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Theorem 0.1. (Dirichlet’s Theorem) Let a be a real irrational number, and let n € N
be a natural number. Then there exist integers p,q with 1 < q < n such that

1
o — < —F
g —pl < ———
Proof. Clearly, we may assume that o > 0. For ¢ = 1,--- ,n, write r, = qa — |ga].
Then the n + 2 numbers 0,74, -, r,, 1 (since « is irrational, we have r; # 0, 1 for all

j) all lie in [0, 1] and by the pigeonhole principle, some two of them differ by at most

1 If there is some r, such that |r, — 1] < 1/(n+1) or |r,| < 1/(n+ 1) then
n
we are done. Otherwise, there are 1 < s, < n such that |ry — | < 1/(n+1). The
result follows by noting that ry —r; =r,_if s >t,rg >rpandrg—r, =1 -1, if
s <t,rg >y

O

Theorem 0.2. (Duffin-Schaeffer Theorem) There exists a sequence of non-negative

real numbers f(1), f(2),---, such that Zf(q) = 00, but nonetheless for almost all
q=1
real o the inequality
B 1_9‘ _
q q

has only finitely many solutions for integers p, q.

1
Proof. Since | | <1 + —) diverges, there exists a strictly increasing sequence (x,,)5°,
p
p

1 .
with z¢y = 1 such that H (1 + —) > 2'+1 foralli > 1. Define N; = H p.
T;—1<p<x; p T 1<p<w;
Note that by construction we have ged(N;, N;) = 1 if ¢ # j. Now define f(g) to be

2_i% if g|N; and 0 otherwise. Now we define

' Aq_{07@}UUlg_f(q)7g+f(q)]U{l_@’l}‘

7
q qa g q

j=1

f(q)

Note that the measure of A, is zero unless ¢|N; for some ¢, and u(A4,) < g <—>
q
otherwise. Also note that A, C Ay, and in fact we have

Ay, =] A,

q|N;
1
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Therefore, since p(Ay,) < 2N; <2’NL> = 27" it follows that
iq

U Aq S 2—i+1‘

q|N;

Now let A be the set of real numbers a € [0, 1] for which the inequality

B zg‘ _
4q q
has infinitely many solutions in integers p, q. Since only finitely many ¢’s divide NV;
for any i, it follows that for any ky € N we have A C U U Ay | = U An,. By
k=ko q|Nk k=ko

sub-additivity of measures it follows that u(A) < Z 9 k+1 — 9=ko+2 T particular,
k=ko
letting kg — oo we see that u(A) = 0. On the other hand, we have

Sr0=22" ¥

alNijg>1 "

Note that

by our choice of N;. Hence, we have

DNUES ST
q=1 i=1
This establishes the existence of a sequence asserted by the theorem. U

— [(q)¢(q)

If f is as above and we consider the sum Z /
q
q=1

we would obtain

o0

SIS g 3 e =3

" qINyg>1

To investigate the issue further, we will require some further results on the Euler ¢
function.

Proposition 0.3. Let m,n € Z*. If gcd(n,m) = 1, then p(nm) = p(n)e(m). In
other words, p is a multiplicative function.
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1
Proof. We have ¢(mn) = mn H (1 — —>, and since ged(m,n) = 1 it follows that
p

plmn
1 1 1
H (1 - —) = H <1 - —) H (1 - —) and hence o(mn) = ¢o(m)p(n). O
p p p
plmn plm pln
Proposition 0.4. We have ng(d) =n for alln € N.
din

Proof. Write Cy to be the subset of 1 < m < n such that ged(m,n) = d. Clearly
Cy = 0 if d does not divide n. Otherwide, if m € Cjy, then ged (@ —) =1, so that

n
n d’d
|Cyql = <E> Hence we have

n=Y1Cl =3¢ (5) =D el@.

dn dn

d
Remark 0.5. By the Mobius inversion formula, we also have p(n) =n Z M

d

din

- 3
Proposition 0.6. We have E w(m) = —2n2 + O(nlogn).
T
m=1

Proof. We have

> ptm) = 33D S

m=1 d|lm dd'<n
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For n € N, let 7(n) denote the number of positive divisors of n.

Proposition 0.7. Let n be a positive integer and let uw and v be integers with v > 0.
Then

Z 1—vM < 7(n).

u<k<u4v
ged(k,n)=1

Proof.

> | LT ey

u<k<u4wv u<k<u+wv d| gcd(k,n)
ged(k,n)=1
p(d)
- d) —
PR IVICEED D
u<k<u4v d|(k,n) dn

=D ou@ Y 1= pd)

din u<k<u4wv din
dlk
(%
=D @ Y, 1- P
din u<k<u+v
dlk
< g 1 =7(n).

din

Now note that 7(n) < 2n'/2 since if d is a divisor of n then either d or n/d is bounded
above by n'/2. O

Note that for any ¢ > 0, we have n'™* < ¢(n) < n for n sufficiently large. In
particular, we have the following corollary.

Corollary 0.8. Let py\(n) be the number of positive integers m with m < An with
ged(m,n) = 1. Then

[pa(n) = Ap(n)| < 2012
In particular, we have px(n) = o(n)(A + p) with |p| < ecn=Y* for some ¢ > 0.

Proof. Follows immediately from previous propositions. Il

Proposition 0.9. Let N and M be positive integers and A > 0 be a positive real
number. The number of positive integer pairs (z,y) with 0 < |[Nx — My| < A and
with 1 <x < M, 1<y <N is at most 2A.
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N M
E,Mg = It suffices to count the

A
number of pairs of positive pairs of integers (z,y) for which |Nix — Myy| < i where
1 <x < Mpdand 1<y < Npd. Call such a pair (z,y) and admissible pair.

Proof. Let d = ged(N, M) and write Ny =

Suppose 1Ny — y1 My = x9Ny — yo My, with (x1,y1), (22, y2) admissible pairs. Then
(1 —x2) N1 = (y1 — y2) M. Since ged(Ny, My) = 1, it follows that z1 — xs,y; — Yo are
multiples of My, N; respectively.

A
If h is an integer with |h| < 7 and z1N; — y1 M, = h, we have that there are at

most d solutions in admissible pairs (x,y). To see this, the pair is determined by z,
and since for any two distinct solutions x1, x5 they must lie in the same congruence
class modulo Mj, the number of solutions correspond to the number of such con-
gruence classes in the set {1,---, M;d}, which is at most d. Hence the number of

admissible pairs is at most 2d 7 < 2A and we are done. U

Theorem 0.10. (Khintchine’s Theorem - 1924) Let f : R — R™ and let (f(q))32, be
a sequence of positive numbers for which

()3 Flg) = oc,

(i4) The sequence (qf(q));2, is a decreasing sequence.

Then for all real numbers o with the exception of a set of Lebesgue measure zero,
there exist infinitely many rationals p/q for which

0 P ‘ _ @
q q
. 1 1
For example, the theorem applies to the sequence f(q) = or even .
qlogq qlogqloglogq

Condition (ii) is a stringent one but as the previous Duffin-Schaeffer theorem in-
dicates, some such condition is necessary.

We will derive Khintchine’s theorem from the following result, also due to Duffin-
Schaeffer.

Theorem 0.11. (Duffin and Schaeffer) Let (f(q))52, be a sequence of non-negative
real numbers which satisfies

(i) > fa) = oo,

(ii)q0:1§ flg) <1/2 forq>1, and

(11i) There exist a positive number ¢ such that Z f(q)? > CZ f(q) for infinitely

q=1 q=1
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many integers n.

Then for all real numbers «, except for a set of Lebesque measure zero, there ex-

p' _ )

q

We will introduce some definitions and propositions to establish the theorem.

ist infinitely many rationals p/q such that |ao — =

Definition 0.12. Let 6 be a positive real number with § < 1/2, and let ¢ > 1 be a
positive integer. Denote Eg C (0,1) consisting of ¢(q) intervals centered at p/q with
ged(p, q) = 1 of radius 0/q.

Proposition 0.13. Let p denote the Lebesque measure of R. Suppose q,n > 1 are
distinct integers and 61,0y are real numbers with 0 < 01,05 < 1/2. Then ,u(Ez1 N
EP) < 86,6,.

Proof. If an interval I C E91 overlaps an interval I, C E% with center m/n, then

m 0 0,

0 < p_m <2+ 2 or equivalently, 0 < |np — mq| < 6i1n + 05q. First suppose
q N q n

that 61n > 05q, so 0 < [np — mq| < 201n. By proposition 0.9 there are at most 461n

such solutions.

20
Therefore u(Eol N E%) < 46,n ( 2
n

hold when 6,q > 61n. O

) = 86,6,. Symmetrically, the same arguments

Proposition 0.14. Let A be a subset of (0,1) consisting of a finite union of intervals.
There exists a positive number ¢, which depends on A, such that if n > 1 and 0 <
0 <1/2, then n(AN E)) < u(A)u(E)(1 + en™'*).

Proof. We first prove the result in the case when A is a single interval (a,b) C (0,1).
The number of intervals in E? whose centers lie in (a,b] is ¢5(n) — @u(n). Thus the
number of intervals of E? lying entirely in (a, b] is at least ¢,(n) — ( ) — 2. Further,

the number of intervals which have some overlap with (a, b] is at most op(n)—pq(n)+2.

2
Thus (AN E?) = (s(n) — pa(n) + 7)—9 where || < 2 is a real number.
n

By corollary 0.8, we get that

pANED < pn)(b — a) + e~/ 2 =

(B p(A)(L + e(A)n~ 1),
where ¢(A) is a constant that depends on A.

Now suppose that A is the union of k disjoint intervals A;,---,A,. Then put
¢ =max(c(Ay), -+ ,c(Ag)). Then we have

WANE;) = p <(U Ai) n Ei) = p(Ep)n(A)(L+en™ ).

i=1
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Proof. proof of Duffin-Schaeffer theorem Set f(q) = 6,, for ¢ = 1,2,---. Denote the
oo

sets qu by just E, for brevity. Put £ = U E,. We first prove that the measure of
q=2
FE is 1. If we do this then that will show that for almost all o there exists a rational

0
o — P < =L We shall then show that W U E,| =1forallk >3
q q

q=k
_rl_ [l

q

Suppose to the contrary that p(E) < 1. Then there exists 6 > 0 such that u(E)(1 +
9) < 1. Suppose there exists a ¢; > 0 such that if we put A = Ey U--- U E,, then
u(A) > p(FE) — 6. Since A is a finite union of intervals, by proposition 0.14 there
exists a positive number ¢, such that if ¢ > ¢, then

(0.1) n(ANEy) < p(A)p(Eq)(1+9).
Let m > n be positive integers larger than ¢; +¢» and put B = B,,,,, = E,U---UE,,.

We have . .
S wE) - > uwENE)<uB) <> wE
j=n j=n

n<j<k<m

number p/q with

and from this we will find infinitely many solutions to the inequality |«

By proposition 0.13, u(E; N E) < 86,6 and so,

m m 2
u(B)> > u(E;) - 4 (Z @) .
j=n j=n
By equation (0.1), we have

w(ANB) < Z“ ANE;) < u(A) <Z“<EJ)) (1+9).

n

Observe that u(E) > u(AU B) > u(A) + u(B) — u(AN B) and so
H(E) = u(A) + Zu - Z@) (Zu@)) (1+9)

Hence

(0.2) w(E) > p(A) + (Z M(Ej)> (1= p(A)(1+9)) (ZH )

By assumption, there exists 0 < ¢ < 1 and arbitrarily large integers m > n > 0 for

which .
Zej > 1
j=n
and . . .
Z@Q > 2%,
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But Zu(Ej) = Z@M > CZHj. Thus, by equation (0.2), we have
, , J
j=n j=n

u(E) > u(4) + (@@-) (1~ u(A)(1 +8) — 4 (Z @-) -

Put £ =Y 6 and b = c(1 — p(A)(1+5)) so that pu(E) > p(A) + bt — 42,
j=n
Observe that 0 < b < 1since 0 < ¢ < 1 and 1 — u(A)(1 +J) < 1. The maxi-
b2
mum of yb — 4y? for y € (0,1) occurs when y = b/8, at which point yb — 4y* = 16

We shall now modify the E;’s by replacing 0; with 20;. Denote the set E;gj by E](-l)

- b
for j = 2,3, where z is chosen so that Z 20; = 3 Keep A as before and replace
j=n
B with B, where
Bz:E(l)U"'UEr(;)-

n

Arguing as before, we obtain
w(E) > u(A) + btz — 4(t2)?

b2
= u(A) + 16
2
C
= u(A) + 16

Notice that as § — 0, we have pu(A) — p(E) and hence

(1= p(A)(1 +9))?

