ON DIVISORS OF FERMAT FIBONACCI, LUCAS
AND LEHMER NUMBERS 11

T. N. SHOREY anp C. L. STEWART

1. Introduction

Let o and # be complex numbers such that (x+ 8)* and «f are non-zero relatively
prime integers and «/f is not a root of unity. For any positive integer n we denote the
n-th cyclotomic polynomial in « and 8 by ®,{«, B), that is,

®,(x, ) = f[ (), . (1)

j=
Uﬂ) 1

where { 1s a primitive n-th root of unity. Observe that for n at least 3, © (x, f) 1s a
rational integer (see [5; p. 428]). For any integer n let P(n) denote the greatest prime
factor of n, with the convention that P(0) = P(+1) = I, and for n at least 3 put
B, = P(®,(«, 8)). Further for any positive integer n denote the number of distinct
prime divisors of n by w(n) and put g(n) = 2“", the number of square-free divisors of
n. Lastly recall that ¢(n) is the number of positive integers less than or equal to n and
coprime to n. We are now able to state our first theorem. |

- Tueorem 1. For any k with0 < k < 1/log2 and r.iny integer n( > 3) with at most
x loglog n distinct prime factors, we have

B, > C(¢(n)logn)/gq(n), | (2)
where C is a positive number which is effectively computable in terms of ct,. pand x only.

For n > 12, all the prime factors of ®,(a, 8} are congruent to + 1(mod »n) with the
possible exception of P(n/(3, n)) which may divide ®,(«, f) but to the first power
~ only (see [3, Lemma 6]). Schinzel [3] proved that |®,(c, B)| is larger than n and as a
consequence that .

F,

W

n—-1, | 3

for n sufficiently large; by a result of Stewart [6] it suffices to take n larger than
e*2 - 457 We remark that estimate {2) is more precise than estimate (3) except for 2
set of integers n of asymptotic density zero since almost all integers n have
(1 +o(1))lﬂglogn distinct prlme factors. In particular if n is composed of at most &
distinct prime factors then

F, > Cinlogn,

~where C, is a positive number which is computable in terms of «, § and k only.
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We are able to 1mprove upon estimates (2) and (3) if we asl( for a lower bound for
F, which applies for all integers n except perhaps for those in some unspecified set of
asymptotic density zero. -

THEOREM 2. For “almost all” in.tegers n,
F, > n(logn)®/f(n)loglogn, - (4)

where f(n) is any real valued function for which Iiﬁl f(n) =

=0

Stewart [5] proved both Theorems 1 and 2 in the case where o and B are real
numbers; in fact these results will be used for the proofs of the two theorems. For a
survey of earlier results obtained in the direction of Theorems 1 and 2 we refet the

reader to [5]. -

The above theorems derive much of the::r interest from the link between @ («, 8)
and the Lucas and Lehmer numbers. These numbers arise in a multitude of
anthmetlcal settings. The Lucas numbers u, and v, satlsfy

2(“ _ﬁ)/(ﬂmﬂ)! Un=mﬂ+ﬁ"! H}O,

where o+ and of are relatively prime non-zero integers and «/8 is not a root of -
unity, while the Lehmer numbers «, and v, satisfy

11nq_'_ﬁlrr {xn_l_ﬁn
- f dd,
ey I R Oor n o
un'= ' Uﬂ =
o' — "

, o'+ fB"  for n even,
52 — ﬁz ﬁ

where (a+ f8)* and af are relatively prime non-zero integers and a/8 is not a root of
unity. The connexion between the estimates (2), (3) and (4) for P, with estimates for
the greatest prime factor of Lucas or Lehmer numbers is given by the equation

=[] @, §), _ (5)

. din
which follows . directly from (1). Upon noting that ®,(x, ) = a— B and

D,(, ) = a+ f we see that for n > 2, P(u,) > P,, for Lucas or Lehmer numbers U,
Further, on observing that v, = u,,/u, for Lucas or Lehmer numbers u, and v, we

have that for n at least 2, P(v ) = P,

When o and B are rational integers we are able to show that the number C which
occurs in the statement of Theorem 1 and which can be computed in terms of «, §
and « can in fact be determmed in terms of x and the greatest prime factor of o only

THEOREM 3. Let o and § be non-zero integers with |x| # |8l. Then for any x with
0 < k < 1/log2 and any integers n{ > 3), with at most xloglog n d:stmct prime factors
we have

