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ABSTRACT. In an earlier paper Hubert, Mauduit and Sárközy introduced pseu-

dorandom measures for pseudorandomness of binary lattices, and they gave con-

structions for binary lattices with strong pseudorandom properties. They gave

nearly optimal upper bounds for the pseudorandom measures of the lattices con-

structed. However, these early constructions also have disadvantages: they are

rather artificial, and their implementation is complicated. Thus another construc-

tion is presented here which is based on the use of the Legendre symbol. This

construction is much more natural and flexible than the earlier ones, and it can

be implemented more easily. However, there is a price paid for this: to give upper

bounds for the pseudorandom measures one needs the flexibility and generality

of Weil’s theorem, and here in the two dimensional situation this approach leads

to weaker bounds than the optimal ones.

Communicated by Christian Mauduit

1. Introduction

Pseudorandom binary sequences have many important applications. In par-
ticular, they are used as a key stream in the classical stream cipher called the
Vernam cipher. The standard approach to the theory of pseudorandomness of
binary sequences is based on complexity theory. However, this approach has
certain limitations and weak points. Thus recently Mauduit and Sárközy [9]
(see also the survey paper [12]) initiated a new, constructive approach to the
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theory of pseudorandomness. They defined and studied new measures of pseu-
dorandomness. These measures provide a quantitative characterization of pseu-
dorandomness of a given binary sequence. In the last 10 years numerous binary
sequences have been tested for pseudorandomness.

In order to encrypt a 2-dimensional digital map or picture via the analog of
the Vernam cipher, instead of a pseudorandom binary sequence (as a key stream)
one needs a pseudorandom “binary lattice”. Thus one needs the n-dimensional
extension of the theory of pseudorandomness. Such a theory has been developed
recently by Hubert, Mauduit and Sárközy [7]. They introduced the following
definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are integers
between 0 and N − 1:

InN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or briefly an N -lattice. Here we
will extend this definition to more general lattices in the following way: Let
u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate
of ui is non-zero, and the other coordinates of ui are 0, so ui is of the form
(0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N .
Then we will call the set

Bn
N = {x = x1u1 + ⋅ ⋅ ⋅+ xnun : 0 ≤ xi ∣ui∣ ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N -lattice or briefly a box N -lattice.

In [7] the definition of binary sequences is extended to more dimensions by
considering functions of type

ex = �(x) : InN → {−1,+1}.

If x = (x1, . . . , xn) so that �(x) = �((x1, . . . , xn)) then we will slightly simplify
the notation by writing �(x) = �(x1, . . . , xn).

Such a function can be visualized as the lattice points of theN -lattice replaced
by the two symbols + and −, thus they are called binary N -lattices. Binary 2 or
3 dimensional pseudorandom lattices can be used in encryption of digital images.

In [7] Hubert, Mauduit and Sárközy introduced the following pseudorandom
measure of binary lattices (here we will present the definition in a slightly mod-
ified but equivalent form):Definition 1. Let

� : InN → {−1,+1}.
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The pseudorandom measure of order ℓ of � is defined by

Qℓ(�) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

�(x+ d1) ⋅ ⋅ ⋅ �(x+ dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ InN and all box N -
lattices B such that B + d1, . . . , B + dℓ ⊆ InN .

Then � is said to have strong pseudorandom properties, or briefly, it is con-
sidered as a good pseudorandom lattice if for fixed n and ℓ and large N the
measure Qℓ(�) is small (much smaller than the trivial upper bound Nn). This
terminology is justified by the fact that, as was proved in [7], for a truly random
binary lattice defined on InN and for fixed ℓ the measure Qℓ(�) is small: It is less

than Nn/2 multiplied by a logarithmic factor.

In one dimension, hence in the case of binary sequences, many good con-
structions have been given. Typically, the really good constructions involve Fp,
additive or multiplicative characters and polynomials, and the crucial tool in
the estimation of the pseudorandom measures is Weil’s theorem. Unfortunately,
this approach in its original form does not readily apply in higher dimensions.
The difficulty is that in n dimensions constructions involving Fp, characters
and polynomials f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn], lead naturally to the n-
dimensional analogues of Weil’s theorem. In particular they lead to the theorem
of Deligne. While Fouvry and Katz [3] have simplified the requirements for ap-
plying Deligne’s theorem the inconvenient assumption of nonsingularity is still
required in order to obtain sharp bounds.