2

u(B) 2 u(E) + 751 - u(E)).

This inequality is untenable if u(F) < 1, and hence we must conclude that pu(E) = 1.

Now put E®) = U E, and observe that the same argument holds as before. This
q=Fk

implies that u(E®) =1 for all k € N. Thus, if we set E* = ﬂ E®_ then we have

k=1

u(E") =1
since E* is the intersection of countably many sets of full measure. In particular, for
each a € E*, we can find infinitely many rationals p/q such that |o — g‘ < @ U

We now show that Khintchine’s theorem is a consequence of the Duffin-Schaeffer
theorem. In fact, in place of the assumption that (f(¢)),>0 is a decreasing sequence
we will require only (f(q))s>0 is decreasing. We will replace f(q) with 6, for this
argument.
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Notice that we may suppose that 6, < 1/2 for sufficiently large ¢ since otherwise

the inequality

1
o — E‘ < o certainly has infinitely many solutions for almost all a.
Thus we may replace 6, with min(6,,1/2) to guarantee condition (ii) of the Duffin-

Schaeffer theorem.

It remains to show that there exists ¢ > 0 such that for infinitely many positive
integers n we have

i —QQZ(Q) > c i 0,.
q=1 q=1

Notice that since (0,),>1 is decreasing, we have

2n
Z cp_ Z Z 990_
:1 q t]_q2t1+1 q

n 2t

Ny
2> 5 2
t=1 g=2t-141
By proposition 0.6, we get
2t 3
> plg) = 527 =27 + O(t2")
q=2t"1+1 T
9 2t t
= —2 + O(t2")
> 0122t,

for some ¢; > 0. Thus
—, ¢(g) 4
2t 2t
S0l s 3
q=1 t=
= C1 Z 92t2t
t=1
2n4on 1

> 0
q=2
on
Z C1 Z Qq.
q=2
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Since Z b, = Z f(q) = oo, there exists co > 0 such that
q=1 q=1

A 2m
Clzgq > CQZQQ.
q=2 q=1

This shows that condition (ii) of the Duffin-Schaeffer theorem is also satisfied, and so
Khintchine’s Theorem is a corollary of the Duffin-Schaeffer theorem.

Gallagher proved the following result: Let (f(q));2; be a sequence of non-negative
real numbers. Let A be the set of real numbers « in (0,1) for which the inequality

P < @ has infinitely many solutions in rationals p/q. The measure of A is
4q 4q
either 0 or 1.

Duffin and Schaeffer conjectured that for almost all a with respect to Lebesgue
a-?| < @ has infinitely many solutions if and only
q q

measure, the inequality

if Z %gp(q) diverges. The conjecture is still unsolved, but higher dimensional
q=1

analogues of it have been proved (Pollington, Vaughan).

Given a real number «, how should we go about finding the good rational approxima-
tions p/q to a? We use an algorithm known as the continued fraction algorithm. For
any x € R recall that |z| denotes the greatest integer less than or equal to z. Put

ap = |o]. If & # ap then we write & = ag+ —. Then write a1 = |a1|. If a1 # aq, we
aq
write a; = a; + —. Continue in this way we generate a sequence of positive integers
%)
ai,aq, -+ and real numbers aq,ag, -+ > 1. The sequences are finite if o; = a; for

some ¢ € N, in which case the algorithm terminates.

If the algorithm terminates, say at a,, = a,,, then write

N 1
a=a
0 . 1
a
1 . 1
a
? 1
a3 + . + _
G,
or more conveniently, & = [ag, a1, -+ ,a,]. This expression is called a finite continued

fraction.
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If the algorithm does not terminate, then we have

1

a = ag+ 1

a + ————
as + .

Alternatively, we write a = [ag, a1, as, - - - ]. These expressions are known as the con-
tinued fraction expression of a.

We will prove that « = lim [ag, a1, -+ ,a,|. The terms ag,a;,--- are known as the
n—oo

partial quotients of . Further we will put [ag, -+ ,a,] = P rhere ged(pn, qn) = 1
n
and g, > 0. The rationals Pnire known as the convergents to «.
dn
We will show that the p,’s and ¢,,’s are generated recursively in the following manner.
o0

Proposition 0.15. Let o be a real number, and let (& be its sequence of

dn n=0
convergents and (a,)3, be its sequence of partial quotients. Then (py),(q,) both
satisfy the recursion

(0.3) Up = Aplp_1 + Up_o, 10 > 2
with po = ag,qo = 1,p1 = apa1 +1,q1 = ay.

Proof. We proceed to prove this result by induction. For n = 2, we have

1
% = Qo + 1
2 aq + —
a2
a2
= a —Iv— _—
0 a1as + 1
_apaiaz + ap + az
N a1a9 + 1
_ @2p1+ Po
a2q1 + Qo
This establishes the base case. Now assume the result holds for n = &k —1 with k > 2
and we will prove it for n = k. Consider the associated continued fractions [ay, - - - , az]
and put [ay,- - ,aj41] = % with ged(uj,vj) =1, v; > 0 for j =0,1,2,---. By the
U .

inductive hypothesis we have ux_1 = agug_o + ux_3 and vp_1 = arVE_o + Vi_3.

V-1

But bi _ ag + , for j = 1,2,---. Hence p; = apuj—1 + v;—1 and ¢; = uj_.

j Uj—1
Now set j = k to obtain

Pk = ao(arUk—2 + Ug—3) + QxVk—2 + Vg_3
= ag(apup—2 + vi—2) + (aour—3 + vi_3)

= agPr—1 + Pr—2,
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as desired. Similarly, we have

qr = Uk—1
= QpUk—2 + Up—3
= QkQk—1 t Qk—2-
This completes the proof. O
Recall from the definition of oy, am, - -+ that
= [a’(]? ai,- -+ ,0np, OéTH*l]'
We also have
1 1
0< <

Notice that o € [&, pnﬂ} .

qn qn+1

Proposition 0.16. If <&) 15 the sequence of convergents for a real number «,

n/ n=0

then
Prln+1 — GuPngr = (—1)"
forn=0,1,---.

Proof. We proceed by induction. For n = 0 we have pyq1 — p1go = apa1 — (aga; +1) =
—1, so the result holds.

Assume that this holds for n = k — 1. Then by our recursion for py, g we have

PeQi+1 — QPrt1 = Pe(@kt1Qk + Q1) — qk(Qk1Dk + Dr—1)
= Prqk—1 — qkPr—1

— (_1)/€+1
as required. [l
Since o € []ﬁ, pn“} , we see that
Gn Gn+1
Pn An+1Pn — Pndn+1 1
a——| < = .
dn AnGn+1 Indn+1
We have ¢y = 1,¢1 = a1 and so ¢,+1 > ¢, for n > 0 and thus
Pn 1
o= 2
Qn qn
for n =1,2,---. Thus the convergents Pn are good approximations to a.

n

Remark 0.17. The continued fraction terminates if and only if «v is rational. Further,

lim [ag, -+, a,] = a.
n—oo
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We will now complete the proof of Hurwitz’s Theorem by showing that at least one

of any three consecutive convergents to «, say &, Pt1 Prt? st satisfy

G0 Gnt1 Qo2

1
@_B\<

ql  V5g?

Suppose otherwise for the sake of a contradiction. Then we have

for j =n,n+ 1,n+ 2. This implies that

' Dn ’ Prnt1| _ |Pn Pn+ti 1
a——|+|la———_ =|—— = ,

qn n+1 qn Gn+1 GnQn+1
and so

+ < = — =<
VB2 V@ T et V5 @ VB

Put A\, = M, and hence
n

1
V5,

+ <1=X VBN +1<0

:(An—é) —1<0.

2 4~

S|>/
ol S

541 5—1
Since A\, € Q, the inequality is strict. Thus ()\n — \/_;L > (/\n — \/_2 ) < 0,

5—1 5+1 1 5
and so \/_2 <A\ < \/_;— , in particular A, < +2\/_. Now, recall that ¢,,o =
n 1 1 5
Gni2Qni1 + Qn, SO that dn+2 _ (pio + — . Observe also that A\, < * \/_
Gn+1 (Gn+1/qn) 2
But
1
/\n+1 = Qpy2 + )\_n
2
> 1+
1+V5
_3+45
1+5
1445
==
a contradiction. This completes the proof of Hurwitz’s Theorem.
Proposition 0.18. For any real number «, the sequence (|gia — p1l, |gac — paf, -+ +)

1S a decreasing sequence.
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Proof. The recurrence relations for p,, ¢, hold for any indeterminates and so we may
apply them with o = [ag, a1, -+ , an, @,y1] to conclude that

o — PnOn+1 + Pn—1
nOin41 + Gn—1

and so

AnDPnOn+1 + qnPn—1 — PndnQn+1 — PnQn—1
gnOln+1 — Qn-1

PnOn+t1 + Pn—1
dn — DPn
GnQn41 + dn—1

1

B |Q7Lan+l + Qn—1| '

But

nOnt1 + qn-1 2 qn + Gn-1
2 nGn-1+ Gn—2 + Gn—1
= (an +1)qn-1+ Gn2
2> OnQn—1+ qn—2,
which implies that

PnQn41 + Pn—1 1 1
qn —Pn| = S )
gnOin41 + dn—1 nQin+1 + dn—1 gn—10p + 4n—2

and we check that it holds for n = 1 also. O

Proposition 0.19. Let a be a real number. The convergents Pn to « satisfy

1
(Ant1 +2)g2

Proof. By proposition 0.18 we have

1

5"
An414;,

Pn
an

< | — <

1
Qn<anan+l + anl) .

‘ Pn
a —_— —
In

Since a,11 < apy1 < a1 + 1 and g, > g1, the result follows. [l

The convergents p,/q, give the best approximations to « in the sense that if 0 <

q < Gny1, then [ga — p| > |apa — p,|. To see this, note that since det P Gn | _
DPnt1 Qn+1

(—1)"“, we can find integers u,v such that p = up, + vp,+1 and ¢ = uq, + V@11
Note that u # 0. Further, if v # 0 then u, v have opposite signs. Thus

lgoe — p| = |u(gna — pp) + V(gnr1 — Prt1)| > [gn — prl.

1
Proposition 0.20. Let a € R. If p/q is a rational with < 52 then p/q is
q

a convergent to a.. In other words, b_ P for some n > 0.
q

n

O{—_
q

;
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Proof. In fact P _Pr Ghere Gn < q < Qni1, Since
q n

q Gn q qn
1 1
<|\-+—)lga—pl
q dn
21 1
@24 qan
But if p/q, pn/q, are distinct rational numbers, then the absolute value of their differ-
ence is at least —, so the above inequality shows that they must in fact be equal. [
q4n
Definition 0.21. The continued fraction [ag, aj, - - - | is said to be ultimately periodic

if there exists a non-negative integer n and a positive integer k such that ax ., = a,
for all m > n.

Theorem 0.22. (Lagrange’s Theorem) A real number « is a quadratic irrational if
and only if its continued fraction expansion is ultimately periodic.

Proof. Suppose that « = [ag, -, Gk—1, 0k, -, Gnir_1] Where the bar indicates peri-
u .

odicity. Put @ = [ay,, Gnyr_1) and let — denote the convergents to #. We have 6 =
Yj

U/n—le + Up—2
Un—le + Un—2
Further, # € R\ Q since it has an infinite continued fraction expansion. Thus it is a
real quadratic irrational.

[ag, ", Qxyn_1,0], so that 0 = . Thus v, 10*+ (Vo +tp_1)0—1u, o = 0.

Pr—10 + Pr—2

and so « is a real quadratic
Q10 + vk

But = [ag,-- ,ax_1,0] and so o =

irrational as well.

