
Exceptional units and cyclic resultants, II

C.L. Stewart

Abstract. Let α be a non-zero algebraic integer and put K = Q(α). In this

article we give estimates for the largest integer n such that αj − 1 is a unit in

the ring of algebraic integers of K for 1 ≤ j ≤ n and for related quantities.

1. Introduction

Let α be a non-zero algebraic integer and put K = Q(α). Let d be the degree of
K over Q and let OK denote the ring of algebraic integers of K. For each positive
integer n put ζn = e2πi/n and denote the n-th cyclotomic polynomial in x by Φn(x),
so

(1.1) Φn(x) =

n∏
j=1

(j,n)=1

(x− ζjn).

Let E(α) be the number of positive integers n for which αn − 1 is a unit and
let U(α) be the number of positive integers n for which Φn(α) is a unit. Note that
E(α) and U(α) may be infinite if α is a root of unity. If α − 1 is not a unit put
E0(α) = 0 and otherwise define E0(α) to be the largest integer n such that αj − 1
is a unit for 1 ≤ j ≤ n. Since

(1.2) xn − 1 =
∏
m|n

Φm(x),

we see that

(1.3) E0(α) ≤ E(α) ≤ U(α).

In 1995 Silverman, (see Theorem 4.1 of [10]), investigated the function U(α) in
connection with his study of numbers having small Mahler measure. He proved that
for each positive real number ε there is an effectively computable positive number
c = c(ε) such that if α is an algebraic unit of degree d ≥ 2 that is not a root of
unity then

(1.4) U(α) < cd1+(log 2+ε)/ log log d.
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In 1998 Mossinghoff, Pinner and Vaaler [8], sharpening an earlier result of Boyd
[10], remarked that there are α, not roots of unity, of arbitrarily large degree d for
which

(1.5) E0(α) > π

√
d

3
+ 0(log d).

In [13] we showed that there is an effectively computable positive number c1 such
that if α is a non-zero algebraic integer of degree d over the rationals then

(1.6) E0(α) ≤ c1d(log(d+ 1))4/(log log(d+ 2))3.

For any β in Q(α) we denote the norm of β from Q(α) to Q by Nβ. Estimates
(1.4) and (1.6) were deduced from estimates for integers n for which NΦn(α) is
small in absolute value. For instance in [13], sharpening earlier work in [12], we
proved that for each positive real number ε there is a positive number c = c(ε),
which is effectively computable in terms of ε, such that if α is a non-zero algebraic
integer of degree d over the rationals which is not a root of unity and n is a positive
integer for which

|NΦn(α)| ≤ nd

then

(1.7) n < cd3+(log 2+ε)/ log log(d+2).

Of course if Φn(α) is a unit then |NΦn(α)| = 1 and so the right hand side of (1.7)
gives an upper bound for those integers n for which Φn(α) is a unit and so, by
(1.2), for which αn − 1 is a unit.

If α is a unit for which α−1 is also a unit then α is known as an exceptional unit.
Further, if α is a unit then the difference of any two elements of {0, 1, α, . . . , αE0(α)}
is a unit. Put

L(K) = sup{m | There exist w1, . . . , wm in OK such that wi − wj
is a unit for 1 ≤ i < j ≤ m}.

Then

E0(α) + 2 ≤ L(K).

L(K) is known as the Lenstra constant of K and in [7] Lenstra showed that if L(K)
is large relative to the discriminant then OK is Euclidean with respect to the norm
map.

Let f(x) be a non-constant polynomial with integer coefficients and degree d
and suppose that f factors over C as

(1.8) f(x) = ad(x− α1) · · · (x− αd).
The n-th cyclic resultant of f, denoted by Rn(f), is the resultant of f and xn − 1.
Thus

(1.9) Rn(f) = and

d∏
i=1

(αni − 1).

In 1933 Lehmer [5] showed that the sequence of integers (R1(f), R2(f), . . . ) satisfies
a linear recurrence relation of order at most 2d. In addition he studied, following
earlier work of Pierce [9], the divisibility properties of the terms of the sequence.
This led him to search for polynomials for which the sequence grows slowly with the
idea that this would give an efficient way to find large prime numbers. The growth
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of the terms |Rn(f)| is roughly M(f)n where M(f) denotes the Mahler measure of
f. Recall that if f(x) = adx

d+· · ·+a1x+a0 is a polynomial with integer coefficients
and f factors over C as in (1.8) then

M(f) = |ad|
d∏
i=1

max(1, |αi|).