In spite of these difficulties, in [7] and [8] good n-dimensional constructions
were presented. In these papers the authors got around the difficulty described
above in the following way. Finite fields Fq with q = pn and polynomials G(x) ∈
Fq[x] are considered. Character sums involving G(x) and characters of Fq can be
estimated by Weil’s theorem so that no nonsingularity assumption is needed. On
the other hand, if e1, e2, . . . , en is a basis in Fq, then every x ∈ Fq has a unique
representation in the form x = x1e1+x2e2+ ⋅ ⋅ ⋅+xnen with x1, x2, . . . , xn ∈ Fp.
Then g(x1, x2, . . . , xn) = G(x1e1 + x2e2 + ⋅ ⋅ ⋅ + xnen) ∈ Fp[x1, x2, . . . , xn] is
a well-defined polynomial, and the estimate of n-fold character sums involving
g(x1, x2, . . . , xn) can be reduced to the estimate of character sums over Fq in-
volving G, so that Weil’s theorem can be used. (This principle goes back to
Davenport and Lewis [2].)

This detour enables one to give sharp upper bounds, but it also has con-
siderable disadvantages. In particular, in this way we get rather artificial con-
structions. More natural constructions cannot be tested with this approach.
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Secondly, the implementation of these artificial constructions is more compli-
cated. Thus one might like to look for a trade-off between applicability of the
method and sharpness of the result, in other words, for a method which is much
more flexible and applicable at the expense of providing weaker but still non-
trivial upper bounds. We will show that in the case when n = 2, there is such
a method, based on the techniques introduced by Gyarmati and Sárközy [5] to
estimate certain related character sums. This method allows us to give a simple
description of the exceptional polynomials, see Section 2. But the price paid for
the flexibility of this method is that the upper bounds are not optimal. For a
two dimensional p-lattice they are, up to logarithmic factors, p3/2 instead of the
optimal bound of p. On the other hand, they improve on the trivial bound of
p2 considerably.

In one dimension the best and most intensively studied construction is based
on the use of the Legendre symbol, see [4], [6], [9], [13]. Let p be a prime,
f(x) ∈ Fp[x] be a polynomial, and define the sequence Ep = {e1, . . . , ep} by

en =

{ (

f(n)
p

)

if (f(n), p) = 1,

+1 if p ∣ f(n).
(1.1)

We will identify the elements of Fp with the residue classes modulo p, and we
will not distinguish between the residue classes and their representing elements.
The natural two dimensional extension of this construction is the following.Constrution 1. Let p be an odd prime, f(x1, x2) ∈ Fp[x1, x2] be a polyno-
mial in two variables. Define � : I2p → {−1,+1} by

�(x1, x2) =

{ (

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p ∣ f(x1, x2).
(1.2)

First, in Section 2, we will show that in two dimensions there are new difficul-
ties arising, and there are many ”bad” polynomials f(x1, x2). Then, in Section
3, we will formulate Theorem 1, our main result. We will also present several
sufficient criteria for a polynomial f(x1, x2) for which the corresponding binary
p-lattice (1.2) possesses strong pseudorandom properties. The rest of this paper
will be devoted to the proof of this main result.

In Part II of this paper we will study (1.2) in the case when f(x1, x2) is one of
the degenerate polynomials described in Section 2. Moreover, we will also study
implementation problems related to some constructions based on Theorem 1.
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2. Negative examples

In this section we will present examples of polynomials f(x1, x2) ∈ Fp[x1, x2]
for which the binary p-lattice defined in (1.2) has weak pseudorandom properties.Example 1. If

f(x1, x2) = c (g(x1, x2))
2

with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2], then every element of the lattice defined

in (1.2) is
(

c
p

)

except the zeros of f(x1, x2). It follows that if the degree of

f(x1, x2) is not very large, then Q1(�) is large.Example 2. If f(x1, x2) = g(x1) with a polynomial g(x) ∈ Fp[x] of one variable,
then we have

�(x1, x2)�(x1, x2 + 1) =

(

g(x1)

p

)(

g(x1)

p

)

= +1

(except the zeros of g(x1)) from which it follows that Q2(�) is large.Example 3. If f(x1, x2) = g(x1)ℎ(x2) with polynomials g(x), ℎ(x) ∈ Fp[x],
then it can be shown by a little computation that Q4(�) is large.