Suppose now that « is a real quadratic irrational. Let ax® + bz + ¢ be the min-
imal polynomial of « in Z[z]. Then b* — 4ac > 0 since « is real. Suppose that
Pn—-10Cp + Pn—2

Gn—10n + Gn—2

and so

a = lag,ay,---]. Then a =

a’(pn—lan + pn—2)2 + b(pn—lan + pn—?)(qn—lan + Qn—Q) + C(Qn—lan + Qn—Q) = 0.

Set An - ap%—l + bpn—lQn—l + qu—la BTL - 2apn—1pn—2 + bpn—lQn—Q + bpn—QQn—l +
2¢qy—1Gn—2, and C,, = ap?_, + bp,_2qn_2 + cq>_,. In other words, we have

Anozi + B,a,, + C,, = 0.

Notice that A, # 0 since otherwise az? + bz + ¢ = 0 has a rational root. Further,
B? —4A,C,, = (b* — 4ac)(pn-1Gn-2 — Pn—2qn-1)*> = b* — dac > 0.

n_ On . O
Now we have o — 2% — — with |6, < 1, for all n € N. Thus p, = goa — —,

Qn n Qn
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hence

On_1 2 On—1 2
An =a| gp—1&x — + b gn—10¢ — dn—1 + Cq,_1q

qn—1 dn—1
ad?
= (ac® + ba + ¢)@2_, — 2aad,_, + an—l — bdy,—1
n—1

2

)
= —2aa,_1 +a 271 —boy_1,

n—1

so that |A,| < |2aa| + |a| + |b].

Note that C, = A,_1, so |C,,| < |2aa + |a| + |b|. Finally, we have |B,| < 4|A,C,| +
|b* — dac|. Since |A,|, |By,|, |Cy| are bounded, the a,’s are the roots of a finite family
of quadratic polynomials, each polynomial has at most two distinct roots (in fact each
has exactly two distinct roots since « is irrational). Therefore a,, = a1 for some
k € N and n > 1. Hence the continued fraction expansion is ultimately periodic. [

We say that the continued fraction expansion [ag, ay,-- | is purely periodic if the

period starts at n = 0. In other words, for some integer k, we have a,, = a, for all
n > 0.

Proposition 0.23. The continued fraction expansion of a real quadratic irrational o
is purely periodic if and only if a > 1 and the conjugate B of o satisfies —1 < 5 < 0.

Proof. We claim that the conjugate [, to «,, also satisty —1 < (3, < 0. This follows

by induction. Since o, = a, + we find that 3, = a, + ﬁ_1+1 But now a, > 1
Qn41 "

and —1 < 3, < 0, hence —1 < (3,11 < 0. Observe that since —1 < 3, < 0, we have

5]
" ﬂn—l—l'

Since « is a quadratic irrational we know that there exist distinct integers m,n with

1
ay, = ap,. But then — = — and so a,,_1 = a,,_1, which implies that a,,,_1 = a,_1.

m n
Repeating this argument we find that a has a purely periodic continued fraction ex-
pansion.

Suppose that the continued fraction expansion of « is purely periodic. Then a >

. e a—+ Pp—
ap > 1. Further, there is a positive integer n such that o = M, SO qno +

qnQ¥ + qn—1
(¢n_1—pn)a—pn_1 = 0. Consider the polynomial f,(z) = ¢, 2%+ (¢u_1 — Pn)T — Pp_1-
We have f,(0) = —pp—1 < 0 and fo(=1) = (¢a — gn-1) + (pn — pn—1) > 0. Thus the

polynomial f,(z) has a root 5 in (—1,0), and [ is conjugate to a. O
Remark 0.24. Let d be an integer which is positive but not a perfect square.
1 -1
Consider « = ———=. Then a > 1 and the conjugate ————= satisfies
Vd— [Vd] Vd+ [Vd]

-1
< ————— < 0. Thus the continued fraction expansion of ——— is

Vi+ | V] Vi- 1V

purely periodic.
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Consider the rational o = [ag, - - , a,] and the convergents py/qo, -+ ,Pn/qn to a.
Then [ay,, - ,a) = Pr_ and [y -+ s a1] = T To see this, note that p, =
Pn—1 Gn—1
AnPn—-1 + Pn—2 SO p_n =0p + 77— hence
Pn—1 (M)
Pn—2
1
Dn = Gy + )
Pn—1 1
Ap—1+ -+
P1/Po
ajag+ 1 1 ) n .
put 22— @902 a1 + —. This shows that Pn_—_ [an, - ,ap]. Similarly,
Po Qo agp Pn—1
Qn = AnQGn-1 + Qn_2, SO g _ a, + ——— and hence
dn—1 anl/Qn72
1
b,
dn—1 a+n—1++
@1/ q0
But ¢1/qo = a1/1 = ay, and hence I _ [an, - ai].
qn—1
Proposition 0.25. Let a be a quadratic irrational with o« > 1 and conjugate [
-1
satisfying —1 < B < 0. Then a = [ag, -+, a,] and 7 = [Gn, , ag).
. Uy,
Proof. Let 0 = [ay, -, ag] so 0 = [an, - ,a0,0]. Let — be the convergents to 6.
Un,
Ul + Uy .
Then § = ——— =1 Now, let Pn 16 t he nth convergent to a. By the preceding
Une + Un—1 dn
u?’l/ n o,
paragraph, it follows that — = P . By proposition 0.16 we have ged(py, pn—1) = 1,
Un Pn-1
unf n
so that u,, = p,,v, = p,_1. Further, we have 1_ 4 and hence u,_; = ¢, and
Up—1 gn—1
Pt + ¢n

Upn—1 = qn_1, since ged(qp, gn—1) = 1. But then § = , and therefore

pn—le + Gn—1

1\2 1
Pr10® + (qu1 —Pn)0 — @ = 0= —q, <5> + (Gn-1 — pn) <5> + pn1 = 0.

an (%)2 + (ga—1— Pn) (%) ~ Pn-1-

-1
Recall that « is also a root of ¢,22 + (¢u—1 — Pn)T — pn_1, and therefore 7 = B, as
desired. 0

This shows that

Let d be a positive integer which is not a perfect square. Then o = v/d + |v/d] has
conjugate B = —/d + [Vd] so —1 < § < 0. By proposition 0.23, we have

o= [2@/@7@1,--- L an] = [2a0, a1, ap).
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By proposition 0.25, we get

But

V- (V] = 04+ —— — [0,am - Zag).

Vi-1Vd]
On the other hand, a = Vd + [Vd| = [2aq, a1, - -, a,). Thus

Vd = lag, ay, - -+, an, 2a0] = [ag, an, -~ - , a1, 2ag].

Therefore, a,, = a1, a,_1 = ag,+ -+, s0 Vd = [ag, a1, as,- - , ag, a1, 2ao).

We can use this information to find all solutions in integers (x,y) of the equation
2 2
x®—dy” = 1.

Equations of the form 2% — dy? = £1, 2% — dy? = +4 are known as Pell equations.

Fermat had conjectured that for each d with d not a perfect square the equation
22 —dy? = 1 has a non-trivial solution, different from (x,y) = (£1,0). This was estab-
lished by Lagrange in 1768. Let’s consider the equations 2% — dy* = 1, 2> — dy* = —1
and suppose that x,y is a non-trivial solution in positive integers to one of them.

Then z > \/dy2 —1>yvd—1. Thus

1
o vy = —
|z + Vdy|

1

x+\/c_iy
1

= VA1)

Now d > 2 s0 Vd + v/d — 1 > 2 hence |z — v/dy| < 1/2y, so
x 1

— 2l < —.

‘\/_ yl 29

X n
By proposition 0.20, z/y is a convergent to Vd and = = Pr for some n > 1.

) dn
Then\/;l:p +1 7 Dot SO
Qnan+1 + anl

Qnan+1\/c_i + Qn—l\/c_l = PnQni1 + Pn—1,
hence

(qn\/c_i - pn)anJrl = DPn—-1— anl\/c_i = (pn - Qn\/a)an+1 = anl\/a — Pn—1-
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Therefore,

(P — ¢2d) = (gorVd — pu_1) (@uVd + py)
= (Gu-14nd + PnGn_1V'd — pp_1¢oV'd — pupu_1)
= (Pt — Pn-14n)Vd + (n@n-1d — prpn-1)
= (-1)"""Vd+h,h e

Suppose that p? — dg? = £1. Then +a,,, = (=1)""'Vd + h with h € Z.
The even convergents to v/d are smaller than v/d and the odd convergents are larger.

Suppose that p? — dg? = 1. Then from
(O‘4> (pi - erZL)O‘n+1 = (_pn71 + anl\/a)(pn + Qn\/a);

Pn—1
Gn—1

we see that —pn_1 + gn_1Vd > 0, so we know that vd >

, son — 1 is even.

Further, if p2 — dg? = —1, then n — 1 has to be odd.

The convergents of even index are smaller than v/d and those of odd index are larger
than v/d, and so by equation (0.4) if p2 — dg> = 1 then n — 1 has to be even.

Let us consider the case p2 — dg? = 1. Then anyy = Vd + h. Thus an.e = ay.
But v/d = [ag, @1, Gm] where m is the period, so the minimal positive integer for
which 7 = a1 = @opmyr = - -+. Therefore (n + 2) — 1 has to be a multiple of m,
say n = Im — 1 with [ € N. Note that in this case {m =n + 1 is even.

In the case p?2 —dq? = —1 we have n—1is odd and —a,, 11 = —v/d+h so Qi1 = Vid—h,
hence 12 = a1 and we have n = Im—1 as before. Thus [m is odd. This immediately
shows that if m is even, then the equation p? — dg? = —1 has no solutions.

Theorem 0.26. Let d be a squarefree integer with d > 1. Let m be the length of the
period of the continued fraction expansion of Vd. Then

(i) (z,y) is a solution of the equation u*> — dv? =1 in N if and only if * = p,,y = qn

where = is a convergent to vVd and n = lm — 1 where | € N and lm is even.
an

(ii) (z,y) is a solution to u® — dv? = —1 in positive integers xz,y if and only if
T = Dp,Y = q, where Pn s convergent to \/d and n = lm — 1 where | is a positive

dn
integer and Im s odd.

Proof. The forward direction in both claims are done already. Hence it suffices to
prove the converses.

Suppose that n = Im — 1. Then a,, 12 = ay, by periodicity, and so

\/E _ DPn+10n+2 + Dn _ DPn+101 + Dn
Qn+lan+2%_Qn gn+1014n
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1
Recall that oy = ———. We have

\/E — Qo
\/E<Qn+1a1 + Qn) - (pn+1a1 +pn) = \/C_Z(Qn—I—l + Qn(\/a - aO)) = Pn+1 +pn(\/c_l - aO)
= \/C_Z(Qn—l—l — Qo4n — pn) + Qnd — Pn+1 T QoPn, = 0.

But \/E Ql Q SO gpn+1 —Qodn = Pn = Oa so that Gn+1Pn _p721 = AoPndn and Pn+14n _dQZ =
aoPnqn- These imply that

P2 —dq2 = Pns1n — Gup1Pn = (—1)",
and the result follows from n + 1 = Im. O

Are there naturally occurring real numbers with nice continued fractions which do
not lie in Q(v/d) for any squarefree d?

Yes, for example e — 1 =[1,1,2,1,1,4,1,1,6,---].

To see this we introduce the following function. Let ¢ € R\ N U {0} be a real

number. Define

oo n

1 T

fc(ﬁ):ZC(Cle)(chn—l)m’

n=0

for x € R. This series converges absolutely for all x € R.
x
cle+1)

1 1 1 1 1 1
et D) (etn—Dn (4D (crmn der D) (ctn) (n=1Dl
Thus, for f.(x) # 0, we have

We can check that f.(z) = fer1(z) + fera(x), since

fc-i—l(x) _ fc-i—l(m)
fe@)  fer(@) + g fera(@)
1
T4 o fem@’

c(c+1) fer1(z)
when f.,1(x) # 0. We put z = 2% to obtain

fc+1(z2) . 1
Je(2?) B § <§ + Lfc+2(22)>

ct+1 fc+1(z2)

SO
2 foni(2) 1

¢ (P) ey

Therefore we have

Zfera(2?) [ c e+ c+n
7 oz

¢ f.(22) ’ T 704n+2]-
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c c+1 e
Now choose ¢, z so that — ,-+- are positive integers. Then ay,,0 > 1 forn >0
2’z

and

2 fen(2%) _ {0 cetl }
c f.(22) |77 ’ ’

z oz
1

We observe that if we take ¢ = 1/2 abd z = 557 € N then the conditions hold. Thus
Y

1 fa2(1/49%)

= an>3?/75y,"' .
y fi/2(1/4y?) | |

Put w = 1/y. Then

[
'M
Sis
:Z
s

Similarly, we have
2n

4 (7) X g

n=0

w2n+1

(2n +1)!

