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1 Introduction

Let N be a positive integer. The Farey series of order N is the sequence of rationals
h/k with h and k coprime and 1 < h < k < N arranged in increasing order
between 0 and 1, see [1]. There are ¢(k) rationals with denominator k in Fy and
thus the number of terms in Fy is R where

R=RN)=¢p(1)+¢Q2)+---+¢(N) = %NZ + O(NlogN) (1)

(see Theorem 330 of [3]). Let
N
S(N)=> g
i=1

where ¢g; denotes the smallest denominator possessed by a rational from Fy which
lies in the interval (% ’ﬁ] . In [4] Kruyswijk and Meijer proved that

N3? « S(N) « N*? (2)
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and they remarked that the function S(N) is connected with a problem in
combinatorial group theory. In particular, C. Schaap proved that for any prime p,
S(p) = p>— p + 1 — L(p) where L = L(p) is the largest integer for which there
is a sequence of integers a;,...,ay with1 <a; <a; <:--- <ap < p—1for
which a; 4+ -+ 4+ a; # 0(mod p) for I < j < L. An examination of Kruyswijk
and Meijer’s proof shows that the implied constants in (2) may be made explicit
and that #N 32 < §(N) < 96N3/? for N sufficiently large. They conjectured

that limy_.o S(N)/N3/? exists and is equal to (%)2 = 1.62.... Numerical
work seems to be in agreement with this conjecture. In the report [5] we gave an
alternative proof of (2) and in fact showed that

1.20N%? < S(N) < 2.33N3/?
for N sufficiently large. We are now able to refine this estimate.
Theorem 1. For N sufficiently large

1.35N*? < S(N) < 2.04N3/2

Our proof of Theorem 1 depends on two results of R.R. Hall [2] on the
distribution and the second moments of gaps in the Farey series.

2 Preliminary Lemmas

Let N be a positive integer and let Fy = {x;,...,xg} where 0 < x| <--- < xgp =
1.Putf; = xyand £, = x, — x,— forr = 2,..., R so that the £;’s correspond to
gaps in the Farey series with the points 0 and 1 identified.

Lemma 1. There is a positive number Cy such that for N > 2,

R
> 2 < (CologN)/N>.
r=1
Proof. This follows from Theorem 1 of [2]. |

For each positive real number ¢ and each positive integer N we define oy (¢) to
be the number of gaps ¢, for which £, > t/N?. Thus

R
on(t)= Y L

r=1
t<N2¢,

We also define §y (1) by

Sn(t) = on(1)/R(N).
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Then §y(¢) is a distribution function and Hall [2] proves that §y (7) tends to a limit
as N tends to infinity.

Lemma2. If4 <t < N and w = w(t) is the smaller root of the equation w* =

t(w—1) then
Sn(t) =27 (1 —w+2logw) + Ot "N log N + N73/?).
If1 <t <4then
Sn(t) =217 (1 +logt — %) + O(N 7 'log N).
Proof. The first assertion follows from Theorem 4 of [2] together with (1). The

second assertion follows from (1.2) of [2]. O

Let us define f(¢) for1 <t by

2(1 +1logt — £ forl <t <4
fy = 2 loer =3) 3)
2(1 —w+2logw) ford <t
where
t 4\ 12
w=-=[1—-|1-- for4 < t.
2 t
Observe that
lim f()/(2/1) = 1. “)
—>00

Lemma 3. For4 <t < N we have

24(2log2 — 1) { N\? N
UN(I)f#(T) +0(T10gN+N1/2).
T

Proof. Since oy (1) = R(N)dy(¢) it suffices, by (1) and Lemma 2 to show that for
t > 4, g(t) is a decreasing function of ¢ where

g(1) = t(2logw(r) — (w(r) — 1)).

Since

w(t) = (t —1(1 —4/1)1/2) /2
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we find that
g't) =2logw— (w—1) + ((2/w) — Dtw'(¢)
)
g'(t) =2logw — 2w + 2.

On observing that log(1 + x) < x for x > 0 and putting x = w — 1 we conclude
that

g <2w—1)—-2w+2=0

whenever w > 1. Since, fort > 4,
O=1+142 4494
w = —_ —_— oo — e
r 2 tn

where the ¢, are positive numbers we see that w > 1 for # > 4 hence for t > 4.
Thus g(¢) is a decreasing function of ¢ as required. O

3 Further Preliminaries

For each positive integer M we define 8(M ) to be the number of ¢;’s in the sum
giving S(N) which are larger than M. Thus

N
M) =" 1.

i=1
qi>M

For positive integers j and M let ¥(j) (= ¥u(j)) denote the number of gaps ¢,
in Fys of size larger than # Accordingly we have

R(M)

y()= ) L

r=1
Z,>ﬁ

~ N] with

1 <h < N.O(M)is the total number of intervals (%!, %] which are properly
contained in gaps of Fj,. Thus

OM) <y () + Q) +---.