The polynomials f(x1, x2) occurring in examples 1-3 are special cases of the
following:Definition 2. The polynomial f(x1, x2) is called degenerate if it is of the form

f(x1, x2) =

⎛

⎝

r
∏

j=1

fj(�jx1 + �jx2)

⎞

⎠ g(x1, x2)
2, (2.1)

where �j , �j ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].

A polynomial f ∈ Fp[x, y] which can be expressed in the form (2.1) is said to
be degenerate and otherwise it is said to be non-degenerate.

As examples 1, 2 and 3 show, if f is degenerate then it may be that the
associated binary p-lattice (1.2) has weak pseudorandom properties. We shall
analyse the situation when f is degenerate in more detail in a sequel to this
paper. In the balance of this paper we shall restrict our attention to binary
p-lattices (1.2) for which f is non-degenerate.
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3. Sufficient conditions

In one dimension Goubin, Mauduit and Sárközy [4] gave sufficient conditions
on the polynomial f(x) to guarantee small pseudorandom measures. Let Fp

denote an algebraic closure of Fp.Theorem A. Let f(x) ∈ Fp[x] be a polynomial of degree k(> 0) which has no

multiple zero in Fp. Define the sequence Ep ∈ {−1,+1}p by (1.1). Then W (Ep),
the “well-distribution measure” of Ep, satisfies

W (Ep) < 10kp1/2 log p.

Moreover assume that one of the following 3 conditions holds:
a) ℓ = 2,
b) 2 is a primitive root modulo p,
c) (4k)ℓ < p or (4ℓ)k < p,
Then Cℓ(Ep), ”the correlation measure of order ℓ,” satisfies

Cℓ(Ep) ≤ 10kℓp1/2 log p.

(See [9] for the definition of well-distribution measure and correlation measure.)

We extend their result to the 2 dimensional case:Theorem 1. Let f(x1, x2) ∈ Fp[x1, x2] be a polynomial of degree k. Suppose
that f(x1, x2) cannot be expressed in the form (2.1) and one of the following 5
conditions holds:
a) f(x1, x2) is irreducible in Fp[x1, x2],
b) ℓ = 2,
c) 2 is a primitive root modulo p,
d) 4k+ℓ < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.
Then for the binary p-lattice � defined in (1.2) we have

Qℓ(�) ≤ 11kℓp3/2 log p.

The rest of this paper is devoted to the proof of this theorem.

4. Proof of Theorem 1

For k > p1/2/10 the theorem is trivial. Thus we may suppose that

k ≤ p1/2/10. (4.1)
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Similarly, we may suppose that

k2 + ℓ2 < p, (4.2)

otherwise the theorem is trivial since

4k2ℓ2 > k2 + ℓ2 ≥ p,

and so

10kℓp3/2 log p > p2.Lemma 1. If F is a field, then in F[x1, x2, . . . , xn] every polynomial has a factor-
ization into irreducible polynomials which is unique apart from constant factors
and reordering.

P r o o f o f L e mm a 1. See, for example [11, Theorem 207]. □

If f(x1, x2) ∈ Fp[x1, x2], then we will also write f(x1, x2) = f(x) with x =
(x1, x2).Lemma 2. Let p ≥ 5 be a prime and � be a multiplicative character of order d.
Suppose that ℎ(x1, x2) ∈ Fp[x1, x2] is not of the form cg(x1, x2)

d with c ∈ Fp,
g(x1, x2) ∈ Fp[x1, x2]. Let k be the degree of ℎ(x1, x2). Then we have

∑

x∈B

� (ℎ(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattice B ⊆ I2p .