Further for any algebraic number α we define M(α) to be M(f) where f is the
minimal polynomial of α over the integers. In [5] Lehmer posed the fundamental
question of whether for each positive number ε there is a polynomial f with integer
coefficients such that 1 < M(f) < 1 + ε. Lehmer’s question remains open although
Smyth [11] proved that if we restrict to non-reciprocal polynomials the answer is
no. In the general situation the best known result is due to Dobrowolski [3].

Let f be as in (1.8). For each positive integer n define the n-th cyclotomic
resultant of f, denoted Cn(f), to be the resultant of f and Φn(x). Then

Cn(f) = a
φ(n)
d

d∏
i=1

Φn(αi),

where ϕ(n) denotes Euler’s function. By (1.2),

(1.10) Rn(f) =
∏
m|n

Cm(f).

|Cn(f)| is roughly M(f)ϕ(n) and we shall make this claim more precise.
Our first result is of a similar nature to (1.7).

Theorem 1.1. Let ε be a positive real number. There is a positive number
c = c(ε), which is effectively computable in terms of ε, such that if α is a non-zero
algebraic integer of degree d over the rationals which is not a root of unity and

n > cd3+(log 2+ε)/ log log(d+2)

then

(1.11) M(α)(1−ε)ϕ(n) < |NΦn(α)| < M(α)(1+ε)ϕ(n).

Our second result may be viewed as a counterpart to Silverman’s estimate (1.4)
and our proof follows closely his proof of Theorem 0.1 of [10].

Theorem 1.2. Let ε be a positive real number. There is a positive number
c1 = c1(ε), which is effectively computable in terms of ε, such that if α is a non-
zero algebraic integer of degree d over the rationals which is not a root of unity then
the number of positive integers n for which

(1.12) |NΦn(α)| < M(α)(1−ε)ϕ(n)

is at most

c1d
1+(log 2+ε)/ log log(d+2).

Our next result shows that estimate (1.6) is close to best possible. Let γ denote
Euler’s constant, so

γ = 1−
∫ ∞
1

t− [t]

t2
dt.

Note that eγ = 1.7810 . . . .
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Theorem 1.3. For each positive real number ε, there exist roots of unity α of
arbitrarily large degree d for which

(1.13) E0(α) > (eγ − ε)d log log d/ log d.

The lower bound (1.13) may be contrasted with that of (1.5) where roots of
unity α are excluded from consideration.

Finally we shall discuss computations related to the function E0(α) in the last
section of this paper.

2. Preliminary lemmas

We shall first record Dobrowolski’s Theorem [3].

Lemma 2.1. There is an effectively computable positive real number c such that
if α is a non-zero algebraic integer of degree d and

M(α) ≤ 1 + c

(
log log(d+ 2)

log(d+ 1)

)3

,

then α is a root of unity.

We shall also need the following result which is a consequence of the main
theorem of Baker and Wüstholz [2].

Lemma 2.2. Let α be a non-zero algebraic integer of degree d over the rationals
which is not a root of unity. Let n be a positive integer. There exists an effectively
computable positive number c such that

log 2 + n log(max(|α|, 1)) ≥ log |αn − 1|
≥ n log(max(|α|, 1))− cd2 log(d+ 1) log(2M(α)) log 3n.

Proof. This is Lemma 3 of [13]. �

For any positive integer n let q(n) denote the number of squarefree divisors of
n.

Lemma 2.3. If α is a complex number of absolute value at most 1 which is not
a root of unity and n is a positive integer then

|Φn(α)| ≥ (118n)−(3/2)q(n) min
1≤j≤n
(j,n)=1

|α− ζjn|.

Proof. This may be deduced from the proof of Proposition 3.3 of [10], due
to Silverman. �

3. Proof of Theorem 1.1

Let ε be a positive real number and let c1, c2, . . . be positive numbers which
are effectively computable in terms of ε. Let α = α1, . . . , αd be the conjugates of α
over Q. It follows from (1.2) by Möbius inversion that

log |NΦn(α)| =
d∑
i=1

∑
m|n

µ
( n
m

)
log |αmi − 1|.

Thus, by Lemma 2.2,

|log |NΦn(α)| − ϕ(n) logM(α)| < c1q(n)d3 log(d+ 1) log(2M(α)) log 3n.
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Suppose that (1.11) does not hold. We then have

εϕ(n) logM(α) < c1q(n)d3 log(d+ 1) log(2M(α)) log 3n.

By Lemma 2.1

εϕ(n) < c2q(n)d3(log(d+ 1))4 log 3n.

For any positive integer n let ω(n) denote the number of distinct prime factors of
n. Then

(3.1) (ϕ(n)/2ω(n) log 3n) < c3d
3(log(d+ 1))4.

By Theorem 328 of [4],

(3.2) ϕ(n) > c4n/ log log 3n,

and by the prime number theorem ω(n) is at most (1+o(1)) log n/ log log n. There-
fore by (3.1) and (3.2)

n < c5d
3+(log 2+ε)/ log log(d+2)

whenever (1.11) does not hold, as required.

4. Proof of Theorem 1.2

Let c1, c2, . . . denote positive numbers which are effectively computable in terms
of ε. Suppose that n is at least 2. Let α = α1, . . . , αd be the conjugates of α and
define β1, . . . , βd by

βi =

{
αi if |αi| ≤ 1,

α−1i if |αi| > 1.

Then

(4.1) |NΦn(α)| = M(α)ϕ(n)
d∏
i=1

|Φn(βi)|.

By Lemma 2.3

(4.2)

d∏
i=1

|Φn(βi)| ≥ n−c1q(n)d
 min

1≤i≤d
min

1≤j≤n
(j,n)=1

|βi − ζjn|

d

.

Therefore by (1.12), (4.1), and (4.2),

(4.3) min
1≤i≤d

min
1≤j≤n
(j,n)=1

|βi − ζjn| ≤ nc1q(n)M(α)−εϕ(n)/d.

Observe that

(4.4) c1q(n) log n < c2 exp
((

log 2 +
ε

2

)
log n/ log log n

)
and, by Lemma 2.1,

(4.5) εϕ(n)(log(M(α))/d > c3
n

log log n

1

d

(
log log(d+ 2)

log(d+ 1)

)3

.

The right hand side of inequality (4.5) is more than double the right hand side of
inequality (4.4) provided that n exceeds

(4.6) c4d exp((log 2 + ε) log(d+ 1)/ log log(d+ 2)).
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In this case

c1q(n) log n− εϕ(n)(log(M(α))/d < −c5 exp

((
log 2 +

ε

2

) log(d+ 1)

log log(d+ 2)

)
and so, by (4.3),

(4.7) min
1≤i≤d

min
1≤j≤d
(j,d)=1

|βi − ζjn| < exp(−c5dlog 2/ log log(d+2)).

Suppose that there are d + 1 integers n satisfying (1.12) and (4.6). Two of
the integers n1 and n2 say take the minimum over i in (4.7) at the same integer
i0. Therefore there are integers j1 and j2 with 1 ≤ j1 ≤ n1, (j1, n1) = 1 and
1 ≤ j2 ≤ n2, (j2, n2) = 1 such that

|βi0 − ζjknk
| < exp(−c5dlog 2/ log log(d+2)) for k = 1, 2.

Thus

(4.8) |ζj1n1
− ζj2n2

| < 2 exp(−c5dlog 2/ log log(d+2)).

On the other hand, since (j1, n1) = 1 and (j2, n2) = 1,

(4.9) |ζj1n1
− ζj2n2

| = |e2πi(j1n2−j2n1)/n1n2 − 1| ≥ |e2πi/n1n2 − 1| ≥ 1

n1n2
.

Therefore, by (4.8) and (4.9),

2n1n2 > exp(c5d
log 2/ log log(d+2)).

We may suppose that n2 exceeds n1 hence

(4.10) n2 >
1√
2

exp

(
1

2
c5d

log 2/ log log(d+2)

)
.

