# On the Distribution of Small Denominators in the Farey Series of Order $N$ 

C.L. Stewart*

In memory of Professor Herb Wilf

## 1 Introduction

Let $N$ be a positive integer. The Farey series of order $N$ is the sequence of rationals $h / k$ with $h$ and $k$ coprime and $1 \leq h \leq k \leq N$ arranged in increasing order between 0 and 1, see [1]. There are $\varphi(k)$ rationals with denominator $k$ in $F_{N}$ and thus the number of terms in $F_{N}$ is $R$ where

$$
\begin{equation*}
R=R(N)=\varphi(1)+\varphi(2)+\cdots+\varphi(N)=\frac{3}{\pi^{2}} N^{2}+O(N \log N) \tag{1}
\end{equation*}
$$

(see Theorem 330 of [3]). Let

$$
S(N)=\sum_{i=1}^{N} q_{i}
$$

where $q_{i}$ denotes the smallest denominator possessed by a rational from $F_{N}$ which lies in the interval $\left(\frac{i-1}{N}, \frac{i}{N}\right.$ ]. In [4] Kruyswijk and Meijer proved that

$$
\begin{equation*}
N^{3 / 2} \ll S(N) \ll N^{3 / 2} \tag{2}
\end{equation*}
$$

[^0]and they remarked that the function $S(N)$ is connected with a problem in combinatorial group theory. In particular, C. Schaap proved that for any prime $p$, $S(p)=p^{2}-p+1-L(p)$ where $L=L(p)$ is the largest integer for which there is a sequence of integers $a_{1}, \ldots, a_{L}$ with $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{L} \leq p-1$ for which $a_{1}+\cdots+a_{j} \not \equiv 0(\bmod p)$ for $1 \leq j \leq L$. An examination of Kruyswijk and Meijer's proof shows that the implied constants in (2) may be made explicit and that $\frac{1}{\pi^{2}} N^{3 / 2}<S(N)<96 N^{3 / 2}$ for $N$ sufficiently large. They conjectured that $\lim _{N \rightarrow \infty} S(N) / N^{3 / 2}$ exists and is equal to $\left(\frac{4}{\pi}\right)^{2}=1.62 \ldots$. Numerical work seems to be in agreement with this conjecture. In the report [5] we gave an alternative proof of (2) and in fact showed that
$$
1.20 N^{3 / 2}<S(N)<2.33 N^{3 / 2}
$$
for $N$ sufficiently large. We are now able to refine this estimate.
Theorem 1. For $N$ sufficiently large
$$
1.35 N^{3 / 2}<S(N)<2.04 N^{3 / 2}
$$

Our proof of Theorem 1 depends on two results of R.R. Hall [2] on the distribution and the second moments of gaps in the Farey series.

## 2 Preliminary Lemmas

Let $N$ be a positive integer and let $F_{N}=\left\{x_{1}, \ldots, x_{R}\right\}$ where $0<x_{1}<\cdots<x_{R}=$ 1. Put $\ell_{1}=x_{1}$ and $\ell_{r}=x_{r}-x_{r-1}$ for $r=2, \ldots, R$ so that the $\ell_{i}$ 's correspond to gaps in the Farey series with the points 0 and 1 identified.

Lemma 1. There is a positive number $C_{0}$ such that for $N \geq 2$,

$$
\sum_{r=1}^{R} \ell_{r}^{2}<\left(C_{0} \log N\right) / N^{2}
$$

Proof. This follows from Theorem 1 of [2].
For each positive real number $t$ and each positive integer $N$ we define $\sigma_{N}(t)$ to be the number of gaps $\ell_{r}$ for which $\ell_{r}>t / N^{2}$. Thus

$$
\sigma_{N}(t)=\sum_{\substack{r=1 \\ t<N^{2} \ell_{r}}}^{R} 1
$$

We also define $\delta_{N}(t)$ by

$$
\delta_{N}(t)=\sigma_{N}(t) / R(N) .
$$

Then $\delta_{N}(t)$ is a distribution function and Hall [2] proves that $\delta_{N}(t)$ tends to a limit as $N$ tends to infinity.

