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1. Introduction

Let r1, . . . , rk and u0, . . . , uk−1 be integers and put

un = r1un−1 + · · · + rkun−k, (1)

for n = k, k +1, . . . . The sequence (un)∞n=0 is a linear recurrence sequence. Let
Q denote the field of rational numbers. It is well known, see [2, p. 62] or [11,
p. 33], that

un = f1(n)αn
1 + · · · + ft(n)αn

t , (2)

where f1, . . . , ft are non-zero polynomials with degrees less than ℓ1, . . . , ℓt re-
spectively and with coefficients from Q(α1, . . . , αt) where α1, . . . , αt are the
non-zero roots of the characteristic polynomial

Xk − r1X
k−1 − · · · − rk,

and ℓ1, . . . , ℓt are their respective multiplicities. The sequence (un)∞n=0 is said
to be non-degenerate if t > 1 and αi/αj is not a root of unity for 1 ≤ i < j ≤ t.
In 1935 Mahler [3] proved that if un is the n-th term of a non-degenerate linear
recurrence sequence then

|un| → ∞ as n → ∞. (3)

For any integer m let P (m) denote the greatest prime factor of m and let
Q(m) denote the greatest square free factor of m with the convention that
P (0) = P (±1) = 1 = Q(±1) = Q(0). Thus, if m = ph1

1 · · · phr

r with p1, . . . , pr

distinct primes and h1, . . . , hr positive integers, then Q(m) = p1 · · · pr.
van der Poorten and Schlickewei [6] and Evertse [1] proved, by means of a

p-adic version of Schmidt’s Subspace Theorem due to Schlickewei [8], that if
(un)∞n=0 is a non-degenerate linear recurrence sequence then

P (un) → ∞ as n → ∞. (4)

Estimates (3) and (4) are both ineffective. On the other hand if one of
the roots of the characteristic polynomial has modulus strictly larger than the
others, say

|α1| > |αi|, i = 2, . . . , t, (5)
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then
|un| > c1n

ℓ1 |α1|
n,

for n > c2 where c1 is one half of the absolute value of the coefficient of xℓ1

in the polynomial f1 and where c2 is a positive number which is effectively
computable in terms of α1, . . . , αt and f1, . . . , ft. In 1982 Stewart [13] obtained
effective estimates from below for the greatest prime factor and the great square-
free factor of un in the case that (5) holds. In particular, if un 6= f1(n)αn

1 , then,
for any ε > 0,

P (un) > (1 − ε) log n (6)

and
Q(un) > n1−ε, (7)

for n > c3, a number which is effectively computable in terms of ε, α1, . . . , αt

and f1, . . . , ft. Estimates (6) and (7) were established by means of a version,
due to Waldschmidt [16], of Baker’s theorem on linear forms in the logarithms
of algebraic numbers. Shparlinski [12] independently proved (6) in the case that
f1(n) is a non-zero constant and with 1−ε replaced by a small positive number.

The purpose of this note is to show that estimates (6) and (7) may be
improved with the help of a recent result of Matveev [4] on linear forms in the
logarithms of algebraic numbers.

Theorem 1. Let α be a real algebraic number with absolute value greater than

one and let f be a non-zero polynomial with coefficients which are algebraic

numbers. Let δ be a real number with 0 < δ < 1, let n be a positive integer and

let u(n) be an integer for which

0 < |u(n) − f(n)αn| < |α|δn. (8)

There exist positive numbers C1, C2 and C3, which are effectively computable

in terms of δ, α and f, such that if n exceeds C3 and f(n) is non-zero, then

P (u(n)) > C1 log n
log log n

log log log n
(9)

and

Q(u(n)) > nC2(log log n)/ log log log n. (10)

In particular, if un is the n-th term of a non-degenerate linear recurrence
sequence, defined as in (2), |α1| > |αj | for j = 2, . . . , t and un 6= f1(n)αn

1 , then
estimates (9) and (10) hold with u(n) replaced by un.

For any real number x let [x] denote the greatest integer less than or equal
to x and let 〈x〉 denote the nearest integer to x with the proviso that if x is
an integer then 〈x + 1/2〉 equals x. Further, as in [13] and following an idea of
Mignotte [5], we may apply Theorem 1 to integers of the form [λθn] or 〈λθn〉
where λ and θ are non-zero real algebraic numbers with |θ| > 1 for which λθn is
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not an integer. In particular, in this case there exist positive numbers c4, c5 and
c6 which are effectively computable in terms of λ and θ, such that for n > c4,

P ([λθn]) > c5 log n
log log n

log log log n
,

and
Q([λθn]) > nc6(log log n)/ log log log n.

In the special case of binary recurrence sequences, so k = 2 in (1), stronger
estimates apply than those which follow from (9) and (10). If un is the n-th
term of a binary recurrence sequence, then, for n ≥ 0,

un = aαn + bβn, (11)

where α and β are the roots of x2 − r1x − r2 and

a =
u0β − u1

β − α
and b =

u1 − u0α

β − α
,

whenever α 6= β. The binary recurrence sequence (un)∞n=0 is non-degenerate
whenever abαβ 6= 0 and α/β is not a root of unity.