A gap £, in Fyy with £, < L + properly contains at most ] intervals (

Similarly a gap €, in Fys with £, > 1 properly contains at least j intervals of the
form (h—Nl, N] . Therefore



On the Distribution of Small Denominators in the Farey Series of Order N 279

v(2)+ v+ < 0(M).

Since ¥ (j) = oum (M) , it follows that

N
ijg (JE) < Q(M) < Xv:g (Jﬂz) 5)
= M N = _j=1 M N )

where v (= v(M)) satisfies
<v+1 (6)

Let u; be the number of rationals % with (h,k) = land 1 < h <k < JN.
Then by (1)

3
U = FN + O(N'*10gN) (7

and the sum S, of the denominators of these rationals is

Si= Y ke(k).
k=N

By Abel summation and (1) we find that
2 3/2
S| = —2N 4+ O(N logN). ®)
b4

Observe that if ¢ is an integer with 1 < g < VN then each rational p/q with p
positive and coprime with ¢ contributes a term ¢ to S(N). Thus S is the sum of the
u; smallest terms in the sum giving S(N). Put

uy =N —u 9

and let S, be the sum of the u; largest ¢’s which appear in the sum for S(N). Then

S(N) = S; + S». (10)

4 The Upper Bound in Theorem 1

In order to establish an upper bound for S (V) we shall establish an upper bound for
S and then appeal to (8) and (10).
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For any positive integer M with M < N we have
Sy <Muy +60(M)+60(M + 1) +---+ O(N). (11)

Put A = 1.38 and M; = [AN'/?]. Since A(1 — 3/7?) < 0.96054 and 6(M,) < N,
it follows from (7), (9) and (11) that

Sy < 0.96054N3/% + O(My + 1) + (M, +2) +---+ O(N) (12)

for N sufficiently large. Next, put

Ss= Y  O(M) and Sy= > 6(M).

M;<M<N3/5 N3/5<M<N
Thus, by (12),
S, < 0.96054 N3 4+ S5 + S,. (13)

Let us first estimate S4. To that end recall that 8(M ) is the number of ¢;’s in the
sum S(N) which are larger than M. Thus there are 6(M ) intervals (’N;l, #] which

contain no element of Fjs. In particular there must exist differences £, , ..., ¢, in
Fy for which we can find positive integers ki, ..., ks with £,, > k; /N fori =
1,...,s and such thatk; + --- 4+ k; > 6(M). Thus we certainly have

- 6(M)
d o= e (14)
i=1
On the other hand, by Lemma 1,
R(M)
>4 < CoM " log M. (15)

r=1
A comparison of (14) and (15) reveals that
NZ
For N3 < M < N we have log M < log N hence

NodMm

> 6(M) < CoN*logN —
N3/5—1 M2

N3/5<M<N

SO

S4 <2CoN"°log N. (16)
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Next we estimate S3. By (5)

v 2 g2
Ss= Y o= ZGM(]%) (17)

My <M <N3/5 My <M <N3/5 j=1

For M < N3/5 we see from (6) that v + 1 is at least N2/, which in turn exceeds
10* for N sufficiently large. Then, by Lemma 3,

L V), E e 2 ()

Mj<M<N3/510*<j<v M;<M<N3/5 104<j <00 J

1

—472
<107'N% Y —
Mi<M<N3/5

<107*N3/2, (18)
for N sufficiently large. Accordingly by (17) and (18)

104

.M2
Sy < 107N 37 3 ou (’7) (19)

My<M<N3/5 j=1

Let £ > 0. For N sufficiently large in terms of ¢
3 2
RM)<|\—+e|M
b4

hence

A f2 Aq2 Af2
oM (’%) = R(M)Sy (J%) < (% - s) M8y (J%)

jM? 3 N (jM? iM?
()< () 5 (o (%) o

It follows from Lemma 2 and (3) that for j < 10*and M < N 3/5

jM? M\ (jMP log N
NSM(N)_f(N +0 N )

and so
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Thus, by (4), for N sufficiently large in terms of &

M (M M’

For each integer j with 1 < j < 10* we find from (20) and (21) that
> M (24 (1+ )N oo f M (22)
oy | — — +e¢ &)— — .
MAN 72 j N
My <M <N3/5 M<M<N3/5