We remark that the upper bound in the lemma is nearly sharp: it is easy to
see that there are polynomials ℎ(x1, x2) of the form ℎ(x1, x2) = f(x1) (so that
ℎ(x1, x2) depends only on one of the two variables) for which the left hand side
of the inequality in the lemma with F

2
p in place of B is > c(k)p3/2.

P r o o f o f L e mm a 2. It follows easily from Lemma 1 that ℎ(x1, x2) cannot
be of form both g1(x1)p1(x1, x2)

d and g2(x2)p2(x1, x2)
d simultaneously with

g1(x), g2(x) ∈ Fp[x] and p1(x1, x2), p2(x1, x2) ∈ Fp[x1, x2]. Thus by symmetry
reasons we may suppose that ℎ(x1, x2) is not of the form g2(x2)p2(x1, x2)

d.

Since B is a box p-lattice, write it in the form

B = {x = (v1b1, v2b2) : v1, v2 ∈ ℕ, 0 ≤ v1b1 ≤ t1, 0 ≤ v2b2 ≤ t2} (4.3)

with b1, b2 ∈ ℕ and 0 ≤ t1, t2 < p. Then by the triangle inequality
∣

∣

∣

∣

∣

∑

x∈B

� (ℎ(x))

∣

∣

∣

∣

∣

≤
∑

0≤v2≤[t2/b2]

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.
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For fixed v2, b1 and b2, the polynomial ℎ(v1b1, v2b2) is a polynomial of one
variable in v2. We will use the following consequence of Weil’s theorem [14]:Lemma 3. Suppose that p is a prime, � is a non-principal character modulo p
of order d, f(x) ∈ Fp[x] has s distinct roots in Fp, and it is not the constant
multiple of the d-th power of a polynomial in Fp[x]. Let y be a real number with
0 < y ≤ p. Then for any x ∈ Fp:

∣

∣

∣

∣

∣

∣

∑

x<n≤x+y

�(f(n))

∣

∣

∣

∣

∣

∣

< 9sp1/2 log p.

P r o o f o f L e mm a 3. This is an immediate consequence of Lemma 1 in [1].
□

If, for fixed v2, b1, b2, the polynomial ℎ(xb1, v2b2) ∈ Fp[x] of one variable is
not of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x], then by Lemma 3

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ 9kp1/2 log p.

We will show that for fixed b1 and b2 there are only few values of v2 for which
the polynomial ℎ(xb1, v2b2) ∈ Fp[x] is of the form cg(x)d. For this we needLemma 4. Let ℎ(x, y) ∈ Fp[x, y] be a polynomial of two variables, which is not
of the form q(y)p(x, y)d with q(y) ∈ Fp[y], p(x, y) ∈ Fp[x, y]. Denote by n and
m the degree of the polynomial ℎ(x, y) in x and y, respectively. Then there are
at most nm+m values y0 ∈ Fp such that

ℎ(x, y0) ∈ Fp[x]

is of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x].

P r o o f o f L e mm a 4. This is Lemma 4 in [5]. □

Let n and m be the degree of ℎ(x1, x2) in x1 and x2 respectively. We have
assumed that ℎ(x1, x2) is not of the form g2(x2)p2(x1, x2)

d, thus by Lemma 4,
there are at most nm+m values of v2 such that ℎ(xb1, v2b2) is of the form cg(x)d

for some c ∈ Fp, g(x) ∈ Fp[x]. Let V denote the set of these v2’s. Then

∣V∣ ≤ mn+m ≤ k2 + k. (4.4)
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By (4.3)
∣

∣

∣

∣

∣

∑

x∈B

� (ℎ(x))

∣

∣

∣

∣

∣

≤
∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

+
∑

v2∈Fp∖V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For v2 ∈ V we use the trivial estimate p for the inner sum. By Lemma 4 and
(4.4)

∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ (k2 + k)p.

For v2 ∈ Fp ∖ V we use Lemma 3 to deduce that

∑

v2∈Fp∖V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

� (ℎ(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

< 9kp3/2 log p.