Lemma 2. If $4 \leq t \leq N$ and $w=w(t)$ is the smaller root of the equation $w^{2}=$ $t(w-1)$ then

$$
\delta_{N}(t)=2 t^{-1}(1-w+2 \log w)+O\left(t^{-1} N^{-1} \log N+N^{-3 / 2}\right)
$$

If $1 \leq t \leq 4$ then

$$
\delta_{N}(t)=2 t^{-1}\left(1+\log t-\frac{t}{2}\right)+O\left(N^{-1} \log N\right)
$$

Proof. The first assertion follows from Theorem 4 of [2] together with (1). The second assertion follows from (1.2) of [2].

Let us define $f(t)$ for $1 \leq t$ by

$$
f(t)= \begin{cases}2\left(1+\log t-\frac{t}{2}\right) & \text { for } 1 \leq t \leq 4  \tag{3}\\ 2(1-w+2 \log w) & \text { for } 4<t\end{cases}
$$

where

$$
w=\frac{t}{2}\left(1-\left(1-\frac{4}{t}\right)^{1 / 2}\right) \quad \text { for } 4<t
$$

Observe that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} f(t) /(2 / t)=1 \tag{4}
\end{equation*}
$$

Lemma 3. For $4 \leq t \leq N$ we have

$$
\sigma_{N}(t) \leq \frac{24(2 \log 2-1)}{\pi^{2}}\left(\frac{N}{t}\right)^{2}+O\left(\frac{N}{t} \log N+N^{1 / 2}\right) .
$$

Proof. Since $\sigma_{N}(t)=R(N) \delta_{N}(t)$ it suffices, by (1) and Lemma 2 to show that for $t \geq 4, g(t)$ is a decreasing function of $t$ where

$$
g(t)=t(2 \log w(t)-(w(t)-1)) .
$$

Since

$$
w(t)=\left(t-t(1-4 / t)^{1 / 2}\right) / 2
$$

we find that

$$
g^{\prime}(t)=2 \log w-(w-1)+((2 / w)-1) t w^{\prime}(t)
$$

so

$$
g^{\prime}(t)=2 \log w-2 w+2
$$

On observing that $\log (1+x) \leq x$ for $x \geq 0$ and putting $x=w-1$ we conclude that

$$
g^{\prime}(t) \leq 2(w-1)-2 w+2=0
$$

whenever $w \geq 1$. Since, for $t>4$,

$$
w(t)=1+\frac{1}{t}+\frac{2}{t^{2}}+\cdots+\frac{c_{n}}{t^{n}}+\cdots
$$

where the $c_{n}$ are positive numbers we see that $w>1$ for $t>4$ hence for $t \geq 4$. Thus $g(t)$ is a decreasing function of $t$ as required.

## 3 Further Preliminaries

For each positive integer $M$ we define $\theta(M)$ to be the number of $q_{i}$ 's in the sum giving $S(N)$ which are larger than $M$. Thus

$$
\theta(M)=\sum_{\substack{i=1 \\ q_{i}>M}}^{N} 1 .
$$

For positive integers $j$ and $M$ let $\psi(j)\left(=\psi_{M}(j)\right)$ denote the number of gaps $\ell_{r}$ in $F_{M}$ of size larger than $\frac{j}{N}$. Accordingly we have

$$
\psi(j)=\sum_{\substack{r=1 \\ \ell_{r}>\frac{j}{N}}}^{R(M)} 1
$$

A gap $\ell_{r}$ in $F_{M}$ with $\ell_{r} \leq \frac{j+1}{N}$ properly contains at most $j$ intervals $\left(\frac{h-1}{N}, \frac{h}{N}\right]$ with $1 \leq h \leq N . \theta(M)$ is the total number of intervals $\left(\frac{h-1}{N}, \frac{h}{N}\right]$ which are properly contained in gaps of $F_{M}$. Thus

$$
\theta(M) \leq \psi(1)+\psi(2)+\cdots .
$$

Similarly a gap $\ell_{r}$ in $F_{M}$ with $\ell_{r}>\frac{j+1}{N}$ properly contains at least $j$ intervals of the form $\left(\frac{h-1}{N}, \frac{h}{N}\right]$. Therefore

