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1. Introduction

Let r1,...,7, and ug, ..., ur—1 be integers and put
Un = T1Un—1 + - + ThUn—k, (1)
forn =4k, k+1,.... The sequence (u,)>2, is a linear recurrence sequence. Let

Q denote the field of rational numbers. It is well known, see [2, p. 62] or [11,
p. 33], that

un:fl(n)a?—i_'i_ft(n)a?a (2)
where fi,..., f; are non-zero polynomials with degrees less than ¢,...,¢; re-
spectively and with coefficients from Q(a1,...,o;) where ai,...,a; are the

non-zero roots of the characteristic polynomial
XF o Xk

and ¢y,...,0; are their respective multiplicities. The sequence (un)32, is said
to be non-degenerate if ¢ > 1 and «;/c; is not a root of unity for 1 <i < j <t.
In 1935 Mahler [3] proved that if w,, is the n-th term of a non-degenerate linear
recurrence sequence then

|| — 00 asn — oo. (3)

For any integer m let P(m) denote the greatest prime factor of m and let
Q(m) denote the greatest square free factor of m with the convention that
P(0) = P(£1) = 1 = Q(£1) = Q(0). Thus, if m = p}fl -oophr with py, ..., pr
distinct primes and hq, ..., h, positive integers, then Q(m) = p;1 - - - p,..

van der Poorten and Schlickewei [6] and Evertse [1] proved, by means of a
p-adic version of Schmidt’s Subspace Theorem due to Schlickewei [8], that if
(un )22, is a non-degenerate linear recurrence sequence then

P(up) — 00 asn — oo. (4)

Estimates (3) and (4) are both ineffective. On the other hand if one of
the roots of the characteristic polynomial has modulus strictly larger than the
others, say

loa| > ||, i=2,...,¢, (5)
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then
[t | > cin® |aq]™,

for n > ¢y where ¢; is one half of the absolute value of the coefficient of z%
in the polynomial f; and where ¢y is a positive number which is effectively
computable in terms of aq,...,a¢ and f1,..., fi. In 1982 Stewart [13] obtained
effective estimates from below for the greatest prime factor and the great square-
free factor of u, in the case that (5) holds. In particular, if u,, # fi(n)af, then,
for any € > 0,

P(up) > (1 —¢)logn (6)

and
Q(un) >n'~*, (7)
for n > c3, a number which is effectively computable in terms of €, ay,..., a4
and fi,..., f;. Estimates (6) and (7) were established by means of a version,

due to Waldschmidt [16], of Baker’s theorem on linear forms in the logarithms
of algebraic numbers. Shparlinski [12] independently proved (6) in the case that
f1(n) is a non-zero constant and with 1 —e replaced by a small positive number.

The purpose of this note is to show that estimates (6) and (7) may be
improved with the help of a recent result of Matveev [4] on linear forms in the
logarithms of algebraic numbers.

Theorem 1. Let a be a real algebraic number with absolute value greater than
one and let [ be a mon-zero polynomial with coefficients which are algebraic
numbers. Let § be a real number with 0 < § < 1, let n be a positive integer and
let u(n) be an integer for which

0 < Ju(n) = f(n)a"| < |al*". (8)

There exist positive numbers Cy, Cy and Cs, which are effectively computable
in terms of 0, a and f, such that if n exceeds Cs and f(n) is non-zero, then

loglogn
P Ch1 _— 9
(u(n)) > C1 Ognlogloglogn )
and
Q(u(n)) > an(loglog n)/log loglogn' (10)

In particular, if u, is the n-th term of a non-degenerate linear recurrence
sequence, defined as in (2), |a1] > |oy| for 7 =2,...,t and u, # fi1(n)ay, then
estimates (9) and (10) hold with u(n) replaced by w,,.

For any real number z let [z] denote the greatest integer less than or equal
to « and let (x) denote the nearest integer to z with the proviso that if z is
an integer then (x + 1/2) equals z. Further, as in [13] and following an idea of
Mignotte [5], we may apply Theorem 1 to integers of the form [A0"] or (A™)
where A and 0 are non-zero real algebraic numbers with || > 1 for which A" is



not an integer. In particular, in this case there exist positive numbers c4, c5 and
c¢ which are effectively computable in terms of A and 6, such that for n > c4,
loglogn

P([\" log n———2—2——
(AO"]) > eslogmy o e

and
Q([/\@n]) > n06(log logn)/ loglog logn.

In the special case of binary recurrence sequences, so k = 2 in (1), stronger
estimates apply than those which follow from (9) and (10). If w, is the n-th
term of a binary recurrence sequence, then, for n > 0,

u, = aa”™ + b3, (11)
where o and 3 are the roots of 22 — riz — ry and

uofS — uq U] — U
a=——— and b=

f—a B—a ’
whenever o # (. The binary recurrence sequence (u,)5> is non-degenerate
whenever abaf # 0 and a/ is not a root of unity.
In 1967 Schinzel [7] proved that if (u,)32, is a non-degenerate binary recur-
rence sequence then there exist positive numbers c7, cg and cg such that

P(uy) > crn(logn)®,

where cg = 1/84 and ¢g = 7/12 if o and (8 are integers while ¢g = 1/133
and ¢g = 7/19 otherwise and where c; is effectively computable in terms of
r, s, up and wup. Let d denote the degree of « over the rationals. In 1982
Stewart [13] proved that if w,, as in (11), is the n-th term of a non-degenerate
binary recurrence sequence then