—w

[
gk

n=0

ew

— €

2

Hence,

wfsp(w?/4) v —e
fij2(w?/4) Cew 4w

el/v _ o=y
ey 4 ey

= [0,y,3y,5y,--].

If we take y = 2 we find that
e—1
e+1

Theorem 0.27. e = [2,1,2,1,1,4,1,1,6,1,1,8,---]. That is, ag = 2,a; = 1, and
asy = azpr1 = 1 for all k > 1, and aspro = 2(k + 1).

=1[0,2,6,10,14, - -].
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1
Proof. Let a = [2,1,2,1,1,4,1,1,6,---] and put 6§ = e+1 = [2,6,10,14,---]. Let

r
— be the nth convergent to 6 and let Pn e the nth convergent to . Notice that
Sn dn

0+1

e = since

e+1 2e+1—1
e—1 + 1 e—1

S T erloel

Since 7r,/s, — 0 it is enough to show that ps,.1 = r, + s, and g3,41 = 7, — s, since
then

—1=ce.

P3n+1 Tn + Sn

q3n+1 Tn — Sn

/st 1
Corn/s, — 1
— €.
This would then show that a = e.
We will prove p3,i1 = r, + s, and ¢3pe1 = 1 — S, for n = 0,1,2,--- by induc-

tion. For n = 0, we have 1o = 2,59 = 1 and p; = 3,¢4 = 1 and for n = 1 we
have r = 13,s; = 6, with p, = 19,¢q4 = 7 and so we are done for n = 0,1. For
n > 2 we have r, = (4n+ 2)r,_1 + 1,2 and s, = (4n + 2)s,_1 + S,—2. In addition,
we have ps, 3 = p3n—4 + D3n—5,P3n-1 = 2NP3pn—2 + P3n-3, P3n = P3n—1 T P3n—2, and
P3nt+1 = P3n + P3n—1. These imply that

DP3n—3 = P3n—a + D3n—5
—P3n—2 = —P3n—3 — P3n—4
2p3n—1 = 4Anpsn—2 + 2p3n-3
P3n = P3n—1 + P3n—2
P3n+1 = P3n t P3n—1
Adding these, we obtain
Pant1 = (40 + 2)p3n—2 + P3n—s
and similarly, we obtain
Gny1 = (41 + 2)@3n—2 + G3ns-

It now follows from the recurrence for r,, s,, and the inductive hypothesis that ps,.1 =
Tn+5nandQ?erl:'rn_Snforn:()?laZv"' U

It is possible to determine the continued fraction expression of /¥ for all y € N in

this way. Notice that if Pnore the convergents to e then
an

- m 2m\ "
gsm— > [ J(2) = 2mml > (—) .
j=1
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1
By proposition 0.19, |e — bn > —————. lfn+1=3m—1for some m € N
dn (qn-l-l + 2)qn
n+2 )
then a,11 = 2m =2 and otherwise a,,1 = 1. Thus a,.2 + 2 < 4n. But
2[n/3\ "7
Gn > q3[n/3]—1 > ( L 6/ J) .
n\"/6 : ..
For n >3, |[n/3] > n/6 so for n > 3, we have ¢, > (3—) . Thus there is a positive
e
real number ¢ such that for n > 4, we have
log gy,
in < ¢ 084
log log q,,
Therefore for n > 4, we have
Pn 1
e- - loggn 2"
n log log ¢ In
1
Recall that if p/q is a rational with 'e — ]—9‘ < 202 then p/q is a convergent to e.
q q
Therefore there is a positive number ¢; such that if ¢ > 4 then
P c1 loglog q
e — — > —2.
q| ~ (logq)q

Notice that e cannot be as well approximated by rationals as a typical real number
since for almost all reals a the inequality

P 1
oa——| <
q| q*loggqloglogq

has infinitely many solutions in rationals p/q.

The continued fraction expansion for 7 is 7 = [3,7,15,1,292,1,1,1,2,1,3,---]. No
patter has been discerned to date.

p
7T__

q

c
> qz' In 1993

for all sufficiently large q. Salikhov proved that

Mabhler in 1953 proved that there exists ¢ > 0 such that

W_fz\ .
q

Hata proved

8.017
q

1
(76065

p
7"'__

q

General question: How do we expect the ¢,’s to grow and how do we expect the
partial quotients to be distributed for a typical real number?

>

Observe that ¢qo = 1,¢1 = a1 and ¢, = a,¢n_1 + ¢n_2. Note that ¢, > u, where
ug = 0,u; = 1 and u,, = u,,_1 + U,_o for n > 2. Here u,, = F, is the nth Fibonacci

number and " .
1 (145 1-+5
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1 (1 "
Thus ¢, > ——= V5 .
2v/5 2

Theorem 0.28. There exists a positive number ¢ such that for all o except a set of
Lebesque measure zero, such that q, = qn(a) < €™ for all n sufficiently large with
respect to «.

Proof. (Khintchine) Clearly we may restrict to v in (0, 1), since a countable union of
sets of measure 0 remains measure 0. Let g > 1 be a real number and n € N. We
define E,(g) to be the set of a € (0,1) for which a; ---a, > g.

Let (a1, -+ ,a,) be a sequence of positive integers. We now determine the mea-
sure of the set of a’s in (0, 1) whose first n partial quotients are aq,--- ,a,. That is,
Q= [07 Ay, 5 an, Oén+1].
Q + Pn— . .. .
We have q = 20l T Pat ooy any1 € [1,00). Therefore «v is in an interval
QHan+1++ qn—1
with endpoints &, Pn T Pn=1 Ty see this note that
qn qn + n—1
Oé—& _ pnan—i—l_‘_pn—l_& _ 1
An nOint1 + dn—1 dn Qn(Qnan-l—l + QH—l) 7
which is a monotone function of av, ;.
. . 1 .
The length of the interval is —— < — and since ¢, > a,¢,_1 we see that

Qn(Qn =+ anl) q%
the length is less than

(@1 an)?
Recall that E,(g) is the set of v in (0,1) for which a; ---a, > g. Thus, u(E,(g)) <
1
Z ———- Note that
W, (al ce an)

o1 a; + 1 -
HG_?ZH( ) (az+1 H az+1

i=1 i=1 i

“ toopaitt dxl
H a;(a; + 1) H/

i=1 i=1

/‘“+1 /a"Jrl dry---dx
n

2... 2

xn

dzy - --dx,
Put J,(g) = / L0 here R is the region of (z1,--- ,x,) € R" with z; > 1 for
R

But

2 2
'-'El .. ‘:I/‘n
i=1,2,---,nand z;---x, > g. We see that pu(E,(g)) < 2"J,(¢g) and so it remains

to estimate J,,(g).

< dx \"
If g <1, th n = — = —1.
<o ()
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We will prove for g > 1 that

n—1 ;
1 log g)*
Ju(g) = ( g'g)
g 1=0 v
We will do this by induction on n. For n = 1 we have J;(g) = —5 = —, as
Ly [

required. Let us assume that the result holds for n = k, for some k > 1. Then
*dx
Jry1(g) = / ng S (i> .
1 Tpp Tk

Apply the change of variable u =

Lh+1 Lht1

Jini(g) = / %kadu

. /01 Jp(w)du + é /19 I (u)du

g
1 1 /91 (L (logu)

:_+_/_ o (osuld g,
9 91 v\= 7!

L, 1y (logut,

g g (+1)! !

1 14 (log g)"*!

g g4 (i+1)

_ 1~ (logg)*
9= i
as desired.
1 <= (log g)!
We see that p(E,(g)) < 2"J,(9) = 2”—2 g‘g . Now take g = e/ for a pos-
9= "

itive real number A > 1. Then

=exp((log2 +1log A+1— A)n).
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Choose A so that log2 +log A+ 1— A < 0. Then Z 1(E,(e”™)) converges. By the

n=0
Borel-Cantelli Lemma, we see that almost all a’s in the sense of Lebesgue measure will

belong to only finitely many of the E,(e")’s. Thus for almost all o, a; - --a, < 4"
for n sufficiently large in terms of a.

But ¢, = a,¢,—1 + ¢n_2, hence ¢, < 2a,¢,-1 and so ¢, < 2"ay---a,. Therefore
Gn < 2n€An — e(log 2+A)n' 0

In 1935 Paul Lévy proved by probabilistic arguments that g»/™ — exp(m?/(121og2))
for almost all real numbers «. To prove results of thsi sort we will use ergodic theory.

Consider a probability space (£2,%,P) consisting of a set {2, a o-algebra ¥ on ,
and P a probability measure on ¥ (so that P(2) = 1). We say that 7 : Q@ — Q is a
measure preserving transformation on (2,3, P) if for B € ¥ we have T"'B € ¥ and
P(T~'(B)) = P(B). Let L' be the measureable functions of f from € to Q which are
integrable. Then if 7" is measure preserving and f € L', we have

/QdePZ/Q(foT)d]P’.

Definition 0.29. Let T be a measure preserving transformation in a probability
space (2,3, P). Then T is said to be ergodic if whenever B € ¥ and T™'B C B, we
have u(B) € {0,1}.

Theorem 0.30. (Ergodic Theorem) Suppose f € L' and T is ergodic. Then

n—1
1 .
lim — T o) = dpP
Jim -~ ]E:O (T a) /Qf
for almost all o € € with respect to P.

Let X = (0,1) C R and B the Borel o-algebra on (0,1), and p = [P the Lebesgue

1 1
measure of (0,1). Let T': X — X be defined by T'(z) = — — —J. T is not measure
T T

preserving with respect to Lebesgue measure, but we can modify u to give us uq,
where for all f € L' we have

1 f)
'ul(f)_logQ 0 1+:7cdx'

Note that py is still a probability measure.

We claim that T is measure preserving with respect to . It suffices to check that T
is measure preserving on any interval (a,b) with (a,b) C (0,1).

WehaveTl((a,b)):U( ! : ! ).Sinceifaél—FJSb,thenlzn—l—e
i \b+n a+n r |z x

> 1 1
for some n € N with a < 6 < b. Certainly U ( in At ) is measureable, and
n a-+n

n=1
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since the intervals are disjoint, we have

(U)o (k)

n=1

n=1 b+n
_ 1/(atn)
= ; log 2 log(1 + w)’l/(b+n

 [— 1 1
= log (1 —1 1
10%2;(%( +a+n) Og( "o )

o a+n+1 log b+n+1
& a+n b—l—n

Note that

as N — oo. Hence

(T ((a,)) = —— log (“ 1) — u((a,5)),

log 2 a+1

so T'is a measure preserving transformation with respect to .

This invariant measure for the transformation 7" was discovered by Gauss in 1812.

1
Given a € R, recall that o, = a, + forn =20,1,2,--- or o, — a,, = .
(77 NN] (07 |
. , 1\! 1\ 1
This is equivalent to | — — [ — = . Note that o, > 1 for n > 1.
O Qp, Opt1
Therefore we have that
1
T(— )= n — LOn
(2) =an - Lou]
=a+n-—ay,
1
Qn41 '

It can be proved that T is ergodic with respect to pu;. We can take f to be the
1 1
characteristic function of ( 1 k;) for £ € N and apply the ergodic theorem to
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conclude that for almost all « in the sense of the measure p; and hence in the sense
of Lebesgue measure,

3 ] _
lim § f(Ta) = 1o /X fdpu

1 / dx
~ log?2 ﬁl—l—z

1 1/k
log log(1 + )|} 441

- 103-;2 o (%)

Therefore for almost all real numbers «, in the sense of Lebesgue measure, the fre-
quency with which k appears as a partial quotient in the continued fraction expan-
(k+ 1)
k(k+2)
Kuzman in the 1920s. Thus the expected frequency of 1’s is 0.41503---, of 2’s is
0.169925 - - -, etc

Sl

1
sion of « is Tou 2 log ( ) Gauss had conjectured this and it was proved by
og

Observe that if @ = ap € (0,1), then T"(a) = 1/ay41 for n = 0,1,---. Further,
a, = |y ]. Thus

(al o an)l/n _ (LTO(a)_lj ... I_Tn—l(a)—lj)l/n

and so
1 & 1 & 1
— | i = — | — .
=1 =0

1
We now take f(x) = log {—J and apply the ergodic theorem to deduce that for almost
x

all @ € (0,1), in the sense of Lebesgue measure, that

Y1 logll
lim — E logaz—/ —de
n—o00 N o log2 1+=x
1/n dr
1
IOgQZ o8 //(n+1 1+2x

1 1+1/n
" log2 ;(l‘)gn) log <1+ 1(n+ 1))

1 & (n+1)2
- lognlog 22
log 2 ; e o8 (n(n—i—Q))

Equivalently, we have

logn
1) s2
' 1/n_> n—+
(a1 U( n+2>
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for almost all « in the sense of Lebesgue measure.

