1916.

Theorem 0.61. (Weyl’s Criterion) A sequence (xn)∞n=1 of real numbers is u.d. mod
1 if and only if for each non-zero integer h,

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0.

Proof. “⇒” Let ε > 0. Suppose that f is a continuous function which is periodic
with period 1 from R to C. By the Weierstrass approximation theorem, there exists
a trigonometric polynomial g(x) such that sup

0≤x≤1
|f(x)− g(x)| < ε. Write

g(x) = c1e
2πih1x + · · ·+ cke

2πihkx

with c1, · · · , ck ∈ C and h1, · · · , hk are integers. But then∣∣∣∣∣
∫ 1

0

f(x)dx− 1

N

N∑
n=1

f({xn})

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

(f(x)− g(x))dx

∣∣∣∣+

∣∣∣∣∣
∫ 1

0

g(x)dx− 1

N

N∑
n=1

f({xn})

∣∣∣∣∣
≤
∫ 1

0

|f(x)− g(x)|dx+

∣∣∣∣∣
∫ 1

0

g(x)dx− 1

N

N∑
n=1

g({xn})

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
n=1

g({xn})−
1

N

N∑
n=1

f({xn})

∣∣∣∣∣
≤ ε+ ε+ ε = 3ε

for N sufficiently large. Hence
1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx. �


