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We prove that there are only finitely many terms of a non-degenerate linear

~ recurrence sequence which are gth powers of an integer subject to certain simple

conditions on the roots of the associated characteristic polynomial of the recurrence

sequence. Further we show by similar arguments that the Diophantine equation

ax + bx'y + ¢cy* + dx’ + ey + f =0 has only finitely many solutions in integers x, y,

and ¢ subject to the appropriate restrictions, and we also treat some related
simultaneous Diophantine equations.  © 1987 Acaderic Press, Inc.

1. INTRODUCTION

In [15] the authors proved that if a, b, ¢, and d are integers with
b2 —4ae and acd non-zero and if x, y, and ¢ are integers with |x| and ¢
larger than one satisfying

ax® 4+ bx'y + cy* =d, )

then the maximum of |x], {¥|, and ¢ is less than a number which is effec-
tively computable in terms of a, b, ¢, and d. Let r; and'r, be integers with
r? 4 4r, non —zero. Let u, and u, be integers and put |

U, =ryh, 1 '+'?'2H”_2, (2)
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for n=2, 3, ... Then, for n>0,
U, =ae” +bp", (3)
where « and 8 are the twal roots of x%—~r,x—r, and

-_ugﬁ“'"ul b_ul‘_“uﬂﬁ

T B—a’ B—a

1

The sequence of integers (u, ) ., 18 @ binary recurrence sequence. It is said
to be non-degenerate If abaf #0 and o/f is not a root of unity. In the
course of proving our result concerning Eq. (1) we showed that a non-
degenerate bipary recurrence sequence contains only finitely many terms
u,, defined as in (3), which are pure powers whenever « and £ are units or
equivalently whenever [r,{ = 1. We also established in [15] the following
more general result. Let d be a non-zero integer and let u,, defined as in

(3), be the nth term of a non-degenerate binary recurrence sequence. If

.dxq = Uy, (4)

for integers x and ¢ larger than one, then the maximum of x, ¢, and # is
less than a number which is effectively computable in terms of a4, a, b, B,
and d. Independently, Pethd [12] proved that if in (2) we suppose that r, -
and r, are coprime and (4) holds for integers x and ¢ larger than one, then
the maximum of x, ¢, and »n is less than a number which is effectively com-
putable in term of a, a, &, B, and the greatest prime factor of d. Let ¢ be an
integer and let u,, defined as in (3), be the nth term of a non-degenerate
binary recurrence sequence. In [16] Stewart showed that if |r,| =1 and

X'+e=u,,

for integers n, x, and g with x| > 1, n 20, and ¢ = 3, then the maximum of
n, |x|, and ¢ is less than.a number which 1s effectively computable in terms
of a, «, b, f, and ¢. Further if |r,] =1 and

x2+c=un,

for integers n and x with {x] =2 | and # 2 0, then the maximum of n and |x]
" is less than a number which is effectively computable in terms of 4, «, b, £,
" and ¢ provided that ¢*s4ab when r, = —1 and that ¢*s +4ab when
r, = 1; the preceding provisions were overlooked in [16]. Just as the study
of Eq. (1) was related to the study of pure powers in binary recurrence
sequences there is a generalization of Eq. (1) related to the above result. In
particular, we are able to prove the following result. -
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THEOREM 1. Let a, b, ¢, d, e, and f be integers. Put D =5b>—4ac and
4 =4acf + bde — ae* — ¢ d* — fb* and assume that D A£0. If x, y, and t are
integers with |x| > 1 and t > 2 satisfying -

ax* 4+ bx'y +cy* +dx' +ey+ f=0, (5)

then the maximum of |x|, | y|, and t is less than a number which is effectively
computable in terms of a, b, ¢, d, e, and f. Further, if e* # 4cf and x and y are
integers satisfying

ax® 4+ bx*y + eyt +dx*+ey + f=0, (6)

then the maximum of |x| and |y| is less than a number which is effectively
computable in terms of a, b, ¢, d, e, and .