We will deduce the Khintchine-Lévy result about the growth of ¢, for almost all

a. First we observe that if [0, ay, as,- | = pn/¢n, then
(05) dn = [ala"' 7an][a27"' 7an]"'[an]
since if [aj, -+ ,a,] = % then [aj41,- -+ ,a,) = — and so we get equation (0.5) by a
c
telescoping product with first term n and last term a, /1.
Pn
As an aside, note that [a;, -+, a1] = ¢;/¢j—1 50 ¢ = [an, -+, a1] - - - [aq].
We will first show that if the first n + 1 partial quotients of a are [0,ay,- -, a,]

then |log(T"(a)) — log(T (pn/qn))| < 272 @1=D+1 We do this by induction on n. It

suffices to prove this for + = 0. Since « is in an interval with end points Pn and

an
Dn +pn71
—————. we have
An + dn—1
PntPn—1
pn/Qn pn/qn pn(Qn + Qn—l)
But

1

Qn(pn +pn—1) . pn(Qn + Qn—l) —
pn(Qn + Qn—l)

pn(Qn + Qn—l) pn(Qn + Qn—l)

dnPn—-1 — Pndn—1
pn(Qn + Qn—l)

Thuslog( >:10g1+t,witht§—. Now |log(1l — z)| < 2z for
0 <z <1/2and |log(l+z)| < z for the same range. Therefore |loga — log <pn) <
dn
2
—forn=1,2,---, and since ¢, > 2%("_1), SO
pn(Qn + Qn—l)
Pn 2
log oo — log (q—n> ‘ < YT
forn =1,2,---. Therefore
-1 n—1
. -1
(log (T"(a)) — log (TZ <&>)> < ZQT(”_l_’)H
=0 n i=0
<2 —
> (%)
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n—1

Since —logq, = E log <Ti (&)) we have
- q
=0

n

@) +logg,| < T.

Hence, we have

7
< —.
n

] — ,
= log(T' (@)™ ~logg,
1=0

Therefore for all irrational o we have
1 n—1
N i -1 _
Jim — <z_; log(T" () ™" — log qn> 0.

Thus by the ergodic theorem, with f(z) =log(1/x), we find that for almost all «, in
the sense of Lebesgue measure, we have

1 1 ["log(1
lim qun—lm Zlog (T (a /og( /x)dx

Or equivalently,

1
lim ql/” = exp ( L / 1Og(l/x)dx) .
0

n—00 log 2 1 +x

1 2
log(1/x)d

It remains to show that / M -

. l+a 12

Let f(z) = logz and g(x) = log(1 + ). Then

" (log(z+1) logx

Since lim log(z)log(l+ x) =0 and lim log(z)log(1 + z) = 0, we have

z—0t+ z—1—

1
/ <log(1—|—x) N logx> dr = 0.
0 x 1+
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Hence

/1 de _ /1 log(1 + x)dx

1+«

n=1
_ 1+1
N 49

7T2 72 7T2
TS a1

as required.

Recall the Euclidean algorithm. Given positive integers v and v with v > u we

compute the ged of w,v by putting 1o = v,y = w and r,,,_1 = @’y + Tmyr for
m = 1,2,--- where a;’s are positive integers and ro > ry > ro > ---r,.; = 0. Thus
ged(u,v) = 1.

Notice that if ged(u,v) = 1 then - [@m, -+ ,a1]. Thus the number of applica-
u

tions of the division algorithm in the Euclidean algorithm for « and v correspond to
the length of the continued fraction expression of v/u.

Given two positive numbers u and v with u < v let L(u,v) be the number of steps
in the Euclidean algorithm to determine ged(u,v). In 1970 J. Dixon proved that for
e > 0 there exists c¢g(€) > 0 such that

12log 2 1
‘L(u,v)— W(;g logv| < (logwv)z*e

for all except at most 22 exp(—co(log(x))¥/?) of the pairs (u,v) with 1 <u < v < 2.

Heilbronn had proved earlier that for each positive integer v > 10, we have

v

12log 2
Z L(u,v) — 7r02g logv = O((loglog v)*).

p(v) =
ged(u,v)=1

How well can we approximate real algebraic numbers of degree at least 37 The first
result of interest was proved by Liouville in 1844.

Theorem 0.31. (Liouville) Let « be an algebraic number of degree d with d > 1.
There exists a positive number c(a), which us effectively computable in terms of «,
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such that

for every p/q with q¢ > 0.

Proof. Let f be the minimal polynomial for o over Z. That is, f is the polynomial in
Z[z] of degree d, with coprime coefficients and positive leading coefficient which has
« as a root.

: P I
We may assume « is real since if « is not real we may take c(a) = 5 Win la — 4.
HeR

Since d > 1 we have f (1—)) # (0. Thus by the mean value theorem, we get
q

=l Q=1 )=l

where 6 is a real number between « and p/q. Note that if |« — B‘ > 1 the result
q
holds with ¢(«) = 1/2, and so we may suppose that |a — E‘ < 1.
q

If f(x) = agz?+ ag12% 1 + - + ag then f'(z) = dagz®! +--- + a; and so
[f(O)] < daag(lal + 1) + - + .
Here we can take c(a)™! = 2(dag(Ja] + 1) + -+ + |ay]). O

Liouville constructed the first numbers known to be transcendental with his result.

=1
Theorem 0.32. The number Z —— 18 transcendental.
n=1

— 10m
o0 N 1
Proof. Let a = Z o and sy = ZW Clearly, if sy = pn/qn for positive
n=1 n=1

integers py, gy with ged(py, gy) = 1, then gy = 10" Thus we have

(e 9]

PN 1
Tl n;m 10"
1
RETGD]
1
N
Which shows that the conditions of Liouville’s theorem do not hold, and hence « is
not algebraic. O

1
Let a be an algebraic number of degree d. The inequality ‘a — 1—9’ <= has only
q

finitely many solutions in rationals p/q if u > d (Liouville’s Theorem), if p > d/2+ 1
(Thue), if p > 2v/d (Siegel), if 1 > v/2d (Dyson), and if u > 2 (Roth).
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Theorem 0.33. (Roth’s Theorem) Let v be an algebraic number and let € > 0 be a
positive real number. Then there exist only finitely many distinct rationals p/q with
q > 0 for which

P 1
04—5‘ < q2+5'

Remark 0.34. In light of Dirichlet’s Theorem, Roth’s Theorem is essentially best

possible. In view of Khintchine’s Theorem one might expect improvements of Roth’s
1

Theorem with — replaced by ——————, but no progress has been made in this

o q q*(log q)'+’
direction.

Notice that Roth’s Theorem tells us that a,+1 < ¢, for n sufficiently large. Recall
that go = 1,1 = a1,qn = anGn-1+Gn—2 forn =2,3,---. Thys ¢, < (a,+1)---(a1+1),
whence

Upt1 < ((a1 + 1) s (Cln + 1))6
for n sufficiently large. It follows that logloggq, < c(a)n where c¢(«) is a positive
number which depends on «. Davenport and Roth (1955) proved that for each real
algebraic number « there is a positive number ¢;(«), which depends on «, such that

n
loglog g, < cl(a)\/@.

Perhaps the most important applications of Roth’s Theorem is to the study of Dio-
phantine equations. Let m € N. Consider the Diophantine equation 23 — 2y® = m,
in integers x,y. This equations implies that

2’ ‘:

ik
which by Roth’s Theorem can only be satisfied by at most finitely many pairs of z, y.

| 3

Let F(x,y) = a,2™ + a,_ 12" 'y + -+ + apy™ € Z[z,y|. Suppose that F is not the
zero-form. Then F' factors over C in the form F(z,y) = Li(z,y)La(x,y) -+ Ly(x,y)
where L;(z,y) = v;x + 0;y for i = 1,2,--- ,n. Suppose that the discriminant of F' is
non-zero, or equivalently ¢ # j implies that L; and L; are linearly independent over C
so F' does not have multiple factors. Let (x,y) be an integer point with F(x,y) # 0.
Then by re-ordering the forms we may suppose that

0 <[Li(z,y) < [La(z,y)| < -+ < [La(z,y)].

)
If vy =0 or 7; # 0 and e Q then |Ly(z,y)| > ¢; for some positive number ¢;. If
T

)
v # 0 and y = 0 then |L;(z,y)| = |7%|(lz] + |y|). Finally if 41 # 0, — is irrational,

71
-4
and y # 0 then Li(x,y) = ny (f — <—1>) . Therefore, by Roth’s Theorem, for
ga!

Y

each € > 0 there exists a positive number ¢ | €, _—1> such that
2!

Co

La(z,y)| = eaolyl ™ 2 e
([ + [yl)*+
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Since Ly and Ly are linearly independent over C, we have

| Loz, y)| = %(!Lz(l’,y)\ + [ La(z,9)]) > es(lz] + [yl)

for some ¢3 > 0. Thus
Co

@9l >

s (|2 + [y = cacs T (|| + [y)" T

We conclude that if F'(x,y) is a binary form of degree n with non-zero discrim-
inant, then for each ¢ > 0 there are only finitely many integers z,y for which
|F(z,y)] < (Jz| + [y])"*°. In particular, if n > 3 and m € N then the equa-
tion F'(z,y) = m has only finitely many solutions in integers z, y.

The equation F(x,y) = m is known as Thue equation.

Since the constant in Roth’s Theorem is not effectively computable, it is not pos-
sible to bound the size of the solutions in Thue equations. However, it is possible to
bound then number of solutions. The critical point in showing that F'(x,y) = m has
only finitely many solutions is that one needs an improvement on Liouville’s Theorem.
If this can be accomplished effectively then one can ‘solve’ Thue equations. In fact,
there exist effective improvements on Liouville’s Theorem. They follow from Baker’s
estimates for linear forms in the logarithm of algebraic numbers.

We will follow Cassel’s version of Roth’s Theorem. Thue, Siegel, and Dyson proved
their results by examining polynomials in two variables. Roth used polynomials in
several variables.

First note that we may assume « is an algebraic integer for the proof of Roth’s
Theorem, for if @ has minimal polynomial a,x™ + - - + a1 4+ ag € Z[z], then a,« is
a root of

"+ ap 12"+ apan_or 4o+ alaz_lx + aoaz_l.
an is thus an algebraic integer. Suppose that

1 1

p
— <
@ro T 2te/?

(){__
q

<

for ¢ sufficiently large. Thus we may suppose « is an algebraic integer.

Let o be an algebraic integer with minimal polynomial 2™ + a,_12"" " + --- + ay.
We denote the height of o by h = max{1, |a,_1],- -+ ,|ag|}. For the proof we will
employ polynomials of the form

R(xl’... ,xm): Z C(jh... 7jm)lelxigb7
0<ji<r;
1<i<m

where C(jla' te 7.]m) € R for all (jlv' te 7]m)
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We define R by R =  ax lc(J1, -+ 4 Jm)| and we define
)T
1<i<m

Ril’...,im(x17"‘ 7$m) == .—---.——."'—,R(I17... 7xm)'

Proposition 0.35. If R has integer coefficients then R;, ... ;. has integer coefficients
for any non-negative integers iy, - -+ ,i,. If R has degree v, in variable x, for u =
1,2,---,m then R,, .. ;, has degree v, — i, foru=1,2,--- m. Further, we have

Rih"',iu < 2r1+-~~+rmﬁ'
Proof. Since

n Jm ' )it jrm—im
Ril,"',im = Z (Z1> e (Z )C(jlj'.‘ 7]m)lel 1..'1.‘1”( ’

T <Ju<Ty m

the result follows on noting that <j1) e <Jm> < Qittim L gritetrm, O
4]

im

By Taylor’s Theorem in several variables, we have

(06) R(‘Tl + yl? e ,I’m + ym) = Z yil e yf;lnRila"'aim (.Tl, e ,.’,Cm)

0<iy<ry

We shall say that R has index I at (v, - -, au,,) with respect to (s, -, S,), where

i

(o1, ) € R™ and sy, -+, 8, € N, if [ is the least value of the sum E - for
Su

u=1

which R;, ... ;, (a1, -+, ay,) does not vanish. Note by equation (0.6) I exists provided
that R is not identically zero. If R = 0, we put [ = oo.

