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1 Introduction

For any set X let |X| denote its cardinality and for any integer n larger
than one let ω(n) denote the number of distinct prime factors of n and let
P (n) denote the greatest prime factor of n. In 1934 Erdös and Turán [6]
proved that there exists an effectively computable positive constant C1, such
that for any non-empty finite set A of positive integers

ω

 ∏
a,a′∈A

(a+ a′)

 > C1 log |A|.(1)

In 1986 Györy, Stewart and Tijdeman [9] , [16] generalized this result to the
case where the summands a and a′ in (1) are taken from two different sets.

By (1) and the prime number theorem there exists an effectively com-
putable positive constant C2 such that if A is a finite set of positive integers
with |A| > 1 then there exist integers a1, a2 in A for which

P (a1 + a2) > C2 log |A| log log |A|.(2)
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It is possible to strengthen estimates (1) and (2) when A is a dense set of
integers and in such a case it is even possible to prove the existence of sums
which are divisible by large powers of primes. Results of this character, to-
gether with their generalizations to the case of sums composed of summands
taken from several sets, have been the subject of several recent papers, see
for instance those by Balog and Sárközy [1], [2], [3], Erdös, Stewart and Ti-
jdeman [5], Pomerance, Sárközy and Stewart [11] and Sárközy and Stewart
[13], [14], [15]. The goal of this paper is to study analogous questions for the
subset sums of A, that is the sums which can be formed by adding elements
of A without repetition.

For any non-empty finite set A of positive integers we denote by S(A)
the set of all positive integers of the form∑

a∈A
εaa,

where εa is taken from {0, 1} for all a in A. We define s(A) by

s(A) =
∏

n∈S(A)

n.

For every positive integer m with m ≤ |A| there is a positive subset sum of
A which is divisible by m. To see this let t = |A| and let a1, ..., at be the
elements of A. For each integer m with 1 ≤ m ≤ t either one of the subset
sums a1, a1 + a2, ..., a1 + ... + at is divisible by m or at least two of them lie
in the same congruence class modulo m. Thus, on taking their difference, we
obtain a positive subset sum which is divisible by m. Therefore

ω(s(A)) ≥ π(|A|),

where π(x) denotes the counting function for the primes. Further, by the
prime number theorem, for each ε > 0 there exists a number C3(ε), which is
effectively computable in terms of ε, such that

P (s(A)) > (1− ε)|A|,(3)

provided that |A| > C3(ε). We conjecture that

P (s(A))

|A|
→ ∞ as |A| → ∞,(4)
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and that
ω(s(A))

π(|A|)
→∞ as |A| → ∞.(5)

Indeed, perhaps there exist positive constants C4 and C5 for which

P (s(A)) > C4|A|2,(6)

and
ω(s(A)) > C5π(|A|2).(7)

On taking A = {1, ..., n}, for n = 1, 2, ..., we see that (6) and (7) cannot
be improved; these examples may well be extremal for both problems. For
any positive integer k and any finite set of positive integers A let P (k,A)
denote the largest k-th power of a prime which divides a positive subset sum
of A with the understanding that if there is no such divisor then we put
P (k,A) = 1. Note that P (1, A) = P (s(A)). We conjecture that the prime
power analogue of (4), (and perhaps (6)), holds, in other words that for each
positive integer k,

P (k,A)

|A|
→ ∞ as |A| → ∞.(8)

Unfortunately, we have not been able to prove conjectures (4) and (8),
or even improve upon (3), without any assumption on A. However, we shall
show that there is an effectively computable positive constant C6 such that
if A is a subset of t positive integers, all less than eC6t, then both (6) and
(7) hold. Further we shall show that (4) holds as we run over those sets
A = {a1, ..., at} whose elements have no common divisor larger than 1 and
which satisfy

log log at
t

→∞ as t→∞.(9)

We are also able to establish (4) and (5) for those sets A for which there is
a real number λ with λ > 1 such that ai+1/ai > λ for i = 1, ..., t− 1.

Our first result deals with the case when the elements of A are not too
sparse and it allows us to determine various sets B which contain a divisor
of a term of S(A). For any real number x let [x] denote the greatest integer
less than or equal to x.

Theorem 1 There exists an effectively computable positive number C0

such that if n(≥ 2) and t are positive integers, A is a subset of {1, ..., n}
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of cardinality t and B is a subset of {1, ..., [(t/C0)2]} consisting of pairwise
coprime integers none of which divides a member of S(A) then

∑
b∈B

log b

b1/2
< C0 log n.(10)

We shall deduce as a consequence of Theorem 1 the following result.

Corollary 1 Let C0 be defined as in the statement of Theorem 1. There
exists an effectively computable positive number C7 such that if n and t are
positive integers with

C7 < t and n < et/(5C
2
0 ),(11)

and A is a subset of {1, ..., n} of cardinality t then at least half of the primes
between (t/C0)2/2 and (t/C0)2 divide s(A).