The hypothesis D 4 #0 is clearly required in the statement of Theorem 1.
To see that the additional hypothesis * # 4¢f is require when ¢ =2, observe
that if e* =4¢f and b =0 then (6) is equwalent to

(ax? +d)x* = —c(y +€/2¢)?;

note that ¢ # 0 since D #0. Thus, if 2¢ divides e, to obtain infinitely many
pairs of integers x, y satisfying (6) it suffices to find infinitely many pairs of
integers x, ¢ satisfying

ax*+ct*=-d (7)

and to put y = xt — ¢/2¢ for each such pair. Plainly there are infinitely many
such choices of @, ¢, d, and ¢ for which (7) has infinitely many pairs of
solutions x and ¢ and for which D 4+#0. In particular, we may take
a=—1, d=1, ¢ a positive integer which is not a square, and e=2¢.
Let a, b, ¢, d, ay, b, ¢,, and d, be integers with acda,c d; #0,
bi#4a,c,, b* #4dac and such that the roots «; and a, of a;x*+ b x + ¢,
are not roots of ax® -+ bx 4+ ¢. In [15] the authors also showed that if x, y, -
z, and g are integers with ¢ and z larger than one for which

a, x>+ bixy+c,y*=d, (8)
and |
ax? + bxy + cy* = dz*, | (9)

then the maximum of {x|, ||, |z|, and ¢ is less than a number which is
effectively computable in terms of g, b, ¢, d, a,, b, ¢, and d,. This exten-
ded earlier work of Mordell [9] who proved, with the above hypotheses
and g =2, that the simultaneous Eq. (8) and (9) have only finitely many
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solutions in integers x, y, and 2. We are now able to generalize this result
con51derab1y

THEOREM 2. Let a, b, ¢, d, e, and [ be integers and let F{t, v} be a binary
form with integer coefficients and degree at least one. Put D = b* —4ac and
4 = 4dacf + bde — ae® — cd* — fb* and assume D 4 f #0. Suppose that F(1, 1)
has a simple root o such that aw*+ba+c#0 and 4f(ae®+ ba+c)+#
(de+e)? If x, y, z, 5, and q are integers with s#0, g> 1, and |z} > 1, for
which

ax*+bxy+cy*+dx+ey+ f=0 | (10)
and
F(x, y) = sz, ' (11)

then the maximum of x|, |y, |zl, |s|, and g is less than a number which is
effectively computable in terms of a, b, ¢, d, e, f, the greazesr prime factor of
s and the binary form F.

For the proof of Theorem 2 we employ Lemma 6 together with a result
of Baker on the solutions of the hyperelliptic equation in an algebraic num-
ber field. We remark that if we use a result of Brindza [4] in place of the
above-mentioned result of Baker, it is possible to show that the condition
4 f(ao® + ba + ¢) # (du + ¢}’ may be omitted if ¢ is greater than 2.
Lemma 6, which 1s a slight generalization of Lemma 6 of [157, yields some
information on gth powers in general linear recurrence sequences.

Let ry, .., ¥ and uy, ..., 4, ., be integers and put

| ”n=r1“nwi+ "'+rk“n-k: (12)

for n=k, k41, ... The sequence (u,)>_, 1S a linear recurrence sequence,
We shall assume that k =21 and that the terms of (u,)>=., do not satisfy a
relation of the form (12) with fewer terms; in particular there does not exist
an integer / with / <k and integers s,, ..., 5, such that

U, =3U4,_ + o +3!uﬂ—h

for n=1{ [41,.. It 1s well known (see page 62 of [7]} that for n 20,

Hn=f1(”)a?+ +f:(ﬂ)ﬂi?, I (13)

where £}, .., f, are non-zero polynomials in n with degrees less than [, ..., /,
respectively and with coefficients from Q(«,, ..., «,), where «, .., &, are the
distinct roots of the characteristic polynomial of the sequence

Xl Xt — o=,
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and /;, .., /, are their respective multiplicities. Note that «;, ..., ¢, are non- :
Zero since r, 18 non-zero by the minimality of (12). We shall say that the
sequence (u,),; .0 18 non-degenerate if > 1 and «,/«; is not a root of unity
for 1 <i< j<t Observe that this definition is consistent with our earlier
definition of non-degenerate binary recurrence sequences. We shall be
interested in linear recurrence sequences (u,)%, , with u, defined as in (13)
for which fi(n) is a non-zero constant, 4, say. Thus

u, = Aal+ fHL(n)ag+ - + fi(n) o™ : (14)