Thus by (4.1)
∣

∣

∣

∣

∣

∑

x∈B

� (ℎ(x))

∣

∣

∣

∣

∣

< (k2 + k)p+ 9kp3/2 log p < 10kp3/2 log p

which completes the proof of Lemma 2. □Lemma 5. Suppose that f ∈ Fp[x1, x2] is a polynomial such that there are no
distinct d1, . . . ,dℓ ∈ F

2
p with the property that f(x + d1) . . . f(x + dℓ) is of the

form cg(x)2 with c ∈ Fp, g ∈ Fp[x1, x2]. Let k be the degree of the polynomial
f(x1, x2). Then for the binary p-lattice � defined in (2.1) we have

∣Qℓ(�)∣ < 11kℓp3/2 log p.

P r o o f o f L e mm a 5. We have

Qℓ(�) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

�(x+ d1) ⋅ ⋅ ⋅�(x+ dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ I2p and box p-lattices

B such that B+d1, . . . , B+dℓ ⊆ I2p . Let B be the box p-lattice, d1, . . . ,dℓ ∈ I2p
be the vectors for which this maximum is attained so that

Qℓ(�) =

∣

∣

∣

∣

∣

∑

x∈B

�(x+ d1) ⋅ ⋅ ⋅ �(x+ dℓ)

∣

∣

∣

∣

∣

.
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Write ℎ(x) = f(x+ d1) ⋅ ⋅ ⋅ f(x+ dℓ), then

Qℓ(�) ≤

∣

∣

∣

∣

∣

∑

x∈B

(

ℎ(x)

p

)

∣

∣

∣

∣

∣

+
∑

x∈B
ℎ(x)=0

1.

ℎ(x) is a polynomial of degree kℓ. Estimating the number of zeros of ℎ(x) we
find that

∑

x∈B
ℎ(x)=0

1 ≤ kℓp. (4.5)

By assumption ℎ(x) is not of the form cg(x)2 and its degree is ℓk. Thus by
Lemma 2 and (4.5) we have

Qℓ(�) ≤ 10ℓkp3/2 log p+ ℓkp,

which was to be proved. □

Suppose that one of the 5 conditions in Theorem 1 holds. We will prove that
the product

ℎ(x) = f(x+ d1) . . . f(x+ dℓ)

cannot be the constant multiple of a perfect square. Then by Lemma 5 we get
Theorem 1.

Next we will introduce three definitions.Definition 3. Let G be a group with respect to addition. Let A and B be
subsets of G and suppose that for all c in G the number of solutions of

a+ b = c,

with a in A and b in B is even. Then (A,B) is said to have property P.Definition 4. Let r, ℓ, and m be positive integers with r, ℓ ≤ m. The triple
(r, ℓ,m) is said to be admissible if there are no A,ℬ ⊆ ℤm such that ∣A∣ = r,
∣ℬ∣ = ℓ, and (A,ℬ) possesses property P.

We shall also introduce an equivalence relation on Fp[x1, x2] as in the proof
of Theorem A in [4].Definition 5. Two polynomials '(x1, x2),  (x1, x2) ∈ Fp[x1, x2] are equivalent
if there are a1, a2 ∈ Fp such that

 (x1, x2) = '(x1 + a1, x2 + a2).
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Write the polynomial f(x1, x2) in the theorem as a product of irreducible poly-
nomials in Fp[x1, x2]. (Recall that the lattice � is determined by this polynomial
f(x1, x2), the definition of � is presented in (1.2).) Let us group these factors so
that in each group the equivalent irreducible factors are collected. Consider a
typical group '(x1 + a1,1, x2 + a2,1), '(x1+ a1,2, x2+ a2,2), . . . , '(x1 + a1,s, x2+
a2,s). Then f(x1, x2) is of the form

f(x1, x2) = '(x1 + a1,1, x2 + a2,1) ⋅ ⋅ ⋅'(x1 + a1,s, x2 + a2,s)g(x1, x2),

where g(x1, x2) has no irreducible factor equivalent with any '(x1+a1,i, x2+a2,i)
(1 ≤ i ≤ s).