Proposition 0.36. Let ind denote the index of R at (v, , ) with respect to
(s1,-+ ,8m). Then

(1) ind Ry, ... ;,, > ind R — ; 5

(ii) ind(R(l) + R(Q)) > min{ind R(l), ind R(Q)}, and

(iii) ind(RYRP) = ind RY 4 ind R®.

Proof. (i) is immediate and for (ii) and (iii) put s = sy - - s, and I = ind R. Then by
(i) t*! is the least power of ¢ occurring in R(xy +1/%1yy, - -+ | 2y, +1/*my,,) considered
as a polynomial in the variable ¢. Il

Proposition 0.37. (Siegel’s Lemma) Let N and M be positive integers with N > M.
Let aj, € Z for 1 < j < M,1 < k < N with |aji| < A, and A > 1. Consider the
N

system of linear equations Lj(xy,--- ,xn) = Zaj’kxk =0, foryg =1,2,--- , M.
k=1

There exists a solution in integers x1,--- ,xn, not all zero, with

max |z;| < {(NA)%J ‘

1<i<N
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Proof. Put X = {(NA)ﬁJ Then NA < (X +1)"%", hence

NAX < (NA)(X +1) < (X + 1),
Notice that for any (21, -+ ,2y) € ZY with 0 < 2, < X,i=1,2,--- , N we have
_BJX S Lj('zla e 7Zm) S C]X

where —B; is the sum of the negative coefficients of L; and Cj is the sum of positive

coefficients of L;. Note that B;+C; < NAfor j =1,2,--- , M. Thus L;((z1,- - , 2m))
takes on at most NAX + 1 different values.

Notice that there are (X +1)% different values of (21, - - - , 2,,) but at most (NAX +1)¥
different values of (Ly((z1,--+,2n)), -, Lar((21,- -+ ,2n))). Since (NAX + )M <
(X + 1)N we see that there exist two distinct vectors z;, zo for which

(L1(z1), -+, La(z1)) = (La(22), - -+, Lar(22)).
Hence if we put x = z; — z,, we obtain
(Ll(x)>"' 7LM<X)) = (Ov"' >0)

and the result follows since max |z;| < X. O
(2

Proposition 0.38. For each integer [ > 0, there are rational integers aél) with 0 <
J < n such that

o =a ),10z"71+--~+a[()l)

with al’] < (a + 1)

Proof. This is immediate from the fact that a1 ---  «a, 1 form a basis of Q(a) as a
vector space over Q. Il
Proposition 0.39. For any positive integers ry,--- ,r,, and real number \ the number
L 1 .
of m-tuples of non-negative integers i1, -+ ,i,, such that Z — < Q(m — \) with
Ty
u=1

0<i,<ry,u=12--,mis at most (2m)"2AX Y (ry +1)--- (rm + 1).

Proof. Proof is by induction on m. Note that for m = 1 the result is immediate since
the number of solutions is at most r 4+ 1 and is at most 0 if A > 1. Assume the result
for m — 1. Then for fixed r = r,, and i = 4,, the number of (m — 1)-tuples of integers
satisfying

3
L

< 5(m—=2A)

S
Il
—

~.
S
=N | s,
N =
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m—1 .
w 2
is the same as the number of (m — 1)-tuples satisfying — < (m A— —Z),
Ty r

N | —

X

1
which is bounded above by (2(m — 1))"/? ) (ri+1)---(rp-1+1). But

A+2-1
- 1
;;A + 2 E:( -1+ 2 A+1—%>
A+1— LN -1+ 2
_Z 1—2@/7“)

Z)\2 1—22/70)

<2@+1h2_r

Therefore the total number of m-tuples is at most

(0.7) (2(m — 1))Y/2 (ri+ 1) (rpy +1)(r +1)

A2 —1

If A < (2m)'/2, then this bound is subsumed by the trivial bound (r; +1) - - (r,, +1).
Thus assume A > (2m)Y2. We then obtain

1/2
A2—1>A2<L—J;)>A2<L—i)
2m m

and the result follows from (0.7). O

Theorem 0.40. Let 0 < ¢ < 1 and let a be an algebraic integer of degree n, with min-
imal polynomial f(x) = 2"+ ap_12" 1+ -+ +ag and put a = max(1, |an_1|, - ,|aol)-
Let m be an integer with m > 8n%c=2, and let r1,--- , 7, be positive integers. There
exists a polynomial R(xy,--- ,x,,) with integer coefficients and degree at most 1, in
Ty foru=1,2,--- m which

(i) does not vanish identically,
(ii) has index at least %m(l —¢) at (a, -+ ,a) € R™,
(11i) R < 4(a + 1)t trm,
Proof. We write
R(wram) = S e sdm)adt - -al,
0<ju<ry

1<u<m

where ¢(j1,- -+, Jm) are (ry + 1)+ (ry, + 1) integers to be determined. Put N =
(ri+1)---(r,+1). We want

(08) Ri17...7im (Oé, T ,Oé) =0
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m .

1 1

for all non-negative integers ¢y, -- , %, for which Z — < =(m —¢). Plainly (0.8)
Tu

u=1

holds if i, > r, for some v with 1 < v < m. In (0.8) we express the powers of

« as integer linear combinations of 1,a,--- , " ! using proposition 0.38. Then we

find that solving (0.8) is the same as solving n-linear equations in the coefficients

C(jlv o 7]m) Since

Ril,---,im(&, eLa) = Z (Jl) e (jm) c(j1, - ’jm)ajl—m e Oéjmfim’

T <Ju<Tuy “ bm
1<um
it follows that R;, ... ;. (o, -+ ,a) = 0 is equivalent to the system of equations
Z (]1) . (]m) a}(jl—i1—i—~~.-i-jm—im)C(jl7 .. ’]m) =0
. ; (41 im
1y <Ju<Ty
1<u<m
for k = 0,---,n — 1. Since Ju < 20w < 9™ for w = 1,2,---,m and since
by

(1 —41) + -+ (Jm — @m) < r1 4+ -+ + 71y, by proposition 0.38 the coefficients
are at most (2(a + 1))+ in absolute value.

Now take A = me in proposition 0.39. The number of m-tuples of non-negative
integers is at most (2m)Y?(me)~(ry + 1)---(r,, + 1), hence the number of linear

equations with integer coefficients satisfied by the ¢(j1,- -, jm)’s is at most
M < n(2m)Y?*(me) N < N/2,
since m > 8n?e~2. Thus, by Siegel’s Lemma, there exist integers c(ji, - - , jm), not all
zero, such that (0.8) holds for all non-negative integers iy, - -+ , i, for which Z fu <
Ty
u=1
1
§m(1 —¢)and A = (2(a+ 1))t with
max ’C(jla T 7jm)‘ < (NA)ﬁ

< NA

<(ri+1)-(rm+1)(2(a+ 1)) Htrm

< (o + 1))

O

Theorem 0.41. Let 0 < 6 < 1/12, 0 < € < §/20 be positive real numbers. Sup-

w 1
pose that p,/q, € Q,u = 1,2,--- ,m are such that a—p— < —— and q, >

Gu AN
64(a + 1) max(1, |«|) foru=1,2,--- ,m. Let ri,--- ,ry, € N be such that rlogq; <

rylogq, < (1+¢e)rlogqy foru=1,2,--- ,m. Then the index of the polynomial R

constructed in Theorem 0.40 at &, e ,Zﬁ> with respect to (ry, -+ , 1) is at least

qQ1 qm

om

3
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Proof. Let ky,--- ,k,, be non-negative integers for which

Put T'(zy, -+ ,&m) = Riy . g, (1, -+, Tp). We must show that T (&, e ,p—m) =
q1 dm

0. By Theorem 0.40 and proposition 0.35 we see that 7" has integer coefficients and

T < (8(a+ 1))+t Since T has degree at most r, in z, for v =1,2,--- m, T

has at most (r; + 1)« (r,, + 1) terms and hence at most 2" " terms. Thus for

any non-negative integers iy, - - - ,4,, we have, by proposition 0.35,

Ty i (0, -+ @) < (222 (8(a+ 1)) max(1, [af))

so that
(0.9) |Ti1,--~,im (a’ . ’a)| < (32(& + 1) max(l, |a|))7"1+...+rm.

By theorem 0.40 the index of R at («,--- ,«) with respect to (r1,--- ,r,,) is at least
1
§m(1 — ¢). By proposition 0.36 (i), the index of T" at («,--- ,«) with respect to

(ri,--+ ,7rm) is at least
k1 5
—-m(l —¢) — —z—m(l—e)——m
u=1 Qu 8
1 o
. : : 1 0 Pu
Since 0 < & < 0/20 the index is at least 3m 1— 3) Put 8, = — —a for u =

1,2,--- ,m. By Taylor’s Theorem, we have

(010) T (&’ 72_m) = Z 7}17“..1'771(0(7-.. 705) il 5:7;”

N 0< i <ru
1<um
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A 1 ) . .
But Tj, ... i, (o, -+ ;&) = 0 unless Z— > —-m|1-— 3 ) For such iy,--- i, we

) 1
have, since |3,| < F foru=1,2,---,m and
u

—log B} -+ Bir| > (24 6) D iulogqu

u=1
m

= (24+0)) “(ruloga.)

u=1 Y

> (24 6)rilog ¢ Z .
u=1 "

> (24 8)r log g1 (_% <m _ g))
(e ()

1 4]
Remark 0.42. The coefficient 1/2 in om (1 — §> is the exponent 2 in Roth’s The-

orern.

J J 5 b2
Observe that 1+§ 1—§ = 1+6_€ and that 0 < 0 < 1/12, so

(14—%) (1—%) > 1—1—%. Since 0 < € < 0/20 we have (14—%) > (14 ¢)?. Thus

By Bl < (g™ )T
There are at most (r; + 1) -+ (1, +1) < 27" terms in the sum (0.10). Thus by
(0.9), we have

Qg T (?: T Z—m) ‘ < 2mHHTm(32(a + 1) max(1, o)) T (gt gl ) TE
1 m

< 2'r1+~~'+7’m (2—(1’1+"'+Tm)) <1

by the choice of the ¢,’s.

T Tm p]. pm
QIl"'QmT<_7"'7_)
Q1 qm

are done. O

Since is an integer less than 1, it must be zero, so we

We must now extract a contradiaction. Té), this end we introduce Wronskians. Let
i1 Bm

A denote an operator of the form e B We say that 7; + - - - +1,, is the order
T xim

of A.

If Ay,---, Ay have orders at most 0,1,--- ,h — 1 respectively and ¢, -+, ¢, are
functions of xy, - - -, z,,, we call det(A;p;)1<;j<n a (generalized) Wronskian.
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i—1
i—1°
dzy
di-

the only Wronskian that don’t vanish identically are of the form det (—,llgoj>

7
dzxy

If m = 1 then there is only one A of order i, given by As a consequence

Proposition 0.43. Let pq,--- ,pp be rational functions (quotients of polynomials)
of variables x1,- - , x,, with coefficients in Q. Suppose that the only rational numbers
C1,- -+, cp with ey + -+ cppp =0 are cg = --- = ¢, = 0. Then some Wronskian
det(A;p;) does not vanish.

Remark 0.44. If there is a non-trivial linear combination among the ¢;’s then all of
the Wronskians vanish.

Proof. We shall prove the result by induction on h. When A = 1 the only Wronskian
is oy itself, and by assumption ¢; is not identically 0.