$$
\psi(2)+\psi(3)+\cdots \leq \theta(M)
$$

Since $\psi(j)=\sigma_{M}\left(\frac{j M^{2}}{N}\right)$, it follows that

$$
\begin{equation*}
\sum_{j=2}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \leq \theta(M) \leq \sum_{j=1}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{5}
\end{equation*}
$$

where $v(=v(M))$ satisfies

$$
\begin{equation*}
v<\frac{N}{M} \leq v+1 \tag{6}
\end{equation*}
$$

Let $u_{1}$ be the number of rationals $\frac{h}{k}$ with $(h, k)=1$ and $1 \leq h \leq k \leq \sqrt{N}$. Then by (1)

$$
\begin{equation*}
u_{1}=\frac{3}{\pi^{2}} N+O\left(N^{1 / 2} \log N\right) \tag{7}
\end{equation*}
$$

and the sum $S_{1}$ of the denominators of these rationals is

$$
S_{1}=\sum_{k \leq \sqrt{N}} k \varphi(k)
$$

By Abel summation and (1) we find that

$$
\begin{equation*}
S_{1}=\frac{2}{\pi^{2}} N^{3 / 2}+O(N \log N) \tag{8}
\end{equation*}
$$

Observe that if $q$ is an integer with $1 \leq q \leq \sqrt{N}$ then each rational $p / q$ with $p$ positive and coprime with $q$ contributes a term $q$ to $S(N)$. Thus $S_{1}$ is the sum of the $u_{1}$ smallest terms in the sum giving $S(N)$. Put

$$
\begin{equation*}
u_{2}=N-u_{1} \tag{9}
\end{equation*}
$$

and let $S_{2}$ be the sum of the $u_{2}$ largest $q$ 's which appear in the sum for $S(N)$. Then

$$
\begin{equation*}
S(N)=S_{1}+S_{2} . \tag{10}
\end{equation*}
$$

## 4 The Upper Bound in Theorem 1

In order to establish an upper bound for $S(N)$ we shall establish an upper bound for $S_{2}$ and then appeal to (8) and (10).

For any positive integer $M$ with $M \leq N$ we have

$$
\begin{equation*}
S_{2} \leq M u_{2}+\theta(M)+\theta(M+1)+\cdots+\theta(N) \tag{11}
\end{equation*}
$$

Put $\lambda=1.38$ and $M_{1}=\left[\lambda N^{1 / 2}\right]$. Since $\lambda\left(1-3 / \pi^{2}\right)<0.96054$ and $\theta\left(M_{1}\right) \leq N$, it follows from (7), (9) and (11) that

$$
\begin{equation*}
S_{2}<0.96054 N^{3 / 2}+\theta\left(M_{1}+1\right)+\theta\left(M_{1}+2\right)+\cdots+\theta(N) \tag{12}
\end{equation*}
$$

for $N$ sufficiently large. Next, put

$$
S_{3}=\sum_{M_{1}<M<N^{3 / 5}} \theta(M) \quad \text { and } \quad S_{4}=\sum_{N^{3 / 5} \leq M \leq N} \theta(M) .
$$

Thus, by (12),

$$
\begin{equation*}
S_{2}<0.96054 N^{3 / 2}+S_{3}+S_{4} . \tag{13}
\end{equation*}
$$

Let us first estimate $S_{4}$. To that end recall that $\theta(M)$ is the number of $q_{i}$ 's in the sum $S(N)$ which are larger than $M$. Thus there are $\theta(M)$ intervals $\left(\frac{j-1}{N}, \frac{j}{N}\right]$ which contain no element of $F_{M}$. In particular there must exist differences $\ell_{r_{1}}, \ldots, \ell_{r_{s}}$ in $F_{M}$ for which we can find positive integers $k_{1}, \ldots, k_{s}$ with $\ell_{r_{i}} \geq k_{i} / N$ for $i=$ $1, \ldots, s$ and such that $k_{1}+\cdots+k_{s} \geq \theta(M)$. Thus we certainly have

$$
\begin{equation*}
\sum_{i=1}^{s} \ell_{r_{i}}^{2} \geq \frac{\theta(M)}{N^{2}} \tag{14}
\end{equation*}
$$