We will use the following lemma:Lemma 6. Let '(x1, x2) ∈ Fp[x1, x2] be nonzero and let c, a1, a2 ∈ Fp with
(a1, a2) ∕= (0, 0) be such that

'(x1, x2) = c'(x1 + a1, x2 + a2), (4.6)

for all (x1, x2) in F
2
p. Suppose that the degree of '(x1, x2) is less than p. Then

there is a polynomial g ∈ Fp[x] such that

'(x1, x2) = g(a2x1 − a1x2). (4.7)

P r o o f o f L e mm a 6. We will use repeatedly the fact that if two polynomials
of degree less than p in each variable define the same polynomial function, then
they must also be identical polynomials.

By considering the highest degree terms in (4.6), we get c = 1 so that

'(x1, x2) = '(x1 + a1, x2 + a2).

It follows from this that for every t ∈ Fp

'(x1, x2) = '(x1 + ta1, x2 + ta2). (4.8)

One of a1 and a2 is nonzero and, without loss of generality, we may suppose
that a2 ∕= 0. Then write '(x1, x2) in the form

'(x1, x2) = '(a−1
2 ((a2x1 − a1x2) + a1x2), x2)

= qn(a2x1− a1x2)x
n
2 + qn−1(a2x1− a1x2)x

n−1
2 + ⋅ ⋅ ⋅+ q0(a2x1− a1x2),

(4.9)

where qi(x) ∈ Fp[x] are polynomials of one variable. For fixed x1, x2 write
A = '(x1, x2) and Qi = qi(a2x1− a1x2) = qi(a2(x1+ ta1)− a1(x2+ ta2)). Then
by (4.8) and (4.9) for every t ∈ Fp:

A = '(x1, x2) = '(x1 + ta1, x2 + ta2) = Qn(x2 + ta2)
n + ⋅ ⋅ ⋅+Q0.
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Both A and the expression on the right above are polynomials in t of degree at
most p. These polynomials define the same function and so they are the same
polynomials, which is possible only if n = 0. It follows that

q0(a2x1 − a1x2)− '(x1, x2) = Q0 −A = 0,

for every x1, x2 ∈ Fp. Since both q0 and ' have degree less than p in x1 and x2,
thus

q0(a2x1 − a1x2) = '(x1, x2)

as formal polynomials, which proves (4.7). □

First we study the case when condition a) holds in Theorem 1, so when
f(x1, x2) is irreducible in Fp[x1, x2]. As before let d1, . . . ,dℓ be distinct elements
of I2p and put ℎ(x) = f(x+ d1) ⋅ ⋅ ⋅ f(x+ dℓ). Then by Lemma 6 the irreducible
polynomials f(x + dj) are different since f(x1, x2) is not of the form (2.1). By
Lemma 1, there is unique factorization in Fp[x1, x2], thus ℎ(x) cannot be the
constant multiple of a perfect square. By using Lemma 5 we get the statement.

Next we prove parts b), c) and d) in Theorem 1. Write f(x1, x2) in the form
u(x1, x2)(v(x1, x2))

2 where u(x1, x2) is squarefree, so, in other words, there is
no non-constant irreducible polynomial ℎ(x1, x2) with (ℎ(x1, x2))

2 a divisor of
u(x1, x2). Since f(x1, x2) is not of the form (2.1), in the factorization of u(x1, x2)
there is an irreducible factor u(x1, x2) which cannot be written in the form

u(x1, x2) = u(�x1 + �x2). (4.10)

Consider the polynomials u(x+ ai) for i = 1, 2, . . . , r which are equivalent with
u(x) and appear in the factorization of u(x).

We shall prove that ℎ(x) = f(x+d1) ⋅ ⋅ ⋅ f(x+dℓ) is not a constant multiple
of a perfect square. We shall suppose that ℎ(x) is the constant multiple of a
perfect square. Then ℎ1(x) = u(x+d1) ⋅ ⋅ ⋅u(x+dℓ) is also a constant multiple
of a perfect square.