Thus, provided that (11) holds, both (6) and (7) also hold. We shall prove
Theorem 1 by combining Szemerédi’s Theorem about the representation of
zero in abelian groups with a version of Gallagher’s larger sieve. The con-
stant C0 is twice the constant C17 appearing in the statement of Szemerédi’s
Theorem, which is given here as Lemma 1.

Our next result gives us some information on the conjecture (8). Also
it can be used to deduce finer information on small primes dividing subset
sums than can be obtained from Theorem 1. In particular it follows from
our next theorem, just as Corollary 1 follows from Theorem 1, that for each
integer x with t ≤ x ≤ 10−9t2/ log t there is a prime p which divides s(A)
with x < p ≤ 2x provided that n is at most exp(t/(108 log t)) and that t is
sufficiently large.

Theorem 2 There exist effectively computable positive integers C8 and C9

such that if n(≥ 2) and t are positive integers with t ≥ C8, A is a subset
of {1, ..., n} of cardinality t and B is a subset of {C9, ..., [10−8t2/ log t]} con-
sisting of pairwise coprime integers none of which divides a member of S(A)
then

t
∑
b∈B

1

b
< 107 log n.
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For the proof of Theorem 2 we employ a result of Sárközy (Lemma 2) in
place of the result of Szemerédi. For this reason we are required to restrict
the range of B somewhat compared to Theorem 1. However for most of this
range we are able to obtain sharper results. As a consequence we are able to
establish (8) as we run over those subsets A of {1, ..., n} of cardinality t for
which log n < t1/k−ε, where ε is any fixed positive real number. In particular
we have the following result.

Corollary 2 Let k be an integer with k ≥ 2 and let θ and ε be positive
real numbers with 1/k < θ < 1/(k − 1). There exists a number C10 which is
effectively computable in terms of θ, ε and k such that if n and t are positive
integers with

C10 < t and n < et
1−θ(k−1)−ε

,(12)

and A is a subset of {1, ..., n} of cardinality t then for at least half of the
primes p between tθ/2 and tθ, pk divides a member of S(A).

Next we shall establish conjectures (4) and (5) under the assumption that
the cardinality of S(A) is large.

Theorem 3 There exists an effectively computable positive constant C11

such that if A is a non-empty set of positive integers then

ω(s(A)) > C11 log |S(A)|.(13)

Notice that if A = {a1, ..., at} and ai+1/ai ≥ 2 for i = 1, ..., t − 1 then
|S(A)| = 2t − 1 and so, by (13), in this case

ω(s(A)) > C12|A|,(14)

and
P (s(A)) > C13|A| log |A|,(15)

where C12 and C13 are effectively computable positive constants. Similarly
if λ is a real number with λ > 1 and ai+1/ai > λ for i = 1, ..., t − 1 then
ai+c/ai ≥ 2 for i = 1, ..., t− c where c = [(log 2)/ log λ] + 1 and so in this case
(14) and (15) hold with C12 and C13 replaced by positive numbers which are
effectively computable in terms of λ.
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Our next result allows us to establish conjecture (4) when A is restricted
to sets of positive integers with no common prime factor and for which the
largest element of A grows very quickly with respect to the cardinality of A.

Theorem 4 Let t be an integer with t ≥ 2. Let A = {a1, ..., at} be a set of t
positive integers whose greatest common divisor is one and assume that at is
the largest element of A. There is an effectively computable positive number
C14 such that

P (a1 · · · at(a1 + at) · · · (at−1 + at)) > C14 log log at.(16)

Notice that (4) follows from Theorem 4 provided that (9) holds and that
the elements of A have no common factor. In [9], Györy, Stewart and Tijde-
man proved a closely related result to Theorem 4. Let ε be a positive real
number and let a1, ..., at be positive integers having no common factor. They
proved that there is a number C15 which is effectively computable in terms of
ε and an effectively computable positive constant C16 such that if t is greater
than C15 then

P (a1 · · · at−1(a1+at) · · · (at−1+at)) > min((1−ε)t log t, C16 log log(at−1+at)).

2 Preliminary Lemmas

We shall require the following special case of a result of Szemerédi [17] which
generalized earlier work of Erdös and Heilbronn [4].

Lemma 1 Let b be a positive integer, let A be a set of positive integers
and let νA(b) denote the number of residue classes modulo b that contain an
element of A. There is an effectively computable positive constant C17 such
that if

νA(b) > C17b
1/2,(17)

then there is a member of S(A) which is divisible by b.