Let o be a real algebraic number larger than one from a field K of degree
D over the rational numbers. Further let 4, a, and 5 be non-zero numbers
from K and let § be a positive real number. In Lemma 6 of [15] the
authors showed that if -

dx?=qa" + b,

with b <«"! =% and with x, ¢, and » integers larger than one, then g is
less than a number which is effectively computable in terms of D, d, q, «,
and é only. As a consequence we showed that if 4 is a non-zero integer, u,
is the nth term of a non-degenerate linear recurrence sequence, as in (14),
ay| > a)| for j=2, .., ¢, u, — A a] is non-zero, and

dx?=u,, | (15).

for integers x and ¢ larger than one, then ¢ is less than a number which is
effectively computable in terms of 4 and the Sequences (4,)5. 0 Kiss [5]
proved that in fact ¢ is less than a number which is effectively computable
in terms of the greatest prime factor of d and the sequence (z,‘sl..,,),,“.mﬂL Kiss
[5] also showed that if we further assume that |«,| > |«,| for j= 3 ., t and
that ja,| > 1 then, in place of {15), we have

Vdx? —u, | > eV,

for integers x and ¢ with x larger than one, provided that »n and g are
larger than »,, where ¢, and »n, are positive numbers which are effectively
computable 1n terms of the greatest prime factor of 4 and the sequence
(u, ), 4. If we make no assumption on the size of |a,| it is still possible to
conclude that the distance between u, and the nearest gth power, for ¢ suf-
ficiently large, eventually tends to infinity exponentially with » provided
that 4,o7 1s not the gth power of an integer for » sufficiently large. This
follows from our next result, which is a consequence of Lemma 6.

THEOREM 3. Let 0 be a positive real number and let P be a positive
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integer. Let u,, defined as in (14), be the nth term af a non-degenerate linear
recurrence sequence and assume that

oy} > eyl for j=2,..,1

There exists a real number C,, which is effectively computable in terms of 9,
P, and the sequence (u,)=. ., such that if s, x, q, and n are non-zero integers
with the greatest prime factor of s less than P, |x| >1, g>Cqy, n>0, and
sx¥ s A o, then |

lsx? —u, | > lag | =2, (16)

While C, is effectively Computable it is in general rather large as we
employ estimates for linear forms in the logarithms of algebraic numbers
due to Baker in the proof of Theorem 3. We are able to reduce con-

siderably the size of C, by employing an extension of Roth’s theorem due
to Lang [6].

THeOREM 4. Let u,, defined as in (14), be the nth ferm of a non-
degenerate linear recurrence sequence and assume that -

let,| > lay| 2 {ux i, for j=3,..,1
Let y be a real number with y>1 and
{al | }},} !‘-’12!:

let d be the degree of o, over the rationals, and let P be a positive integer.
There exists a number C, such that if 5, x, q, and n are non-zero integers
with the greatest prime factor of s less than P, x| > 1, n>C\, sx s 4,4},
and

> (d log |a| Ylog(lo |/7) (17)
then |

isx —u, | > 9", (18)

Taking u, =2"+1 for n=0, 1, 2, .. we see that the restriction sx* 3 1, of
in Theoremd4 1s certainly requlred Further, put u, (\/5*}— 1)* +
(ﬁ — 1) for n=0,1, 2, ... and observe that for any positive integer ¢

Ui —u,, = q((ﬁ“F )=ty

+(g) ((ﬁ-t- 144 4 or 4 g((/2 = 1))02)
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Therefore if g >2 and y > (ﬁ -+ 1) ~2¥4, the inequality
’xq Uy I < ?”

has infinitely many solutions in positive integers # and x; hence, we cannot
replace condition (17) by the condition

¢> (2 —s)log | |/log(|e, /),

for any ¢ > 0.

Because of the ineffective nature of Lang s result we are not able to give
an effectively computable number C, such that (18) holds for all integers »
with n> C,. Theorems 3 and 4 yield information on the equation

u, =dx? + T(x), | O (19)

where T(x') 1s .a polynomial with mteger'cneﬂic:lents havmg height H and
~degree r, considered by Nemes and Pethé [10, 11] Let u,, be defined as in
(14) and assume

|t >0l > o[, for j= 3, s

with «, # 4+ 1. Using Lemma 6 of [15], Nemes and Pethd [10] showed
that there are positive numbers C,, C;, and C, which are effectively com-
putable in terms of d, H, and the sequence (u,)2., such that if n, x, and ¢
are integers with n>C,, |x{>1, and ¢>1 for which (19) holds and if
r < Cyq then g < C,. Further, in the special case u, is the nth term of a
non-degenerate binary recurrence sequence and u, satisfies a relation as -
in(2) with |r,] = 1. Nemes and Pethd {11] were able to show that if ¢ is a
fixed integer larger than one and Eq. (19) has infinitely many solutions in
integers n and x, then T(x) can be characterized in terms of the Chebyshev
polynomials. By means of Theorem 4 we are able to obtain further mfnr-
mation on solutions of (19)