On the other hand, by Lemma 1,

$$
\begin{equation*}
\sum_{r=1}^{R(M)} \ell_{r}^{2}<C_{0} M^{-2} \log M \tag{15}
\end{equation*}
$$

A comparison of (14) and (15) reveals that

$$
\theta(M)<C_{0} \frac{N^{2}}{M^{2}} \log M
$$

For $N^{3 / 5} \leq M \leq N$ we have $\log M \leq \log N$ hence

$$
\sum_{N^{3 / 5} \leq M \leq N} \theta(M)<C_{0} N^{2} \log N \int_{N^{3 / 5}-1}^{N} \frac{d M}{M^{2}}
$$

so

$$
\begin{equation*}
S_{4}<2 C_{0} N^{7 / 5} \log N \tag{16}
\end{equation*}
$$

Next we estimate $S_{3}$. By (5)

$$
\begin{equation*}
S_{3}=\sum_{M_{1}<M<N^{3 / 5}} \theta(M) \leq \sum_{M_{1}<M<N^{3 / 5}} \sum_{j=1}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) . \tag{17}
\end{equation*}
$$

For $M<N^{3 / 5}$ we see from (6) that $v+1$ is at least $N^{2 / 5}$, which in turn exceeds $10^{4}$ for $N$ sufficiently large. Then, by Lemma 3,

$$
\begin{align*}
\sum_{M_{1}<M<N^{3 / 5}} \sum_{10^{4}<j \leq v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) & <\sum_{M_{1}<M<N^{3 / 5}} \frac{N^{2}}{M^{2}} \sum_{10^{4}<j<\infty}\left(\frac{1}{j}\right)^{2} \\
& <10^{-4} N^{2} \sum_{M_{1}<M<N^{3 / 5}} \frac{1}{M^{2}} \\
& <10^{-4} N^{3 / 2}, \tag{18}
\end{align*}
$$

for $N$ sufficiently large. Accordingly by (17) and (18)

$$
\begin{equation*}
S_{3}<10^{-4} N^{3 / 2}+\sum_{M_{1}<M<N^{3 / 5}} \sum_{j=1}^{10^{4}} \sigma_{M}\left(\frac{j M^{2}}{N}\right) . \tag{19}
\end{equation*}
$$

Let $\varepsilon>0$. For $N$ sufficiently large in terms of $\varepsilon$

$$
R(M)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) M^{2}
$$

hence

$$
\sigma_{M}\left(\frac{j M^{2}}{N}\right)=R(M) \delta_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) M^{2} \delta_{M}\left(\frac{j M^{2}}{N}\right)
$$

and so

$$
\begin{equation*}
\sigma_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) \frac{N}{j}\left(\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)\right) . \tag{20}
\end{equation*}
$$

It follows from Lemma 2 and (3) that for $j \leq 10^{4}$ and $M \leq N^{3 / 5}$

$$
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)=f\left(\frac{j M^{2}}{N}\right)+O\left(\frac{\log N}{N}\right)
$$

Thus, by (4), for $N$ sufficiently large in terms of $\varepsilon$

$$
\begin{equation*}
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)<(1+\varepsilon) f\left(\frac{j M^{2}}{N}\right) . \tag{21}
\end{equation*}
$$

For each integer $j$ with $1 \leq j \leq 10^{4}$ we find from (20) and (21) that

$$
\begin{equation*}
\sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right)(1+\varepsilon) \frac{N}{j} \sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) . \tag{22}
\end{equation*}
$$

The function $f$ is continuous and it is increasing on $(1,4)$ and decreasing on $(4, \infty)$. Accordingly, with $\Delta=1 / \log N$, we have

$$
\begin{aligned}
& \sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) \\
& \quad<\left(\sum_{1 \leq k<\left(N^{3 / 5}-M_{1}\right) /[\Delta \sqrt{N}]} f\left(\frac{j\left(M_{1}+k[\Delta \sqrt{N}]\right)^{2}}{N}\right)[\Delta \sqrt{N}]\right)+O\left(\frac{\sqrt{N}}{\log N}\right)
\end{aligned}
$$

which is, for $N$ sufficiently large,

$$
<\left(\sum_{1 \leq k<N^{1 / 5}} f\left(\frac{j(\lambda \sqrt{N}+O(1)+k(\Delta \sqrt{N}+O(1)))^{2}}{N}\right)(\Delta \sqrt{N}+O(1))\right)+O\left(\frac{\sqrt{N}}{\log N}\right) .
$$