Suppose that the result holds for A~ — 1. Note that ¢; is not identically 0. We
put @7 = @1 p; for j = 1,2,--- 'h. By the rule for differentiating products we
can express a Wronskian of ¢}, -+, ¢; as a sum of Wronskians of ¢, , ¢, each
multiplied by rational functions of ¢;. It now suffices to look for a non-vanishing
Wronskian of ¢7, -+, ¢}. Notice that any non-trivial linear relation over Q between
©3, -,y gives us such a relation for ¢q,-- -, ¢,. Thus, without loss of generality
we may suppose that p; = 1.

If vy, is a constant, say ¢, then cpy — ¢, = 0, contradicting 1, - - - , @ being linearly

independent over Q. Therefore there is some variable, say xy, for which (9_% # 0.
x1

Suppose there is a non-trivial rational linear combination of s, - -+ , ¢, which is in-
dependent of x1, say cops + - - -+ cppp. Then one of ¢o, - -+ | ¢,_1 is non-zero and there
is no loss of generality in assuming ¢, # 0, and indeed we may take ¢y = 1.

0
Thus a—(02g02+~ +epen) = 0. Observe that if we replace oo by wa+c3ps+- - +cppn
T

0
we don’t change the Wronskians. By doing so we may suppose that 8—902 = 0. We
Ty

can repeat this argument and in this way we find an integer k with 1 < k < h for

which
91 _O¢r _ _ On
(9:101 8961 axl

and for which there is no non-trivial linear combination of ¢y1,-- - , @y over Q which
is independent of 1, or equivalently there is no non-trivial rational linear combina-
O Oen

8x1 ’ ’ 81’1.
By the inductive hypothesis there exist operators Ay, -, Ay of orders at most
0,1,---,k — 1 respectively such that

tion of

Wi = det(A;p))1<ij<k # 0.
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. T . 0 0
Further, since there are no non-trivial linear relations over Q between ng R 8_%
~ ~ 1’1 fL‘l
there are operators Ag,q,- -, A, of orders at most 0,1, --- , h—(k+1)—1 respectively

for which

Wy = det (Ai%) #0
L1/ k+1<ii<h
Put A; = A, for i =1,2,-+ k and A; = Ajz- for i = k+1,--- ,h. Notice that
A; is an operator of order at most ¢ — 1 for ¢ = 1,2,--- , h. Then the Wronskian W
given by
W = det (Aip;)

1<i,j<h
0 0
is non-zero since a2 RN L 0 and so we have W = W W, # 0. O
(9961 8:101
€ 2m71
Theorem 0.45. Put w = w(m,e) =24-27™ <E> ,formeNand0 <e < 1/12.
Let ry,--- 1, be positive integers for which wr, > ryy1 foru=1,2,--- . m—1, and
let g, > 0 and p, be co-prime integers such that ¢/* > qi* foru = 1,2,--- m and
qv > 25" foru=1,--- ,m.
Suppose that S(xy,--+ ,T;,) is a polynomial of degree at most r, in xz,, for u =
1,---,m, with integer coefficients and S < ¢\*. If S does not vanish identically,
then S has index at most € at the point <]£, e ,Zﬁ> with respect to (ry,- -+ ,rm).
Q1 qm

Remark 0.46. Some condition on the 7;’s is necessary since for example S(zq, x9) =
(r1 — x2)" has index 1 at any point (p/q, p/q) with respect to (r,r).

Proof. The proof proceeds by induction on m. We first prove the result when m = 1.
Suppose that S (]ﬂ> =9 (]ﬂ) =...= 80D (&) and S® (ﬂ) # 0. Here we
il Uil 0 ¢

suppose that p;, ¢ are coprime integers with ¢; > 0. Then S(z) = (x — &> T(x)

1
for some T' € Q[x].

We have S(x) = (q1z — p1)'(q;"T(x)), since S has integer coefficients, by Gauss’s

Lemma, we have —T'(z) € Z[z]. Therefore ¢f < S < ¢;* and hence t < wry. For
q

1
m=1,w=w(m,e) =24-271(¢/12) = . Equivalently, ¢;/r; < € as required.

We shall now suppose that the result holds for 1 < ¢t < m. We can write S in
the form
S(‘Tlv T 7xm) - Z on(xlv T 7xm—1>w(xm)a
1<j<h
where ¢;,1; are polynomials with rational coefficients.

In particular, we can take h = r, + 1 and ¥;(x,) = 271, We take such a de-

composition with A minimal. Then certainly A < r,, + 1. Suppose there exists a
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linear relation ¢y + -+ + ¢, = 0 with ¢y, - -+ , ¢, rational and not all zero. Then
c Ch—

without loss of generality we may suppose ¢, # 0. Then ¢, = ——1g01 ——= Lgoh_l
Ch Ch

and so

h—1
C .
S — N G
(- o)
which contradicts the minimality of h. Thus there exists no non-trivial linear relation
among 1, --- , @, over the rationals. Similarly, suppose that there exist rationals

e1, - ,ep not all zero such that e;; + - - - + epyy, = 0. Without loss of generality we
suppose that e, # 0. Then

h—1
e.
S=> "y (%‘ - e—iwh)
j=1

which again contradicts the minimality of h. Again, there is no non-trivial rational

linear combination among vy, - - - , vy, over Q.
We choose h minimal and conclude there is no non-trivial relation over Q of ¢, -+ , ©p
and the same holds for 11, - - - , ¢,. Therefore proposition 0.43,
U(zn) dt< Lo ) £0
Tm) =det | = 1P :
(i — 1) oxi ! ’ 1<i,j<h
Further, by proposition 0.43, there exist operators A} for i = 1,--- | h of the form
AL oo
AR T

with iy +---+1, <i—1<h—1<r, such that
Vi, - o) = det(Ajp;)i<ij<n # 0.
Next we define W(zy,--- ,z,,) by

Wi )—d (A L9 ))
m,...’xm et ! — x’...jxm
! (7= ! 0z ! ' 1<4,j<h
Thus
W = det (A’( = (Z @k%))
J 1<i,j<h
= det ((A Ok )1<ij<h ( 1¢k) )
1<j,k<h
— U(:Cm) (:,;1’... )
But -1
1 =
! S([Z‘l, s I’m) = Sih...’@'m,l,jfl(xlv U wrm)

U= Dol
and since S has integer coefficients so does S, ... ;. , j—1 and therefore W has inte-
ger coefficients. By Gauss’s Lemma we may write W = v(xy, -+, x,,)u(z,,) where
v(xy, -+, Ty) and u(z,,) have integer coefficients. Since S;, ... ;,, ;-1 has degree at
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most r, in x, foru=1,2,--- ,m and since W is given by the determinant of an h x h
matrix, W has degree at most hAr, in z, for u=1,2,--- ,m. In particular, v has de-
gree at most hr, in z, foru =1,2,--- ,m—1 and u(x,,) has degree at most hr,, in x,,.

Now, by proposition 0.35, we have S;, ... ;. -1 < 21T mg” There are at most
(ry+1)---(ry + 1) monomials in S;, ... ;, ;-1 and (rqy +1)--- (ry, + 1) < 2"+ +m,
There are at most h! < h"™! products in the determinant expansion of W. Since
h <7, + 1, this is at most h™ < 2"m_ Thus

W S h!((?”l + 1) L. (Tm + 1))h (2r1+...+rmq;ur1)h

S 2hrm 2h(r1+--~+rm)2h(rl+--~+rm)qim'lh

< 23h(r1 +---+rm)qiur1 h

S 23mr1 hqim“lh

)

S (q%w)nh — qfwrlh

by hypothesis. Since W = wv and v(xq, - ,2,-1) and u(x,,)have integer coef-
ficients and each coefficient of W is obtained as a product of a coefficient of v
and a coefficient of u, we see that u,v < qfw”h. By the definition of w we have
1 g2
w(m,e) = §w <m -1, E) . We now apply the inductive hypothesis to v and v. First
apply it to v with hry, - -+, hr,,_; in place of ry, - -+ , 7, and €2/12 for € and 2w for w.
Then the hypotheses are satisfied and v has index at most £2/12 at (&, cee pm_1>
qQ1 qm—1
with respect to hry,--- , hr,—1. Thus the index of v as a function of zq,--- ,x,, at
(&, e ,p—m> with respect to ry, -+ , 7, is at most he?/12.
q1 qm

Secondly we apply our inductive hypothesis to v with Ar,, in place of ry,--- 1,
2

and €%/12 in place of € and 2w in place of w. Since w = w(m, ) < SW 1, %) and
2wrmh

since g;* < ¢/, we have u < ¢

Thus the index of u at p,,/q, with respect to hr,, is at most £2/12. Thus the index

of u as a function of xy,--- ,z,, is at most he?/12. Thus, by proposition 0.36, the
. 2 Pm \ . , he* he? &2
index Iy of Wat | —,--- ,=— | with respect tory,--- ,7,, is at most —+— = —.
Q1 Qm 12 12 6
We should now estimate Iy in terms of 6 where 6 is the index of S at (]2, cee Iﬁ)
1 qm
with respect to ry,--- ,7,,. By proposition 0.36 the index of .S;, ... ;. , j—1 is at least
- 1 S 1
g _ima_j=loy hiteedina jo1
™ Tm—1 Tm T'm—1 Tm

since i1 + -+ 1y <i—1 < h—1<r,, we have
PR S i1

T"m—1 m T'm—1 T'm

0 T'm .]_]-
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By hypothesis, r,,/r,_1 < w, and thus we obtain
Tm j—1

i—1
29—w—j )
Tm—1 T'm T'm
2

2
But m > 2, whence w < 24 - 272 <1€2> = %, and so the index of S;, .. ;. -1 at
2

m . g —1
(Zﬁ,... ,p—> with respect to rq,--- ,r,, is at leastH———] :
q1 dm 24 Tm

Developing W as a determinant expansion and using the fact that the index is non-
negative and proposition 0.36, we find that

0 —

2

-1
Iy > E max(@—g——]—,O)
r

m

he?
But Iy < & and therefore

5€2h L ]—1 52 1 j—1

m

h—
We have 1 < h <r,, +1,s0if 0 >

. Then we have

Hence, 6/2 < £%/4 and so 6 < €. Otherwise, we have 6 <

T'm
h . .
1 7 —1 B l J- 1
EZmax(G— m— )_h Z (9 Tm>
=1 1<j<0rm+1
1 1071 ]
1 0
> z
> 5 (Lol + 1) ()
0%r,,
>
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Since h <r,, +1 < 2r,, we see that

h :
1 j—1 6?
_§ _ > 2
hj:1 (9 T'm ’O> 4

Hence 02 < €2, so 0 < ¢ as required. O

Proof. (Roth’s Theorem) Suppose that 0 < ¢ < 1/12 and that there are infinitely
many solutions in rationals p/q, with ¢ > 0, to the inequality

P 1
(0.11) a_5’ <
Choose € > 0 to be a real number with 0 < € < §/20. Next let m > 8n?c~2 (here n
is the degree of a over Q). Then put w = w(m,e) =24-27™ (%) . Let p1/q1 be
a solution to (0.11) with ¢; so large that
(i) ¢f > 64(a + 1) max(1, |a]),
(i) gt > 2, and
(iil) ¢’ = (4(a +1))™.
Now choose p,/q, for u = 2,--- ,m to be solutions of (0.11) in co-prime integers

Pus ¢u With g, > 0 successively such that

(iv) Swloggusr > log gu.

Since qui1 > q, for u=1,2,--- ;m — 1, we have
(v) ¢; > 64(a + 1) max(1, ||) and also

(vi) g > 2°™.

(v), (vi) hold for u =2,3,--- ,m.

Next choose 71 to be an integer so large that ery log ¢; > log q,,,. Put r, = m;iﬂ +
1, foru=2,3,--- ,m. Then
rilogqr < rylogq
< rilogq +log g,
< (1+¢)rlogq

foru=1,2,--- ,m.

Then the conditions of theorems 0.40 and 0.41 are satisfied. Further,
Tu+1 < 2 lOg Gu <

T logquir T
Since
r log > r log ¢ > 1 > 9240
logquir — loggm — €
and
rilo
o> B s g

log q,,
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foru=1,2,--- ,m, the conditions of Theorem 0.45 are also satisfied.