The function f is continuous and it is increasing on (1, 4) and decreasing on (4, co).
Accordingly, with A = 1/log N, we have

/(%)

My<M<N3/5

j(M; + k[AV/N])? VN
< 3 f( N )[A«/N] +0(—10gN)
1<k <(N3/5—M;)/[A~/N]

which is, for N sufficiently large,

<( 5 f(j(A\/N+0(1)+k(Aﬁ+0(1)))2)(Aﬁ+O(l)))+0(\/N).

|<k<N1/5 N log N

Therefore, for N sufficiently large in terms of ¢,

Z y (1%2) <(1—|—8)N1/2 Z f(j(k+kA)2+0(k2N_l/2))'A

Mi<M<N3/5 1<k<N/>

<(1+e)?N2 / = it (23)
A

Thus, by (22) and (23),
104

x, ()

J=1 M <M<N3/5

104
3 1 [
< (—2 + s) (1+e’N>>" —,/ Frdr.
T i=1d I

(24)
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Evaluating with MAPLE we find that

104 1 [
> - / F(iP)dr < 2.8640. (25)
=1 J Ja

Therefore, by (24) and (25), for N sufficiently large,

104 Ve
> Y ou (JT) < 0.8706 N3/, (26)

J=1M;<M<N3/5
By (19) and (26)
S5 < 0.8707 N3/? (27)
for N sufficiently large. Further, by (13), (16) and (27),
S, < 1.8313 N3/2

for N sufficiently large. Our result now follows from (8) and (10).

5 The Lower Bound in Theorem 1

The value of the smallest g; in S, exceeds +/N and so
Sy = [VN]uz + O(WN)) + O(VN] + 1) + - + O(N)

hence, by (7) and (9),
Sy > (1 - %) N32 4 O(NlogN) + 60(VN)) +---+06(N).  (28)

Certainly

O(VND +---+0N)= > 6(M)

N12<M<N3/5

and for M with M < N3/ we see from (6) that v + 1 is at least N2/>. Therefore,
by (5), for N sufficiently large

104

Yoo o> ZoM(j%z)

N1/2<M<N3/5 NY2<M<N3/5j=2
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and so, by (28),

10* a2
3 3/ M
SZ>(1—;)N/ +OWNIogN)+Y Y ou (T) (29)

J=2NV2<M<N3/5

We shall now estimate the double sum in (29). Let ¢ > 0. For N sufficiently large
in terms of ¢

R(M) > (i2 — 5) M?
s

hence

iM>? iM? 3 iM?
o () = mam (557 ) = (55 ) s (557
iM? 3 N (jM? M?
o ()= (o) 5 (o () G

It follows from Lemma 2 and (3) that for j < 10*and M < N3/°
jM? M\ (jMP log N
I Sm ( N )= f N + 0 N .

Thus, by (4), for N sufficiently large in terms of &

M’ m? i’

and so

For each integer j with 2 < j < 10* we find from (30) and (31) that
> on(Br
MAN

NYV2<M<N3/5
3 N M?
>(p—5)(1—8)—. > f(T)

N2<M<N?3/5

(32)

The function f is continuous and it is increasing on (1, 4) and decreasing on
(4, 00). Accordingly, with A = 1/log N, we have
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jM?
> I\
N12<M<N3/5

JUVN] + k[AVN])? VN
- Z f ( ¥ ) [A\/N] +0 (@)
1<k <(N35=N1/2)/[A/N]

which is, for N sufficiently large,

. ( N, (j(ﬁ+ O(1) + k(AN + 0(1)))2) UV + 0(1))) +0 (ﬂ)

1<k<N1/10 N log N

Therefore, for N sufficiently large in terms of ¢,
jM? 1/2 , 2 2 07—1/2
> f ~ )= (-oN > S +kA?+ O NT2)) - A
N2<M<N3/5 I<k < N1/10

> (1 —¢)’N/? / - F(i?)dt. (33)
1

Thus, by (32) and (33),

104

£ ox e

J=2 NV2<M<N3/5

(34)
3 10° 1 poo
> (_2 - 8) (1)’ N2y —./ fydr.
i —J
j
Evaluating with MAPLE we find that
104 1 [
Z —./ f(]'tz)dt > 1.5098. (35)
=N

Therefore by (34) and (35), for N sufficiently large

104

.Mz
> Y ou (]T) > 0.4589 N2, (36)

J=2NV2<M<N3/5
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By (8), (10), (29) and (36) we see that
1
S(N) > (1 - =+ 0.458) N3? > 135N3?
b

for N sufficiently large and the result now follows.
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