On the other hand, since (1.12) holds, it follows from Theorem 1.1 that

(4.11) n2 < c6d
4

and a comparison of (4.10) and (4.11) yields a contradiction for c5 sufficiently large
which we can ensure by taking c4 sufficiently large in (4.6). Our result now follows
since the number of positive integers n for which (1.12) holds is at most

d+ c4d exp((log 2 + ε) log(d+ 1)/ log log(d+ 2)),

as required.

5. Proof of Theorem 1.3

Let n be a positive integer and put

m = l.c.m.[1, . . . , n],

where l.c.m. denotes the least common multiple. Let α = ζm so that the degree of
α is d with

d = ϕ(m).

Then, by Merten’s Theorem (see Theorem 429 of [4]),

d = m
∏
p≤n

(
1− 1

p

)
= (e−γ + o(1))m/ log n.
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Further it follows from the prime number theorem, in particular estimates for π(x)
and ψ(x), that

m = e(1+o(1))n,

hence that

(5.1) n = (1 + o(1)) logm.

Therefore
d = (e−γ + o(1))m/ log logm

hence

(5.2) m = (eγ + o(1))d log log d.

By (1.9) and (1.10), E0(α) = E0(ζm) is the largest positive integer k for which
|Cj(Φm)| = 1 for j = 1, . . . , k. By Theorems 1 and 4 of Apostol [1], see also [6], we
see that if r and s are positive integers with r > s ≥ 1 then

Cr(Φs) = 1

unless r/s is a power of a prime p in which case Cr(Φs) = pϕ(s). Thus Cj(Φm) = 1
for 1 ≤ j ≤ (m/pa) − 1 where pa is the largest prime power which divides m.
Certainly pa is at most n from the definition of m and thus

(5.3) E0(α) ≥ m

n
− 1.

By (5.1) and (5.2)
m

n
− 1 = (eγ + o(1))

d log log d

log d
.

Our result now follows from (5.3).

6. Computations for small degrees

For any positive integer d we define e(d) by

e(d) = max{E0(α) | α an algebraic integer of degree d}.
In [13] we established that e(d) = d for d = 1, . . . , 6, that e(7) < 7 and e(8) ≥ 7. In
addition, we conjectured that e(d) < d for d ≥ 7. These results were proved using
Groebner basis techniques in conjunction with the symbolic computation system
Maple.

We shall extend our computations by restricting our attention to algebraic
integers α whose minimal polynomial f has coefficients from {−1, 0, 1}. In particular

(6.1) f(x) = xd + ad−1x
d−1 + · · ·+ a0,

where a0 is in {−1, 1} and aj is in {−1, 0, 1} for j = 1, . . . , d− 1. Further we have

1 = |R1(f)| = · · · = |Rk(f)|
or, by (1.10),

(6.2) 1 = |C1(f)| = · · · = |Ck(f)|,
and we seek to maximize k for each degree d. For fixed degree the set of f we must
consider is finite and for each f we calculate C1(f), C2(f), . . . until we find a term
for which the cyclotomic resultant with f is different from 1 in absolute value. We
performed our computations using Maple. For d up to 15 we used our personal
computer. In order to treat the range up to 20 we made use of the cluster Gamay
at the University of Waterloo. I would like to thank Kevin G. Hare for providing
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access to this cluster and for helping me to adapt my computer program to this
setting.

We remark that if f, as in (6.1), satisfies (6.2) then so does f̃(x) = a0x
df(1/x)

and in the table below we list only one term of the pair {f, f̃}. In addition we have
checked that the polynomials listed in Table 1 are irreducible over the rationals.

Table 1
Monic polynomials of degree d with coefficients from {−1, 0, 1}, constant

coefficient from {−1, 1} and for which k (= k(d)) is maximal in (6.2).