For the proof of Theorem 2 we shall employ the following theorem of
Sárközy (see Theorem 7 of [12]).
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Lemma 2 Let b be a positive integer and let A be a finite set of positive in-
tegers. For each positive integer k we denote by nk the number of elements of
A which are congruent to k modulo b. There exists an effectively computable
positive constant C18 such that if b > C18,

|A| > 2 · 103(b log b)1/2,(18)

and
b∑

k=1

n2
k <

|A|3

4 · 106b log b
,(19)

then there is a member of S(A) which is divisible by b.

Notice that if A is a set of integers no two of which are congruent modulo
b then

b∑
k=1

n2
k = |A|,

and so, provided that (18) holds, (19) is satisfied. In particular we obtain a
slightly weaker version of Szemerédi’s Theorem with condition (17) replaced
by the slightly more stringent condition (18). We believe that the factor log b
is not required in (18) or (19). If it could be eliminated from (18) and (19)
then Lemma 1 would be a special case of Lemma 2.

For the proof of Theorem 1 we shall require a modified version of Gal-
lagher’s larger sieve [8].

Lemma 3 Let m and n be positive integers and let A be a subset of {m+
1, ...,m + n}. Let B be a finite set of pairwise coprime positive integers.
For each b in B let ν(b) denote the number of residue classes modulo b that
contain an element of A. Then

|A| ≤
∑
b∈B log b− log n∑
b∈B

log b
ν(b)
− log n

,

provided that the denominator of the above expression is positive.

Proof We shall follow Hooley (see page 19 of [10]). Let nk denote the
number of terms of A which are congruent to k modulo b. By the Cauchy-
Schwarz inequality

|A|2 =

(
b∑

k=1

nk

)2

≤ ν(b)
b∑

k=1

n2
k.
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Since
b∑

k=1

n2
k =

∑
a≡a′( mod b), a,a′∈A

1 = |A|+
∑

b|(a−a′), a 6=a′
1

we have

|A|2
∑
b∈B

log b

ν(b)
≤ |A|

∑
b∈B

log b+
∑
a 6=a′

∑
b∈B, b|(a−a′)

log b.

Since the terms of B are pairwise coprime,∑
b∈B, b|(a−a′)

log b ≤ log |a− a′|

whenever a 6= a′. Therefore

|A|2
∑
b∈B

log b

ν(b)
≤ |A|

∑
b∈B

log b+ (|A|2 − |A|) log n,

and the result follows directly.

We next state a special case of Evertse’s theorem concerning the number
of solutions of S-unit equations in two variables, see Corollary 1 of [7]. For
any non-zero rational number x and any prime number p there is a unique
integer a such that p−ax is the quotient of two integers coprime with p. We
say that a is the p-adic order of x. We put ordpx = a.

Lemma 4 Let w be positive integer and let S be a set of w prime numbers.
The equation

x+ y = 1,

has at most 3 · 72w+3 solutions in pairs (x, y) of non-zero rational numbers
which have p-adic order zero for all primes p not in S.

For the proof of Theorem 4 we shall appeal to the following estimate for
p-adic linear forms in the logarithms of algebraic numbers due to Yu (see
Corollary 2 and Lemma 1.4 of [18]).

Lemma 5 Let n be a positive integer. Let a1, ..., an be non-zero integers with
absolute values at most A1, ..., An respectively and let b1, ..., bn be integers of
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absolute values at most B. Assume An ≥ Ai ≥ 3, for i = 1, ..., n and B ≥ 3.
Let p be a prime number. If ab11 · · · abnn − 1 6= 0 then

ordp
(
ab11 · · · abnn − 1

)
< p2(n+ 1)C19n logA1 · · · logAn log logAn logB,

where C19 is an effectively computable positive constant.

3 Proofs of Theorems

Proof of Theorem 1 If b does not divide s(A) then by Lemma 1, νA(b) ≤
C17b

1/2. Put ν(b) = νA(b) and take C0 = 2C17. Suppose that (10) fails to
hold. Then ∑

b∈B

log b

ν(b)
≥ 2 log n,

hence ∑
b∈B

log b

ν(b)
− log n ≥ 1

2

∑
b∈B

log b

ν(b)
.

Therefore, by Lemma 3,

t = |A| <
∑
b∈B log b

1
2

∑
b∈B

log b
ν(b)

≤ 2 max
b∈B

ν(b) ≤ max
b∈B

C0b
1/2 ≤ t,

which is a contradiction.

Proof of Corollary 1 We shall suppose that at least half of the primes
between (t/C0)2/2 and (t/C0)2 do not divide s(A) and we shall show that
if (11) holds then this leads to a contradiction. Let B be the set of these
primes. There is an effectively computable positive constant C20 such that if
t is greater than C20 then |B| ≥ t2/(9C2

0 log t) and

∑
b∈B

log b

b1/2
≥ |B| log((t/C0)2)

t/C0

>
t

5C0

.

Thus if (11) holds then we obtain a contradiction by Theorem 1. Our result
now follows.