B, > Ca(d(n)logn)/g(n),

where C, is a positive number which is effectively campufab!e in terms of P(af) and
only. |
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‘In particular, if @ and b are distinct positive integers and p denotes a ‘prime .
number then, from (5),

| P(a? —~b") > C,plogp,
t  and |
| P(a?+bf) > Csplogp,

~where C, and C; are positive numbers which are effectively computable in terms of
P(ab) only. | | - |
The above three theorems are obtained by combining a p-adic generalization of
Baker’s theorem on linear forms in the logarithms of algebraic numbers with the
methods of [4] and {§]. We shall use the foliowing p-adic estimate due to van der
Poorten {2] in our proofs, ﬂ-

LemMma 1. Let o, d,,..., &, be non-zero algebraic numbers and let K be their
splitting field over Q, the rational numbers. Put D = [K : Q] and denote by Ay, ..., A,
upper bounds for the heights of «,, ..., &, respectively, where we assume that A, > 2 for
1 £j < n. Write |

J=1

I Let /. be a prime ideal of K lying above the rational prime p. Then there exists an
! effectively computable positive constant C, such that the inequalities

. ' D
0 > ord, (@' ... akr~1) > (ZnD)Cﬂ"Epg——EQ(lﬂg B)?

have no solution in rational integers b, , ..., b, with absolute values at most B for B > 2.

2. Proof of Theorem 1
Note that

R PN N/
p) ’ 2

where r and s are non-zero integers with |r| s Js|. Put K = Q(«, £). As mentioned. in
81, Stewart [5] proved Theorem 1 when « and § are real numbers. In view of this
result we can assume that r and s are of opposite sign. If both « and f are units in K

then /B 1s a unit in the imaginary quadratic field @(\/E ) and hence /8 is a root of:
unity. Thus we can assume that either « or § is not a unit in K. It is no loss of
generality to assume that « 15 not a unit in- K. We shall assume also that n exceeds a
sufficiently large number ¢,, where c,,c,,... are positive numbers which are
effectively computable in terms of «,8 and « only. | -

Let dy =1 and let d, < d, < ... < d, be all the positive divisors of n with
u(n/d,) = 0. Then there exists a positive integer s, depending on n, such that

djfd,_; 2 n'"* = exp ((logn)/g(n)) > exp ((logny?), (6)

e Vst i e el
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where A = 1 —~xlog?2; note that 1 > 0 since by hypothesis © < 1/log2. From (5) we

have
t
@, B) = T] (o= Py,
r=1
Put
s=—1 1 ¢
A= J] (¢*~pr)oid, M =Y pn/d) and N = ), dun/d,).
r=j - | rs . Py

Denote by £, ..., # all the prime ideals in K which divide the ideal generated by «.
Since ((a+ )% «B) = 1 these ideals are coprime to the ideal generated by f. It is
now straightforward to check that f

1, (x, B)A™E = (= 1B, < lod, o

for 1 €j < . Further, for n > 12,

k
. @“(a,'ﬂ) = pﬂn p?!:

i {1

where py, ..., p, are distinct primes congruent to +1 (modn) and +p, is 1 or the
greatest prime factor of n/(3, n) (see [5; Lemma 6]). Therefore, from (7), we have

(= 1)"poptt ... plp~ A =1, < el (8)

forl1 €j< L.
Schinzel [3] proved, see also [6], that for n larger than some absolute constant
® («, B) is divisible by a prime ideal in K which does not divide the ideal generated

by (¢ — B)(a* — B?)...(a" "1 — "~ 1). This ideal is also coprime to the ideal generated

by S Since ((ee+B)?, af) = 1 and therefore
O, (a, BIA = (=1MBY £ 0

for n sufficiently large. Thus the expression on the left hand side of inequality (8) is
not equal to zero and we may apply Lemma 1 with ay,..,«, given by
—1, Pos P1s s Pxo B and A respectively. We may assume that py, ..., p, are all less
than n? since otherwise the theorem is valid and therefore, from Lemma 1,

(= D)Mpopl! ... pBN AT = 1], > exp(—cy(klogn)™log V(log B},  (9)

where V denotes the height of 4 and B denotes the maximum of 2, M, hy, ..., I, and
N. Some calculation shows, see [5: p. 442), that V' is bounded above by |8~
and that B is bounded above by ¢ n®. Thus from (8), (9) and the product formula for
valuations we obtain |

Norm ()} < exp (ce(klogn)™d,_,) (10)
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Note that [Norm (rx){ > 1 since & is. nOB-Zero- and s not a unit. On comparmg (ﬁ} and
(10} we ﬁnd that |

k > és(log n)/g(n)loglogn,

and employing the Brun-Titchmarsh theorem for primes in the arithmetical
progressions +1 {mod n) we obtain Theorem 1; details may be found in [5; pp. 442~
443]. | | -

3. Proof of Theorem 2

The proof of Theorem 2 given in [5] for the case when « and f are real may be
repeated for the case when « and § are complex. In fact the only changes required in
~ the text of the proof of Theorem 2 in [§] for this purpose are the replacement of (19)

and (21) by (6) and {29) by (10).

