ON DIVISORS OF FERMAT, FIBONACCI, LUCAS
AND LEHMER NUMBERS I
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1. Introduction

Let r, s, uy and u, be mtegers and put w, = ru,_ +su,_, for n = 2 3,.... We
- have

W = ao+bp" )

where o and S are the roots of X2~—rX-s, a= (u;—ugf){e—p) and

= (U0 —u,)/(a~p) whenever o + §. The binary recurrence sequence (4,);=o 18
said‘to be non-degenerate if abaf + 0 and «/f is not a root of unity, For any integer
“m let Q(m) denote the greatest square-free factor of m with the convention that
Q(0) = Q(Z1) = 1. Thus if m = p} ... py where p,, ..., p, are distinct prime numbers
and [,, ..., l, are positive integers then Q(m) = p, ... p,. In [12] we proved that if u, is
the n-th term of a non-degenerate binary recurrence sequence, as in (1), then

Q(u > C(n/( logn )”‘" - (2)
for n-> 1, where d is the degree of & over the ra'tional numbers and C is a positive

-number which is effectively computable in terms of a and b only. We also proved that
if o is & real number then, for any positive number e, ‘

Qu,) > n'™", . | (3)

whenever n 1s larger than a number which is effectively computable in terms of .
a,b,a,fand ¢. If uy = 0 and u; = 1 then

= ("~ ")/ (e~ P), (4)

forn=0,1,2,..., and the sequence (u * o 18 a Lucas sequence. Also the related

sequence (v, ),, O | |
v, = a4 ", | | (5)

for n = 0,1,2,..., 1s known as a Lucas seguence. Lucas nut_nbers include the
Mersenne, Fermat and Fibonacci numbers and they arise in many arithmetical
settings because of their divisibility properties. In 1930 Lehmer [4] generalized the
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results of Lucas [8] on the divisibility properties of Lucas numbers to numbers u,
. and v, with n 2 0 satisfying -

_ "IH: + ﬁﬂ

| £ —F ,  for nodd, , fornodd,
o—f o+ f
iI,.H,I = . - . Un — ' : (6)
fx""‘ﬁn | | 1 n | f
2 for neven, | o"+p",  for neven.

where (a+ B)* and «f are non-zero integers and a/f is not a root of unity. The
numbers defined above are known as Lehmer numbers. The purpose of this note is
to establish estimates from below for Q(u,) and Q(v,), where u, and v, are Lucas or
L.ehmer numbers, which improve upon (2) and (3). |

Let « and B be complex numbers such that («+ B)* and «f are non-zero integers
and o/f is not a root of unity. For any positive integer n we denote the n-th
cyclotomic polynomial in « and 8 by ®,(«, B), that is, -

M

Oy, f) = ] («—=B), , (7)

| Ufﬂjil | -
where { is a primitive n-th root of unity. Further, for any integer m let P(m) denote
the greatest prime factor of m with the convention that P(0) = P(+1) = 1. Schinzel
[7] proved that |

for n sufﬁcieﬁtly large; by a result of Stewart [11] it suffices to take n larger than
e*°24°7, Furthermore Shorey and Stewart [8, 10] showed that forn 2= 2,

P(®,(z, B) > Conlogn, I

~ where C, is a positive number which is effectively computable in terms of «, f and
the number of distinct prime factors of n. Since

o= =104 B, 10

din

and since v, = u, /u, for Lucas and Lehmer numbers, estimates (8) and (9) apply
with Q(u,} and Q(v,) in place of P{®,(«, §)) and this certainly gives an improvement
on (2) and (3). In fact we are able to improve substantially on these results. For any
positive integer n let g(n) denote the number of square-free divisors of n: thus
g(n) = 2™ where w(n) denotes the number of distinct prime factors of n. By an
argument which owes much to [8, 9, 10] we shall show that there exists an effectively
computable positive constant ¢ such that

Q'('@n(m? ﬁ)) ot n[f If’ﬂﬂ}f{ﬂ'{ﬂl ]ﬂsiﬂg"}’ | | (11)

for all integers n larger than a number which is effectively computable in terms of «
and f. For any positive integer n let d(n) denote the number of positive divisors of n.
We shall employ (11) to prove the following result. |
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| THEOREM 1. Let {o+ B)? and of be non-zero fntegers with o/ not a root of umty
Let u, and v, be Lucas or Lehmer numbers as in (4), (5) or.(6). There exists an
effectively computable positive constant ¢ such that |

- O(u,) > petdln logmlitq(n) loglogn) | (12)

for all integers n larger than a number which is effectively computable in terms of « and
B. Further, inequality (12) remains valid if we replace u, by v, provided that we replace
d(n) by d(n|n|,), where [n|, denotes the 2-adic value of n normalized so that 2|, = 1.