1/(d+1)
P(un) > C10 (@) (12)

and
n 1/d
Q(un) > cn1 (W) (13)

where c19 and c¢1; are effectively computable in terms of ¢ and b only. In a letter
to the author Shorey [10] pointed out that for those indices n which are odd,
the argument given in [13] leads to a dependence of ¢jp and ¢17 on « and § in
addition to a and b. However, with some additional work we were able to show
that the numbers c¢19 and ¢;; do indeed depend on a and b only. In 1995 Yu
and Hung [17] improved both (12) and (13). They proved that if w,, is the n-th
term of a non-degenerate binary recurrence sequence, as in (11), then

P(uy,) > clgnl/(dJrl),



and

NV
Q) > (o)

where c12 and c;3 are positive numbers which are effectively computable in terms
of a, b and the class number of the field obtained by adjoining a to Q.

Furthermore, Shorey [9] in 1983 proved that there exist positive numbers c¢;4
and c15 which are effectively computable in terms of a, b, a and 3 such that if
Uy, is the n-th term of a non-degenerate binary recurrence sequence, as in (11),
and n exceeds c15 then

Q(un) > ncl4(log n)/ log logn_ (14)

Estimate (14) had been established earlier by Stewart [14] when w,, is the n-th
term of a Lucas or Lehmer sequence. A Lucas sequence is a non-degenerate
binary recurrence sequence with initial terms ug = 0 and u; = 1. For a more
extensive history of these topics see [15].

2. Preliminary lemma
Let aq,...,a, be non-zero algebraic numbers and put K = Q(ay,...,ap)

Let D denote the degree of K over Q. We shall define the height H(3) of an
algebraic number 3 by

d
H(B) = lagl [ max{1,|8:]},
=1

where .
aaX®+ - +ao :adH(X—ﬁi)
i=1
is the minimal polynomial of 8 in Z[X]. Let log ay, . .., log a;, be non-zero values
of the logarithms of a4, ..., o, and suppose that

A; > max{H (a;),exp(|log o), 2}
for j=1,...,n. Let by, ..., b, be integers and put
B = max{|b1|,...,|bn|, 2}

Define A by
A=bjloga; + -+ byloga,.

In 2000 Matveev [4] proved the following result.

Lemma 1. There exists a positive number C, which is effectively computable,

such that if A # 0 then
|A| > exp(—C"D""?log Dlog A; .. .log A, log B).

Proof. This follows from Corollary 2.3 of [4]. In fact, Matveev gives an estimate
for |A| in an explicit form from which it would be easy to determine C. O



3. Proof of Theorem 1

We shall follow the proof of Theorem 4 of [13]. By replacing f(n) by —f(n)
if necessary, we may assume that « is a positive real number. Let K be the field
obtained by adjoining a: and the coefficients of f to Q. Let D be the degree of K
over Q. Let ¢q, ca, ... denote positive numbers which are effectively computable
in terms of §, o and f. We shall suppose throughout that n exceeds a sufficiently
large number c;.

The proof proceeds by a comparison of estimates for |log R|, where

u(n)
f(n)an

Put A(n) = u(n)— f(n)a™. We have R = 14 (h(n)/f(n)a™) and for n sufficiently
large

R:

2/h(n)
88 =

since |log(1 + z)| < 2|x| whenever |z| < 1/2. Thus, from (8),
|log R| < o~ ((1=0)/2)n, (15)
Suppose that
u(n) = (=1)%pi"--- ",

with p1, ..., ps distinct prime numbers, a1, ..., a; positive integers and ag from
{0,1}. Then log R = aglog(—1) 4+ a1 logps + - - + atlogp; — log f(n) — nloga.
Note that by (8) u(n) # f(n)a™ and so R # 1. Thus log R # 0. Further note
that by (8)

max(|ai],...,|a]) < con.

Furthermore
log H(f(n)) < c3logn.

Therefore, by Lemma 1,
|log R| > exp(—ci™ D' log Dlogp; - - - log p;(logn)?). (16)

We deduce, from (15) and (16), on taking logarithms, that

n
Cs (W) < cglogps - -logp;. (17)

By the arithmetic-geometric mean inequality

t1 < 1og(1‘[;;1pi) t 18
[[ospi < | —— | (19)



Since [['_, pi = Q(u(n)) it follows from (17) and (18) that

o Qi)Y | o,

1ogn—2loglogn+log05<t10g< ;

and so, for n sufficiently large,

(logn> e loglogn < log (log Q(u(n))) fer

t t t

hence
cotelllogn)/t)—cs(loglogn)/t log Q(u(n)). (19)
We assume first that ¢ is less than (logn)/logloglogn. Put

h(t) _ te(log n—cgloglogn)/t

and notice that h is decreasing for ¢ in the range from 1 to logn — cgloglogn.
Thus for n sufficiently large (logn)/logloglogn is less than logn — cgloglogn
and so, by (19),

ec10(lognlog log n)/ loglog logn < Q(u(n)), (20)

as required. On the other hand if ¢ is at least (logn)/logloglogn then the
product of the first ¢ primes exceeds e(lognloglogn)/2logloglogn for y sufficiently
large and therefore

e(lognloglogn)/2logloglogn < Q(u(n)) (21)

Thus (10) follows from (20) and (21).
For any positive integer m

Q)< [ p< e (22)
p<P(m)
and thus (9) follows from (10) and (22). O
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