Next observe that the polynomial R constructed in theorem 0.40 has integer coef-

ficients of size, in absolute value, at most (4(a + 1))+ < (4(a + 1))™" and by

(iii) this is at most ¢;""*, hence theorem 0.45 applies with S = R. Let I be the index
P1 Pm

of R at (—, e ,—) with respect to ry,--- ,r,. By theorem 0.41, Ip is at least
a1 dm

?m' By Theorem 0.40 R is not the zero polynomial. Hence by theorem 0.45, Iy is at

om
most . Therefore — < ¢, but 0 < ¢ < §/20, and so we have a contradiction. This

proves Roth’s Theorem. O

Remark 0.47. Roth’s Theorem is not effective and it is a very important problem
to make the proof effective.

Remark 0.48. Roth’s Theorem can be used to prove that numbers of the form

o0
Z 273" are transcendental.

n=1
Remark 0.49. In 1959 Cugiani proved that if &, 22, ... are solutions to o — p <
q1 42 q
! 1 : qk+1
g2 +20(ogloglogq)~1/2 with 0 < ¢ < ga <---, then hgiscgp ? = 00

For the proof of Roth’s Theorem we supposed the existence of several good ap-
proximations to a. For the Thue-Siegel approach one can get by with one very good
approximation. This is important for effective results. Bombieri used such an ap-
proach to improve on the Liouville estimate in some cases. For example, let r > 40.
He proved that there is a positive number mq(r) which is effectively computable such
that if o is a root of 2" — ma™' + 1 and m > myg(r) then there is an effectively
1

> o
39.2574
q

computable positive number go(a) such that if ¢ > go(«) then |a — P

The first effective and explicit refinement of Liouville’s estimate is due to Baker in
1964, although such results are implicit in the works of Thue. For example Baker in

—6
1964 proved that [21/3 — 2

q
refined this. In 1997 Bennett proved

10
> — o for all p, ¢ with ¢ > 0. Chudnovsky and Easton
>

o1/3 _ P
q

The first non-trivial effective improvement of the Liouville result which applies to
all algebraic numbers a of degree at least 3 is due to Baker and it depends on es-
timates for linear forms in the logarithm of algebraic numbers. This work in turn
builds on earlier work of Gelfond and Schneider who resolved Hilbert’s 7th problem.
The improvement was small but it sufficed to effectively solve Thue equations. For
instance, in 1986 Baker and Stewart proved

11 :
‘ > Zlﬁ for all p, ¢ with ¢ > 0.

Theorem 0.50. Let a be a positive integer which is not a perfect cube. Let € be the
fundamental unit in the ring of algebraic integers of the field Q(a'/3) (that is, the
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smallest unit larger than 1). Then, for all rationals p/q with ¢ > 0, we have

c
A _Pls &
q q~
1 1 .
where c = —— and kK = 3 — — with
C1 Co
e = 5(5010g10g5)2’02 _ 1012 loge.

This translates into

Theorem 0.51. Let a and n be positive integers with a not a perfect cube. All
solutions in integers x,y of ¥° — ay® = n satisfy max(|z|, |y|) < (c1n)® with ¢, ¢y as
in the previous theorem.

There have been extensions of Roth’s Theorem. The first one was to estimate ho
well o can be approximated by an element [ from a fixed finite extension of QQ, say
K. We need a measure of the size of 8 and for this we introduce a height function.
Let f € Z[x] be of the form f(z) = a,z" + - + 12 + ag. We put H(f) = max; |a,]
and we put H(f) = H(g), where g is the minimal polynomial of 8 over Z. If 5 = p/q
is rational, then H(/3) is simply max(|p|, |q|).

In 1955, Levesque proved

Theorem 0.52. Let a be algebraic, let K be a finite extension of Q, and let § > 0.
There are only finitely many elements B of K for which |a — 8| < H(B)~%79.

Notice that we do not insist that « is real.

What happens if instead of fixing the extension field K in which [ lies we only require
that (8 is of degree at most d? Siegel, Ramachandra, and Wirsing made progress on
this problem.

Theorem 0.53. (Schmidt) Let d € N and let o be a real algebraic number of degree

greater than d. Set 0 > 0. Then there are only finitely many algebraic numbers 8 of
degree at most d for which |a — f| < H(ﬁ)—d—1—5,

Theorem 0.54. (Wirsing) Let d be a positive integer and suppose that « is a real
algebraic number of degree greater than d. Then for every d > 0 there are infinitely
many real B of degree at most d for which |o — 8] < H(B)~47+2.

Theorem 0.55. (Mahler) Let « be a real non-zero algebraic number and let py, -+ , p,
be distinct primes. Suppose 6 > 0. There are only finitely many rationals p/q with
p=p2--p¥p and g =p - pbrq where ay,--- ,a, and by,--- b, are non-negative
o=« s
al ~ [Pqdllpal’

Mabhler used such a result to prove thati f py, - - - , p, are distinct primes and F'(z, y)
is a binary form with integer coefficients, non-zero discriminant and degree at least
3 then the equation F(z,y) = pi'---p:" has only finitely many solutions in coprime
integers x and y and non-negative integers z1,--- ,2,.. This is known as the Thue-
Mahler equation.

integers and p',q' are co-prime with py,--- , p, for which
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Using ideas from the geometry of numbers and building on the work of Roth, Schmidt
proved

Theorem 0.56. For any algebraic numbers aq,--- , o, with 1,4, -+, a, linearly
independent over Q and for any € > 0 there are only finitely many positive integers q
for which

¢ llgonll - llgel < 1,
where ||-|| is the distance to the nearest integer.
Remark 0.57. It follows from the above theorem that if 1, aq, - - - , o, are Q-linearly
independent then for each € > 0 there are only finitely many integers py,--- , p, and
q with ¢ > 0 for which
Di 1
oy — — W

The exponent can be shown to be best possible.

The above theorem can be applied to the study of norm form equations - a gener-
alization of the Thue equation. There are also p-adic versions of this work. One con-
sequence is due to Evertse in 1984. Let pq,--- , p, be distinct prime numbers and let
n be a positive integer. There are only finitely many n-tuples of integers (z1,- -, z,)
with the z;’s composed only of primes from {py,--- ,p,} with 1 +---+ x, =0, and
ged(zy, - -+, x,) = 1 and such that z;, +---+z;, # 0 whenever {i,--- ,;} is a proper
subset of {1,--- ,n}. For example, 24—3°+5°+7¢ = ( has only finitely many solutions.

Suppose we are given a sequence (x,)%; of real numbers in [0,1). We can ask how
well distributed the sequence is in the interval. The first question to ask is whether
the sequence is dense. Let a be a real number and consider the sequence ({na})Se,
where {na} = na — |na]. If « is rational, then ({na})2, is finite and hence not
dense. Conversely, if « is irrational, then ({na})2, is dense. To see this, note that
all of the terms of the sequence are distinct, since

[nia] — [naa

€ Q.

Next note that for each € > 0 we can find distinct positive integers n; > no such that

{nia} — {nsa}| < e. But then {(n; — ng)a} = (n; — ng)a — [(ny — n2)a]. Thus
{(n1 —ng)a} = {na} + N1y + {nsa} + Ny — N3,

where N1 = |nja|, Ny = [nea), N3 = |(ny — na)a]. Thus {(n; — ny)a} is either in
(0,e) or (1 —¢,1).

{nia} = {nea} = nja — npa = [nya] — o] = a =

In the former case, {m(n; — ng)a} = m{(ny — ny)a} for m = 1,2,--- |k where k
is the largest integer such that ke < 1. For every real number 5 € [0, 1), there is
7,1 < j <k such that |8 — m{(n; — ny)a}| <e.

Similarly, in the other case we have {m(n; — n2)a} = 1 — m(l — {(n1 — n2)a})

1
for m = 1,2,--- ,k where k =
L — {(n1 —n2)a}

and again every 5 € [0,1) is
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within ¢ of one of the multiples. Hence if « is irrational then ({na})2?, is dense in
[0,1).

The result is the one-dimensional version of a result of Kronecker. Kronecker proved
that if aq,---, a are real numbers with 1, a4, -+, ap linearly independent over Q,
then ({nay}, -, {na,})>, is dense in [0, 1]*.

A more refined notion than that of being dense is the following:

Definition 0.58. A sequence (x,,)22; of real numbers is said to be uniformly dis-
tributed modulo 1 (u.d. mod 1) if for every pair of real numbers a,b with 0 < a <
b <1 we have

. A(a,b,N)
TN
where A(a,b,N) = #{z, :n < N,a < {z,} < b}.

=b—a,

Let x[.5) be the characteristic function of [a,b). Then (x,)72, is u.d. mod 1 if and
N

e 1 : :
only if ]\}gl)o N z; Xjap)({#n}) = b — a for all intervals [a,b) with 0 <a <b < 1.

Theorem 0.59. A sequence (2,)5°; C R is u.d. mod 1 if and only if for every real
valued continuous function f on [0,1] we have

1 & 1
lim N;ﬂ{xn})— f(x)dx

Proof. Suppose first that (x,)22; is u.d. mod 1 . Let g be a step function on [0, 1]

so there exist real numbers 0 < ayp < a1 < --- < a; = 1 and sy,---,s; such that
k
g= Z i X[@i, @i11). Then we have
=1
1 & 1
dm oy 2 oten)) = Zs ) = [ gl

The step functions are uniformly dense in the real valued continuous functions, so
there exist step functions fi, fo with fi(z) < f(z) < fa(x) and for which fo(x) —
fi(z) < e for all x € [0,1]. But then

/01 flz)de —e < /1f1(a:)d:1:

hm _Zfl {zn})

1
< hNHLioréf N ; f{zn}).
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/Olf(a:)da:—l—e > /01 fa(z)dx

= lim — ng {z,})

N%ooN

Likewise

> limsup — Z f{zn}).

N—oo

N
1
Since € was arbitrary, it follows that hm 1~ Z ({z,}) exists and

| rtayia - ;@m%;ﬂ{xn}).

Given € > 0 and [a,b) with 0 < a < b < 1 there exist continuous functions g, g

1

on [0, 1] for which g;(x) < Xjop)(7) < g2(2) and for which / (g2(z) — g1(x))dx < e.
0

Then

(b—a)—a§/0 go(z)dx — ¢

< /Olgl(:v)d:c

=m—2mm

s A(CL, ba N)
< ' ' 7
< lpinf ==
< limsup A0 N)
o N—>oop N

< hm —Zgg {z,})

= /Olgg(x)dx

<(b—a)+e.

A(a,b, N)

Therefore, lim exists and is b — a. Il

N—oo
Theorem 0.60. A sequence (1,)2; C R is u.d. mod 1 if and only if for every
complex valued continuous function f on R with period 1, we have
N
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Proof. “=" Let f be periodic with period 1. Then we have that f(x,) = f({z.}).
Fur there there exist real valued continuous functions of period 1 fi, fo such that
f = fi +ifs. It then follows that

N

Jggnoo—Zf ) = lim NZfl {za}) + Jlim —sza({xnn

:/01 fl(x)dx+i/0 fo(x)dx
:/Olf(x)d:z:

We are done by the previous theorem.

N
“<” For every real valued continuous function f; on R we have lim — Z fi{z,}) =
N—oo N

n=1
1
/ fi(z)dz and since f; is periodic, we have fi({z,}) = fi(x,) and the result fol-
0
lows. U

We shall use the above theorem to establish a very useful criterion for a sequence
to be u.d. mod 1 due to Herman Weyl in 1916.

Theorem 0.61. (Weyl’s Criterion) A sequence (z,)52, of real numbers is u.d. mod
1 if and only if for each non-zero integer h,
N

: 1 2wihzy,
Jim 2 €T =0,

n=1

Proof. “=" Let ¢ > 0. Suppose that f is a continuous function which is periodic
with period 1 from R to C. By the Weierstrass approximation theorem, there exists
a trigonometric polynomial g(z) such that sup |f(x) — g(x)| <e. Write

0<z<L1

g([l)) — 6162mh1:{: 44 Cke2mhkx

with ¢1,--- ,cx € C and hy,- - , hy are integers. But then

/01 f(z)d '/ ))dz| +
/ £(x) — g(@)lde +

<etete=3¢

N 1
1
for N sufficiently large. Hence — Z flz,) = / f(z)dz. O
N n=1 0