Therefore, for $N$ sufficiently large in terms of $\varepsilon$,

$$
\begin{align*}
\sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) & <(1+\varepsilon) N^{1 / 2} \sum_{1 \leq k<N^{1 / 5}} f\left(j(\lambda+k \Delta)^{2}+O\left(k^{2} N^{-1 / 2}\right)\right) \cdot \Delta \\
& <(1+\varepsilon)^{2} N^{1 / 2} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t \tag{23}
\end{align*}
$$

Thus, by (22) and (23),

$$
\begin{align*}
& \sum_{j=1}^{10^{4}} \sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)  \tag{24}\\
& \quad<\left(\frac{3}{\pi^{2}}+\varepsilon\right)(1+\varepsilon)^{3} N^{3 / 2} \sum_{j=1}^{10^{4}} \frac{1}{j} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t .
\end{align*}
$$

## Evaluating with MAPLE we find that

$$
\begin{equation*}
\sum_{j=1}^{10^{4}} \frac{1}{j} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t<2.8640 \tag{25}
\end{equation*}
$$

Therefore, by (24) and (25), for $N$ sufficiently large,

$$
\begin{equation*}
\sum_{j=1}^{10^{4}} \sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)<0.8706 N^{3 / 2} \tag{26}
\end{equation*}
$$

By (19) and (26)

$$
\begin{equation*}
S_{3}<0.8707 N^{3 / 2} \tag{27}
\end{equation*}
$$

for $N$ sufficiently large. Further, by (13), (16) and (27),

$$
S_{2}<1.8313 N^{3 / 2}
$$

for $N$ sufficiently large. Our result now follows from (8) and (10).

## 5 The Lower Bound in Theorem 1

The value of the smallest $q_{i}$ in $S_{2}$ exceeds $\sqrt{N}$ and so

$$
S_{2} \geq[\sqrt{N}] u_{2}+\theta([\sqrt{N}])+\theta([\sqrt{N}]+1)+\cdots+\theta(N)
$$

hence, by (7) and (9),

$$
\begin{equation*}
S_{2} \geq\left(1-\frac{3}{\pi^{2}}\right) N^{3 / 2}+O(N \log N)+\theta([\sqrt{N}])+\cdots+\theta(N) \tag{28}
\end{equation*}
$$

Certainly

$$
\theta([\sqrt{N}])+\cdots+\theta(N) \geq \sum_{N^{1 / 2}<M<N^{3 / 5}} \theta(M)
$$

and for $M$ with $M<N^{3 / 5}$ we see from (6) that $v+1$ is at least $N^{2 / 5}$. Therefore, by (5), for $N$ sufficiently large

$$
\sum_{N^{1 / 2}<M<N^{3 / 5}} \theta(M)>\sum_{N^{1 / 2}<M<N^{3 / 5}} \sum_{j=2}^{10^{4}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)
$$

and so, by (28),

$$
\begin{equation*}
S_{2}>\left(1-\frac{3}{\pi^{2}}\right) N^{3 / 2}+O(N \log N)+\sum_{j=2}^{10^{4}} \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{29}
\end{equation*}
$$

We shall now estimate the double sum in (29). Let $\varepsilon>0$. For $N$ sufficiently large in terms of $\varepsilon$

$$
R(M)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) M^{2}
$$

hence

$$
\sigma_{M}\left(\frac{j M^{2}}{N}\right)=R(M) \delta_{M}\left(\frac{j M^{2}}{N}\right)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) M^{2} \delta_{M}\left(\frac{j M^{2}}{N}\right)
$$

and so

$$
\begin{equation*}
\sigma_{M}\left(\frac{j M^{2}}{N}\right)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) \frac{N}{j}\left(\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)\right) . \tag{30}
\end{equation*}
$$

It follows from Lemma 2 and (3) that for $j \leq 10^{4}$ and $M \leq N^{3 / 5}$

$$
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)=f\left(\frac{j M^{2}}{N}\right)+O\left(\frac{\log N}{N}\right)
$$