d k(d) Representative of {f, f̃}

2 2 x2 + x− 1

3 3 x3 + x2 − 1

4 4 x4 + x3 − 1

5 5 x5 + x4 + x3 − x− 1

6 6 x6 + x4 − 1

7 5 x7 + x6 + x5 + x4 − x2 − x− 1

8 7 x8 + x7 + x6 + x5 − x2 − x− 1

9 6 x9 + x8 + x7 + x6 + x5 − x3 − x2 − x− 1
x9 + x8 + x7 + x6 − x3 − x2 − 1

10 8 x10 + x8 + x6 − x2 − 1

11 7 x11 + x10 + x9 − x7 − x6 − x5 − x4 − x3 + 1

12 8 x12 + x11 + x10 + x9 + x8 + x7 − x4 − x3 − x2 − x− 1

13 8 x13 +x12 +x11 +x10 +x9 +x8 +x7−x5−x4−x3−x2−x−1

14 10 x14 + x12 + x10 + x8 − x4 − x2 − 1

15 8 x15+x14+x13+x12+x11+x10−x7−x6−x5−x4−x3−x2−1
x15 + x13 + x11 − x8 − x7 − x5 − x3 + x2 + 1
x15 + x13 + x11 − x8 − x7 − x6 − x5 − x3 + 1

16 11 x16 + x14 − x10 − x8 − x6 + x2 + 1

17 9 x17 + x16 + x15 + x14 + x13 − x9 − x8 − x7 − x6 − x5 + 1
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d k(d) Representative of {f, f̃}

18 8 x18 + x17 + x16 + x15 + x14 + x13 + x12 + x11 − x6 − x5 − x4
− x3 − x2 − x− 1

x18 + x16 + x15 + x14 + x12 + x11 − x6 − x4 − x3 − x2 − 1
x18 + x16 + x14 + x12 + x7 − x6 − x4 − x2 − 1
x18 − x16 + x14 − x12 + x9 − x6 + x4 − x2 + 1

19 8 x19 + x18 + x17 + x16 + x15 − x13 − x12 − x11 − x10 + x8 + x7

+ x6 + x5 − x3 − x2 − x− 1
x19 + x18 + x16 + x15 − x10 − x7 − x4 − x3 − 1
x19 + x18 + x16 + x15 − x13 − x11 − x10 − x9 + x5 + x− 1
x19+x17+x15+x13−x12−x10−x9−x8−x7−x5+x4+x2+1

20 11 x20 + x19 + x18 + x17 − x14 − x13 − x12 − x11 − x10 − x9 − x8
− x7 − x6 + x3 + x2 + x+ 1

All of the polynomials in the table above are irreducible and so each one is the
minimal polynomial of a unit. Only one of the polynomials corresponds to a root
of unity and that is x16 + x14 − x10 − x8 − x6 + x2 + 1 which is Φ60(x). Apart
from Φ60(x) there is exactly one equivalence class of monic irreducible polynomials
of degree 16 with coefficients from {−1, 0, 1} for which (6.2) holds with k = 8. A
representative of the equivalence class is f(x) = x16 +x14 +x12 +x10−x4−x2− 1.
In particular we have f(ζn) is a unit for n = 1, . . . , 8 but f(ζ9) is not a unit.

Note that e(d) ≥ k(d) where k = k(d) is given in the above table.
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2. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. reine angew. Math.

442 (1993), 19–62.
3. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polyno-

mial, Acta Arith. 34 (1979), 391–401.
4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th edn., Oxford

University Press, 1979.

5. D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461–

479.
6. E. T. Lehmer, A numerical function applied to cyclotomy, Bull. Amer. Math. Soc. 36 (1930),

291–298.
7. H. W. Lenstra, Jr., Euclidean number fields of large degree, Inventiones Math. 38 (1977),

237–254.

8. M. J. Mossinghoff, C. G. Pinner and J. D. Vaaler, Perturbing polynomials with all their roots
on the unit circle, Math. Comp. 67 (1998), 1707–1726.

9. T. A. Pierce, The numerical factors of the arithmetic forms
∏n

i=1(1 ± αm
i ), Ann. of Math.

18 (1917), 53–64.
10. J. H. Silverman, Exceptional units and numbers of small Mahler measure, Experimental Math.

4 (1995), 69–83.

11. C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer,
Bull. London Math. Soc. 3 (1971), 169–175.



10 C.L. STEWART

12. C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, pp. 79–92 in Transcendence

Theory: Advances and Applications (edited by A. Baker and D.W. Masser), Academic Press,

London, 1977.
13. C. L. Stewart, Exceptional units and cyclic resultants, Acta Arithmetica, to appear.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1

E-mail address: cstewart@uwaterloo.ca