For anyfpﬂsi-tive integer n, d(n) = q(n) and d(n|n|,) = g(n)/2. Thus
Q(H"I] ~ nc[]ugn.]flﬂglﬂgn : | - L13)
for n sufficiently large; the above estimate is also valid for Q(v,) with ¢/2 in place of c.
Further, for any non-zero integers a and b with a % +b, (13) applies with u,

replaced by a"—b" or a"+b" and ¢ replaced by ¢/2. In particular, there exists an
effectively computable positive constant ¢, such that for the Mersenne numbers,

log (27 ~1) > ¢,(logp)*/loglogp,
for p > 2, while for the Fermat humbers
log Q(2*+1) > ¢, n*/logn,
for n > 2. Notice also, from (12), that for » > 2,

log Q(2*'~1) > ¢,n3flogn,

where ¢, is an effectively computable pesitive' c:}::irls'ca;xtttT
We are able to improve estimate (12) for almost all integers #.

THEOREM 2. Let (& + f)* and aff be non-zero integers with o/ f-not a root of unity.
Let u, and v, be Lucas or Lehmer numbers as in (4), (5) or (6). For any positive number
¢ and all positive integers n, except perhaps for those in a set of asymptotic density zero,

Q(H") ~ H{lﬂgﬂ}l+lugz—s. ' -. : . (14}
Further, iﬁéqu&liry (14) remains valid if we replace u, by v,,.

It follows from Lemma 2, Lemma 3 and (10) that for any Lucas or Lehnier

number u,, |
Qu,) > cyn™™, (15)

where ¢, is an effectively computable positive constant. Thus letting »n run through
the sequence p,, p; Py, P1P2P3s - Where 2 = p, < p, < ... 1s the sequence of prime
numbers, we see that for any positive number s, -

: log Ou,) ~ n{[ngi—s}ﬂnglﬁgn, | | (16) |
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for infinitely many integers n._Inequalify’ (15) remains valid with v, in place of u, for
any Lucas or Lehmer number v, provided that d(n) 1s replaced by d(n|n|,} and thus
(16) holds with v, in place of u,.

2. Preliminary lemmas

Lemma 1. Let e(n) be a real valued funct:an satisfying lim &(n) = 0. For al!
n=tod

positive integers n, except a set of asymptotic density zero, and for all divisors | of n
with [ > nl'?, there exists an integer s, depending on I, such that if
1l =d, <d, <..<d =lare thedivisors of | then -

dfd,_, > n®.

Proof. We may assume without loss of generality that &(n) 1s positive for all
integers n. In the proof of Lemma 11 of [10], which was motivated by earlier work of
FErdds, we showed that almost all integers n have no divisor between n*/? and
n+ Thus for almost all integers n, all divisors { of n have no divisor between n'/?
and n1A*+M: for each divisor [ of n with [ > n'/? we set s equal to the index of the
smallest divisor of [ larger than n'/**" and our result then follows since d,_, < n*/2,

For brevity we shall denote ®,(«, ) by ®

LEMMA 2. Let (o+ B) and af be coprime non-zero integers with o/B not a root of
unity. If n > 4 and n + 6,12 then P(n/(3, n)} divides ®, to at most the first power. All
other prime factors of ®, are congruent to +1 (modn). Further if n > ¢*°24°’ then O,
has at least one prime facmr congruent to +1 (modn).

Proof. The first two assertions follow from work of Carmichael [2], Lehmer [4]
and Lucas [5]: see Lemma 6 of [10]. It follows from the proof of Theorem 1 of [11]

(see also [7]) that |®,| > n for n > ¢*724°7. Qur third assertion is thus a
consequence of the earlier two assertions since P(n/(3, n)) < n.

For any integer n > '2_ let Q’(tIJ,;) denote the largest.square-free divisor of @,
composed of prime numbers congruent to 1 (mod n).

LEMMA 3. Let {0+ B)* and af be coprime non-zero integers with a/B not a root of
unity. Let ny, ..., n, be distinct integers larger than 12. Then

0 ([I <1>,,,) [1¢ @)

=i

Proof. Let n and m be integers largef than 12 with n > m. By Lemma 7 of

{10}, (®,, ®,,) divides P(n/(3,n)) and thus, by Lemma 2, Q'(®,) and Q'(®,) are
coprime. Lemma 3 follows directly.
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3. Proof of Theorem 1

Denote the greatest common divisor of '('cr.+ B)? and af by d and let ¢ and
satisfy (¢’ + f')2d = (o +B)* and &' f'd = «ff. Certainly (o + )% and o' § are coprime..
Further, by (7), for n > 2, | |

(22}

o, p) = ] (e*+2~({{+L)ap);

w1

(f,n)=1

hence @, (o, B) = d**2® (¢, f'). Thus; from (10) and the definition of Lucas and
Lehmer numbers, it is no loss of generality to assume that («+pS)* and af are
coprime, - |

~ We shall assume that n exceeds a sufficiently large number C,, where C;, C,, ...
are positive numbers which are effectively computable in terms of « and § only. We
shall denote by ¢,, ¢,, ... effectively computable positive constants. Let dj = 1 and
let d, < ... < d, be all the positive divisors of n with u(n/d,) # 0. Take s-to be the
smallest integer not less than 1 such that d, > n™. Then

djjd,_, = exp{(logn)/q(n)). (17)
We shall assume that (logn)/g(n) = 9 loglogn. By Lemma 2, .
k | |
- O, =po [] P, (18)
' fam §

where Ay, ..., h,; are positive integers, py, ..., P, are distinct prime numbers congruent
to +1 (modn) and +p,is 1 or P(n/(3, n}). If o and § are real numbers then we may
proceed as in the proof of Theorem 1 of [10] to compare estimates for