Proof of Theorem 2 Let A be a subset of {1, ..., n} of cardinality t
and let B be a subset of {[C18 + 1], ..., [10−8t2/ log t]} consisting of pairwise
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coprime integers none of which divides a member of S(A); here C18 is the
constant specified in Lemma 2. C21, C22, C23 will denote positive effectively
computable constants.

Put
d = d(A) =

∏
a,a′∈A, a>a′

(a− a′),

and observe that since A is a subset of {1, ..., n},

d ≤ n(t2) < nt
2/2.(20)

For each integer b in B let r(b) denote that non-negative integer which sat-
isfies

br(b)|d and br(b)+1 6 |d.
For each positive integer k we define nk to be the number of elements of A
which are congruent to k modulo b. Clearly if a and a′ are both congruent
to k modulo b then b divides a− a′. Thus

r(b) ≥
b∑

k=1

(
nk
2

)
=

1

2

((
b∑

k=1

n2
k

)
− t

)
.(21)

We now apply Lemma 2. Note that (18) holds provided that t > C21. If
b is in B then b does not divide any element of S(A) and so, by Lemma 2,

b∑
k=1

n2
k ≥

t3

4 · 106b log b
,

for t > C21. For t > C22, t3/(4 · 106b log b) is at least 2t and, by (21),

r(b) ≥ t3

1.6 · 107b log b
,(22)

for each element b in B. Since the elements of B are pairwise coprime∏
b∈B

br(b) ≤ d.(23)

Thus, by (20), (22) and (23),

t2 log n

2
≥ log d ≥

∑
b∈B

r(b) log b ≥ t3

1.6 · 107

∑
b∈B

1

b
,
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for t > C23. Our result now follows.

Proof of Corollary 2 We shall suppose that for at least half of the primes
p between tθ/2 and tθ, pk divides no member of S(A) and we shall show that
this leads to a contradiction. Let B be the set of k-th powers of these primes.

C24 and C25 will denote positive numbers which are effectively computable
in terms of θ, ε and k. B is a subset of {[tkθ/2k], ..., [tkθ]} which is contained
in {C9, ..., [10−8t2/ log t]} and

|B| > tθ

3θ log t
,

whenever t is greater than C24. Thus

10−7t
∑
b∈B

1

b
>

10−7t1+θ−θk

3θ log t
> t1−θ(k−1)−ε,

for t > C25. We now appeal to Theorem 2 to obtain a contradiction if (12)
holds and so to complete the proof.

Proof of Theorem 3 Put w = ω(s(A)) and let p1, ..., pw be the primes
which divide s(A). Define h by ∑

a∈A
a = h.

Note that we may express h as a sum x + y with both x and y in S(A) in
at least |S(A)| − 1 different ways since we may take x to be

∑
a∈A εaa with

εa in {0, 1} for all a in A subject only to the constraint that not all the εa’s
are zero and not all the εa’s are one. Since x, y and h are in S(A) their
prime factors come from the set {p1, ..., pw}. Thus each pair (x, y) gives a
distinct solution (X, Y ) = (x/h, y/h) of the equation X + Y = 1 in non-zero
rational numbers which have p-adic order zero except perhaps for the primes
p1, ..., pw. Therefore, by Lemma 4,

|S(A)| − 1 ≤ 3 · 72w+3,

and our result now follows on taking logarithms.
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Proof of Theorem 4 Let p1, ..., pw be the primes which divide a1 · · · at(a1+
at) · · · (at−1 + at). We have

at =
w∏
i=1

p
ordpiat
i ,(24)

and to obtain our result we shall estimate ordpiat from above for i = 1, ..., w.
Let P denote the maximum of p1, ..., pw. C26, C27, ... will denote effectively
computable positive constants.

Let i be an integer with 1 ≤ i ≤ w and suppose that ordpiat is positive.
Then pi divides at and there exists an integer g = g(i) with 1 ≤ g ≤ t− 1 for
which pi does not divide ag since the greatest common divisor of a1, ..., at is
one. Therefore

ordpiat = ordpi((ag + at)− ag) = ordpi

((
ag + at
ag

)
− 1

)
.(25)

We write
ag + at
ag

= pl11 · · · plww ,

where l1, ..., lw are integers of absolute value at most 3 log at. Thus, by (25)
and Lemma 5,

ordpiat < p2
i (2w)C26w log p1 · · · log pw log logP log log at.

Certainly
(2w)C26w log p1 · · · log pw < (2w logP )C26w.

By the prime number theorem w < C27P/ logP , and thus

ordpiat < eC28P log log at,

for i = 1, ..., w. Therefore, by (24),

at < PweC28P log log at .

Since w < P we find, on taking logarithms,

log at
log log at

< eC29P ,

hence P > C30 log log at as required.
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