4. Proof of Theorem 3

We may assume without loss of generality that « and f are coprime and, since
@, (a, f) = @B, «) for n > 2, that a > |§[ > 0. Further, in view of Theorem 1, we
 may assume that o is at least exp (exp (10)), whence logloglog« is larger than one.
Also we shall assume that n exceeds a sufficiently large number ¢,, where ¢y, ¢,, ...
are positive numbers which are effectively computable in terms of P(«f) and x only.

We have, see [1], -

H(:‘I ﬁ)_pﬂnpj?

=1

where py, ..., p, are distinct primes congruent to 1 (mod») and py 18 1 or the greatest
prime factor of n. We can assume that the primes p,, ..., p, do not exceed n* and that
k is at most logn since otherwise the theorem plainly holds. By (5) ®,(«, B) divides
o" — " and thus | -

pit = @y, .B)Ier jo” = 7, > O
for j= 1 ., k. Write

x=gqf..q" and B = qoq)...q7,

where a,, ..., 4, by, ..., b, are non-negative integers, g, = t1 and g, ..., g, are prime
numbers. Put | -

Q P{’Iﬁ) nax {qn 3 QS} "
Note that

max {a,, .., a, by, ..., b} < 2loga, . (11)
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and that s < Q. Since o and § are coprime the primes g, ..., ¢, are distinct from
Dy, ..., Dx- Thus we have

0 < |ggg-ton. getr -1l < gt 1K<k,
We now employ Lemma 1 with a,, ..., &, given by QosG1s+r 9s respectively and p
given by p;. Note that D = 1,n = s+1 < Qand Q < ¢,. Furthermore p = p; < 1’
and, by (11), B < 2riloga, whence
p < exp (cyn*(logn+loglog 0)?) < exp (czn°(logloga)?),

for j = 1,..., k. Thus

max {h,, ..., b} < csn’(logloga)®, | (12)
and - |
1® (a0, ) < Aexp (keyn®(logloga)?),
which, since k < logn, 18

< exp (c,n*(loglog u)?) . (13)

Let dy = 1 and let dy <d, < ...<d, be all the positive divisors of n with
u(nfd) # 0. Then there exists a positive integet s, depending on n, such that

d/d,-, > exp{(logn)/q(n)} (14)

> exp {(logn)} _ (15)

where A = 1—xlog2. Define 4, M and N as in the proof of Theorem 1 and proceed

as before to obtain
0 < (= 1)"popt ... pligg™ar®™ ... g N AT — 1, < lalf
for those i with 1 < i < s for which a, > 0. We now apply Lemma 1 with p given by

Giy gy eney Oy given'by —1, Po» P1s s P> do» s 4s 20 A respectively and with
n=k-+s+4 < k+0+4 and D = 1. On recalling (11) and (12) and noting that

IN| < n*> we see that we can take B = csn’(logo)* in Lemma 1. Finaily on -

remarking that s <t < 2" < logn since x < 1/log2, we find after a short
calculation, that the height of A4 does .not exceed (20)1°8"%-t  whence
Q < cg(2logn)*2(loga)d, - ;. Therefore, by Lemma 1,

@ =% < exp (c5(klog n)* loga(loglog ) d, -1},
fori=1,...,s.Since k < logn,

o < exp ((log n)™* log afloglog a)?d,_y ),
~ and thus
d/d,.., < (logn)*(logloga)® .

- = R TP L R - S
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By (14) we have
exp((log n)/g(n) —coklogiog n) < (logloga)? .

If ¢,k loglogn > +(logn/g(n)) then the theorem follows from the Brun—Titchmarsh
theorem for primes in arithmetical progressions; here we consider the primes
congruent to 1 modulo n. Accordingly- we can  assume ‘that

cokloglogn < (logn)/2q(n) whence
exp ((log n)/29(n)} < (logloga)® .

From (14) and (15) we obtain

n < exp ((4logloglog @)'*) .
Observe that 1}1 > 1. We now conclude from (13) that
log |@,(e, B) < cqexp (6(41ogloglog #)**) . (16)

"By assumption « > |f| and so a—|f} = 1 since « and B are integers. Thus
o — ¢/ Bl 2 1 for any integer j and any root of unity ¢. Further if  is a primitive n-th
root of unity and n is greater than 6 then e~ | = || for some integer j with
(f, n) = 1. Therefore, from (1), we deduce that

og|0.(0, B) > loga, S

and a comparison of (16) and (17) reveals that « < ¢,o. The theorem now follows
immediately from Theorem 1.
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