Thus, by (4), for $N$ sufficiently large in terms of $\varepsilon$

$$
\begin{equation*}
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)>(1-\varepsilon) f\left(\frac{j M^{2}}{N}\right) \tag{31}
\end{equation*}
$$

For each integer $j$ with $2 \leq j \leq 10^{4}$ we find from (30) and (31) that

$$
\begin{align*}
\sum_{N^{1 / 2}<M<N^{3 / 5}} & \sigma_{M} \\
& \left(\frac{j M^{2}}{N}\right)  \tag{32}\\
& >\left(\frac{3}{\pi^{2}}-\varepsilon\right)(1-\varepsilon) \frac{N}{j} \sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) .
\end{align*}
$$

The function $f$ is continuous and it is increasing on $(1,4)$ and decreasing on $(4, \infty)$. Accordingly, with $\Delta=1 / \log N$, we have

$$
\begin{aligned}
& \quad \sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) \\
& \quad \geq\left(\sum_{1 \leq k<\left(N^{3 / 5}-N^{1 / 2}\right) /[\Delta \sqrt{N}]} f\left(\frac{j([\sqrt{N}]+k[\Delta \sqrt{N}])^{2}}{N}\right)[\Delta \sqrt{N}]\right)+O\left(\frac{\sqrt{N}}{\log N}\right)
\end{aligned}
$$

which is, for $N$ sufficiently large,
$\geq\left(\sum_{1 \leq k<N^{1 / 10}} f\left(\frac{j(\sqrt{N}+O(1)+k(\Delta \sqrt{N}+O(1)))^{2}}{N}\right)(\Delta \sqrt{N}+O(1))\right)+O\left(\frac{\sqrt{N}}{\log N}\right)$.

Therefore, for $N$ sufficiently large in terms of $\varepsilon$,

$$
\begin{align*}
\sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) & >(1-\varepsilon) N^{1 / 2} \sum_{1 \leq k<N^{1 / 10}} f\left(j(1+k \Delta)^{2}+O\left(k^{2} N^{-1 / 2}\right)\right) \cdot \Delta \\
& >(1-\varepsilon)^{2} N^{1 / 2} \int_{1}^{\infty} f\left(j t^{2}\right) d t \tag{33}
\end{align*}
$$

Thus, by (32) and (33),

$$
\begin{align*}
& \sum_{j=2}^{10^{4}} \cdot \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{m}\left(\frac{j M^{2}}{N}\right) \\
& \quad>\left(\frac{3}{\pi^{2}}-\varepsilon\right)(1-\varepsilon)^{3} N^{3 / 2} \sum_{j=2}^{10^{4}} \frac{1}{j} \int_{1}^{\infty} f\left(j t^{2}\right) d t . \tag{34}
\end{align*}
$$

Evaluating with MAPLE we find that

$$
\begin{equation*}
\sum_{j=2}^{10^{4}} \frac{1}{j} \int_{1}^{\infty} f\left(j t^{2}\right) d t>1.5098 \tag{35}
\end{equation*}
$$

Therefore by (34) and (35), for $N$ sufficiently large

$$
\begin{equation*}
\sum_{j=2}^{10^{4}} \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)>0.4589 N^{3 / 2} \tag{36}
\end{equation*}
$$

By (8), (10), (29) and (36) we see that

$$
S(N)>\left(1-\frac{1}{\pi^{2}}+0.458\right) N^{3 / 2}>1.35 N^{3 / 2}
$$

for $N$ sufficiently large and the result now follows.

## References

1. C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years, a survey, Acta Universitatis Apulensis 5 (2003), 1-38.
2. R.R. Hall, A note on the Farey series, J. London Math. Soc. 2 (1970), 139-148.
3. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, $5^{\text {th }}$ ed., Oxford, 1979.
4. D. Kruyswijk, H.G. Meijer, On small denominators and Farey sequences, Indagtiones Math. 39 (1977), 332-337.
5. C.L. Stewart, On a sum associated with the Farey series, Report ZW88, Mathematisch Centrum (1976), 1-11.

[^0]:    *Research supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.
    C.L. Stewart ( $\boxtimes$ )

    Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    e-mail: cstewart@uwaterloo.ca