In 1967 Schinzel [7] proved that if (un)∞n=0 is a non-degenerate binary recur-
rence sequence then there exist positive numbers c7, c8 and c9 such that

P (un) > c7n
c8(log n)c9 ,

where c8 = 1/84 and c9 = 7/12 if α and β are integers while c8 = 1/133
and c9 = 7/19 otherwise and where c7 is effectively computable in terms of
r, s, u0 and u1. Let d denote the degree of α over the rationals. In 1982
Stewart [13] proved that if un, as in (11), is the n-th term of a non-degenerate
binary recurrence sequence then

P (un) > c10

(

n

log n

)1/(d+1)

(12)

and

Q(un) > c11

(

n

(log n)2

)1/d

(13)

where c10 and c11 are effectively computable in terms of a and b only. In a letter
to the author Shorey [10] pointed out that for those indices n which are odd,
the argument given in [13] leads to a dependence of c10 and c11 on α and β in
addition to a and b. However, with some additional work we were able to show
that the numbers c10 and c11 do indeed depend on a and b only. In 1995 Yu
and Hung [17] improved both (12) and (13). They proved that if un is the n-th
term of a non-degenerate binary recurrence sequence, as in (11), then

P (un) > c12n
1/(d+1),
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and

Q(un) > c13

(

n

log n

)1/d

,

where c12 and c13 are positive numbers which are effectively computable in terms
of a, b and the class number of the field obtained by adjoining α to Q.

Furthermore, Shorey [9] in 1983 proved that there exist positive numbers c14

and c15 which are effectively computable in terms of a, b, α and β such that if
un is the n-th term of a non-degenerate binary recurrence sequence, as in (11),
and n exceeds c15 then

Q(un) > nc14(log n)/ log log n. (14)

Estimate (14) had been established earlier by Stewart [14] when un is the n-th
term of a Lucas or Lehmer sequence. A Lucas sequence is a non-degenerate
binary recurrence sequence with initial terms u0 = 0 and u1 = 1. For a more
extensive history of these topics see [15].

2. Preliminary lemma

Let α1, . . . , αn be non-zero algebraic numbers and put K = Q(α1, . . . , αn)
Let D denote the degree of K over Q. We shall define the height H(β) of an
algebraic number β by

H(β) = |ad|
d

∏

i=1

max{1, |βi|},

where

adX
d + · · · + a0 = ad

d
∏

i=1

(X − βi)

is the minimal polynomial of β in Z[X ]. Let log α1, . . . , log αn be non-zero values
of the logarithms of α1, . . . , αn and suppose that

Aj ≥ max{H(αj), exp(| log αj |), 2}

for j = 1, . . . , n. Let b1, . . . , bn be integers and put

B = max{|b1|, . . . , |bn|, 2}.

Define Λ by
Λ = b1 log α1 + · · · + bn log αn.

In 2000 Matveev [4] proved the following result.

Lemma 1. There exists a positive number C, which is effectively computable,

such that if Λ 6= 0 then

|Λ| > exp(−CnDn+2 log D log A1 . . . log An log B).

Proof. This follows from Corollary 2.3 of [4]. In fact, Matveev gives an estimate
for |Λ| in an explicit form from which it would be easy to determine C.
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3. Proof of Theorem 1

We shall follow the proof of Theorem 4 of [13]. By replacing f(n) by −f(n)
if necessary, we may assume that α is a positive real number. Let K be the field
obtained by adjoining α and the coefficients of f to Q. Let D be the degree of K
over Q. Let c1, c2, . . . denote positive numbers which are effectively computable
in terms of δ, α and f. We shall suppose throughout that n exceeds a sufficiently
large number c1.

The proof proceeds by a comparison of estimates for | log R|, where

R =
u(n)

f(n)αn
.

Put h(n) = u(n)−f(n)αn. We have R = 1+(h(n)/f(n)αn) and for n sufficiently
large

| log R| ≤
2|h(n)|

|f(n)|αn
,

since | log(1 + x)| ≤ 2|x| whenever |x| ≤ 1/2. Thus, from (8),

| log R| ≤ α−((1−δ)/2)n. (15)

Suppose that
u(n) = (−1)a0pa1

1 · · · pat

t ,

with p1, . . . , pt distinct prime numbers, a1, . . . , at positive integers and a0 from
{0, 1}. Then log R = a0 log(−1) + a1 log p1 + · · · + at log pt − log f(n) − n log α.
Note that by (8) u(n) 6= f(n)αn and so R 6= 1. Thus log R 6= 0. Further note
that by (8)

max(|a1|, . . . , |at|) < c2n.

Furthermore
log H(f(n)) < c3 log n.

Therefore, by Lemma 1,

| log R| > exp(−ct+1
4 Dt+2 log D log p1 · · · log pt(log n)2). (16)

We deduce, from (15) and (16), on taking logarithms, that

c5

(

n

(log n)2

)

< ct
6 log p1 · · · log pt. (17)

By the arithmetic-geometric mean inequality

t
∏

i=1

log pi ≤





log
(

∏t
i=1 pi

)

t





t

. (18)
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Since
∏t

i=1 pi = Q(u(n)) it follows from (17) and (18) that

log n − 2 log log n + log c5 < t log

(

log Q(u(n))

t

)

+ c7t,

and so, for n sufficiently large,
(

log n

t

)

− c8
log log n

t
< log

(

log Q(u(n))

t

)

+ c7

hence
c9te

((log n)/t)−c8(log log n)/t < log Q(u(n)). (19)

We assume first that t is less than (log n)/ log log log n. Put

h(t) = te(log n−c8 log log n)/t

and notice that h is decreasing for t in the range from 1 to log n − c8 log log n.
Thus for n sufficiently large (log n)/ log log log n is less than log n − c8 log log n
and so, by (19),

ec10(log n log log n)/ log log log n < Q(u(n)), (20)

as required. On the other hand if t is at least (log n)/ log log log n then the
product of the first t primes exceeds e(log n log log n)/2 log log log n for n sufficiently
large and therefore

e(log n log log n)/2 log log log n < Q(u(n)). (21)

Thus (10) follows from (20) and (21).
For any positive integer m

Q(m) ≤
∏

p≤P (m)

p < ec11P (m) (22)

and thus (9) follows from (10) and (22). �
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