Write ℎ1(x) as a product of irreducible polynomials in Fp[x1, x2]. Then all
polynomials u(x + ai + dj) (1 ≤ i ≤ s, 1 ≤ j ≤ ℓ) occur amongst the factors.
These polynomials u(x+ai +dj) are equivalent, and no other factors belonging
to this equivalence class will occur amongst the irreducible factors of ℎ1(x). By
Lemma 6 all polynomials u(x+c) for c ∈ F

2
p are distinct since u is not of the form

(4.10). Thus in the collection, formed by the equivalent factors u(x+ ai + dj),
every polynomial must occur an even number of times. As a consequence every
c ∈ F

2
p occurs an even number of times in the form ai + dj with 1 ≤ i ≤ r and

1 ≤ j ≤ ℓ.
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ON LEGENDRE SYMBOL LATTICESLemma 7. Let s(s− 1)/2 < p and

di = (d′i, d
′′
i ) ∈ F

2
p (1 ≤ i ≤ s)

be different vectors. Then there exists a � ∈ F
∗
p such that

d′i + �d′′i ∈ Fp (1 ≤ i ≤ s)

are different.

P r o o f o f L e mm a 7. Suppose that for some pair (i, j) with 1 ≤ i < j ≤ ℓ we
have

d′i + �d′′i = d′j + �d′′j .

Then d′′i ∕= d′′j , otherwise we obtain (d′i, d
′′
i ) = (d′j , d

′′
j ). Thus for every i ∕= j at

most one � exists such that

d′i + �d′′i = d′j + �d′′j .

The number of pairs (i, j) with 1 ≤ i < j ≤ ℓ is ℓ(ℓ − 1)/2. Thus at most
ℓ(ℓ− 1)/2 values of � exist such that

d′i + �d′′i = d′j + �d′′j

for some i ∕= j. Since ℓ(ℓ− 1)/2 < p the lemma follows. □

We have A = {a1, . . . , ar} and D = {d1, . . . ,dℓ} ⊆ F
2
p, where r ≤ k. By

Lemma 7 we may choose � ∈ Fp such that both sets

A′ = {a′ + �a′′ : (a′, a′′) ∈ A}

and

D′ = {d′ + �d′′ : (d′, d′′) ∈ D}

contain different elements.Lemma 8. (A′,D′) possesses property P.

P r o o f o f L e mm a 8. In order to verify the lemma we need to prove that for
any c ∈ Fp the number of solutions

a+ d = c, a ∈ A′, d ∈ D′ (4.11)

is even. Indeed, it is clear that the number of solutions of (4.11) is the same as
the number of solutions of

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

c′ + �c′′ = c. (4.12)
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Since (A,D) possesses property P, for each (c′, c′′) ∈ F
2
p the number of solutions

of the equation

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

is even. Thus the number of solutions of the system (4.12) is also even, and
equivalently, the number of solutions of (4.11) is also even. This proves Lemma 8.

□

By Lemma 8 (A′,D′) possesses property P. Thus (r, ℓ, p) is not an admissible
triple. By contrast we have the following lemma.Lemma 9. (i) For every prime p and r ∈ ℕ the triple (r, 2, p) is admissible.

(ii) If p is prime, r, ℓ ∈ ℕ and

4ℓ+r < p,

then (r, ℓ, p) is admissible.

(iii) If p is a prime such that 2 is a primitive root modulo p, then for every
pair (r, ℓ) ∈ ℕ with r < p, ℓ < p the triple (r, ℓ, p) is admissible.

P r o o f o f L e mm a 9. Parts (i) and (iii) are Theorem 2 in [4] while part (ii)
is Theorem 2 in [10]. □

Since (r, ℓ, p) is not admissible parts b), c) and d) of Theorem 1 follow from
Lemma 9. In the proofs of b) and d) we could have replaced Lemma 8 by Lemma
4 in [10], however the lemma there does not suffice to prove part c) in Theorem
1, thus we have preferred to prove Lemma 8 here.

In order to prove part e) in Theorem 1 we note that the degree of the polyno-
mial ℎ(x1, x2) in x1 is odd, thus it cannot be the constant multiple of a perfect
square. Using Lemma 5 again part e) follows.Aknowledgement. We would like to thank László Mérai for his valuable
remarks and comments.
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