ﬁ (1= (Bfoytrytned,

r=s

-

with the aid of an estimate for linear forms in the logarithms of algebraic numbers
due to Baker [1]. From (22) and (28) of [10] we obtain | -

- d, log|a/B|~loglogn < C,d,_,(logn)*k“logp, ... Jogp, . - (19)

From (17} and (19) we find that

exp ((logn)/q(n)) < C,(logn)*ke* 11—11 logp; . (20)

If « and B are not real then we may proceed as in the proof of Theorem 1 of [8].
However, when we employ Lemma 1 of 8], a p-adic version of Baker’s estimate due |
‘to van der Poorten (6], we do not make the simplifying assumption that p; < nz'_for

. k
i = 1,..., k. Therefore (k logn)™* is replaced by k**logn [] logp, in (9) of [8]. On
- - ]

making the corresponding modification in (10) and comparing (6) and (10} of [8] we
again obtam (20). | | -



Thus, whether-rx or § are real or not, we have, on taking .Iﬂgarithms in (20), |
IJ-‘

(log n)/q(n) < C4+4loglogn+clklogk+log (H logpf) (21)

=1

- By the arithmetic-geometric mean“inequalitjr and (18),

[T oen < ( 3 g7 ) < ((mgg D)k} - @

P ]
By éssumption (logn)/q(n) 2 9 Iogl-:)gn and therefore, from (21) and (22),
| [log n)/2q(n) < ¢k logﬁc—l—k IGgIGgQ (D), | (23)

for n sufficiently large. We may assume, without loss of generality, that ¢, = 1. By
Lemma 2, p;2n—1 for i=1,..,k and k=1 and therefore . if
k > (logn)/(8¢,q(n)loglogn) then, from (18),

Q.* ((D") ~ ncﬂ log mi(g{n) loglog Iu]. : | (24)

“as required. If, on -the othér hand, k < (logn)/(8¢c, gq(n) loglogn) then
¢, klogk < (logn)/(8q(n)) since ¢; = 1. It then follows from (23) that

(log n)/(4q(n)) < kloglog Q'(®,),

whence |
' Q'(®@,) > e"sP.

.,onsequently the estimate (24) for Q(®,) applies for all integers n with
1) € (logn)/(9 loglogn). By Lemma 2, Q'(®,) > n—1 for n sufficiently large.
nerefore estimate (24), with ¢, replaced by c,, in fact applies for all sufficiently large

integers n

Let u be the Lucas or Lehmer number assc:mated with o and 8. From (10} and

Lemma 3 we have

.Q(_un) H Q,((DI) . | (25)

Han o
(2 Jn

Since at least % of the pﬂsnwe divisors of n are at least n'/? in size it follows from (24)
and (25) that
Q(u") > H-m[d{n} log H}f(#{_fﬂ} loglogn) ,
as required.
| Let v, be the Lucas or Lehmer number assomated with « and B. To establish the
result for v, we ﬁrst note that o'+ B" = ("= §2")/(a"— ). Thus, from (10) and
Lemma 3, |

{{:2n
IIn
RN

0w > T1 (@), - (26)

The number of dmsors of 2n which do not divide n is d(njn|,) and the number of
divisors which are in addition at least n'/ is at least (d(ninl,))/2. Our result now
follows from (24) and (26). |
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4, Proaf of Theurem 2

Let ¢,(n) = (loglogn)™* for n > 3. For almost all integers n and for each divisor
1 of n with [ > n''? put d, = | and let d; < ... < d, = I be the divisors of | with
u(l/d) # 0. Then, by Lemma 1, there exists an integer s, depending on [, such that

ddy_y > n. @)

We may now argue as -in the proof of Theorem 1 employing (27) in place of (17). In
this way we prove that for almost all integers n and for all divisors I of n with
|~ nlﬂ - o |
Q:((DI) > nt[s;[n]}ll tﬂgnjf!ﬂg}ﬁgn; ' (28}

note that for any & > 0 almost all integers n have fewer than (log n)*2*? divisors (see
Theorem 432 of [3]) and so the restriction g(n) < (logn)/9 loglog n required initially
in the -proof of (24) in §3 certainly applies here. Since for any ¢ > 0 almost all
integers n have at least (logn)°8?~° divisors (see Theorem 432 of [3]), and indeed
have at least (logn)°8?~? divisors larger than n'/?, our result for u, follows from (25)
and (28). To establish a comparable estimate for Q(v,) we ﬁi'st remark that (28)
applies for dlmost all integers n and for all divisors [ of 2n with [ > n'/%, Further it is
easy to show that for any § > 0 the number of divisors ! of 2n which do not divide n
‘and are larger than »n'/? is at least {logn)°#*~? for almost all integers n, since the
number of divisors of n is at least (logn)'*®*~? for almost all integers n. Thus, from
(26) and (28), we obtain the required estimate for Q(v,). - - |
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