COROLLARY 1. -Let u,, defined as in (14), be the nth term of a non-
degenerate linear recurrence sequence and assume that

oy [ > oz | > joyls

for j=3, .., t. Let d be the degree of o, over Q and let T{x) be a polynomial
with integer coefficients and degree r; we take r=0 if T(x} is the zero
polynomial. If v, and «, are multiplicatively independent and o, % + 1 then
there are only finitely many integers n, x, and g with n 20, |x| > 1, and

.q}max ( dlog |a, |

log(|a |/max(L, o, )) d“)
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for which |
u, = x74 T(x).

As a special case of this result note that if (u,)*., is a non-degenerate
binary recurrence sequence whose characteristic polynomial has roots
which are multiplicatively independent with one root inside the unit circle,
then for any integer ¢ the equation '

u, =x94¢

has only finitely many solutions in integers », x, and ¢ with n20, {x| > 1,
and ¢ > 2. Thus the distance from, for example,

u, = (2+/7)+2-S7)

to the closest pure power larger than 2 tends to infinity with ». We remark
that if the coefficients of the characteristic polynomial of a non-degenerate
binary recurrence sequence are relatively prime then the roots of the
polynomial are multiplicatively independent.

Our next result may be viewed as a p-adic analogue of Theorem 3. Let K
be a field of finite degree over Q and let £ be a prime ideal of the ring of

~algebraic integers of K. For any element 2 in K we denote by ord , a the
order to which 4 divides the principal ideal generated by «.

THEOREM 5. Let u,, defined as in (14), be the nth term of a non-
degenerate linear recurrence sequence and put K=Q(«,, .., a,}). Let 4 be a
prime ideal in the ring of algebraic integers of K lying above the prime p and
assume that |

ord , &, <ord, a,

for j=2,.,t If 5, x, q, and n are integers with s#0, [x|>1, (p,q)=1,
nz0, sx?# A}, and | -

sx=u,, {20)

then g is less than a number which is effectively computable in terms of the

"

greatest prime factor of s, p, and the sequence (u,)5 ..
We remark that if sx?=4,a] and (20) holds then

fam)ay + oo + fi(n)a} =0, (2

Clearly if |a,{ > |a,| for j=3, .., ¢t all solutions of (21} are less than Cs, a
number which is effectively computable in terms of «,, ..., ¢, and f5, ..., f,.
In this case the conditions n>0 and sx%# A;a] in the statement of
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Theorem 5 can be replaced by the condition n> Cs, or alternatively, since -
|x| > 1, the condition sx?# 1 o} may be dropped. In genéral, Eq. (21) has
only finitely many solutions by the Skolem-~Mahler theorem [8] and so
the conditions n 2 0 and sx? s 4, 4} may be replaced by the condition that n
be sufficiently large. -

- Let us recall some facts about valuations. Let {p,, p,, ...} be the set of
prime numbers. Let | |, denote the ordinary absolute value on Q and let
| i, denote the p,-adic value on @ normalized so that |p,|, = p;/! for
i=1,2,.. Let K be a field of finite degree over Q and let v be a non-trivial
valuation on K. Then v restricted to Q is equivalent to | |, for some {2 0.
We shall suppose that v is normalized so that

|a|u = |a‘p;: (22)

for all ain Q. Let K, be the completion of X at v, let Q,, be the completion
of @ at p,, and put

iyl = [yl 2, '(23)

. for ali y in K, where N, is the degree of K, over Q,. Let V be the set of
non-trivial valuations v, normalized as in (22), on K. Then for all non-zero
elements y in K, we have

[TIl=t BN

e

Combining Theorems 3 and 5 with Lang’s generalization of Roth’s
theorem we are able to prove the foliowing resuit.

- THEOREM 6. Let (u,)>., be a non-degenerate linear recurrence Se;quence
with u, defined as in (14) and put K=Q(a(, ., &) Let v,,.,v, be
inequivalent valuations on K normalized as’'in (22) and suppose

|G|51 |H‘f > I[xj{u;!

for j=2,..,t and i=1, .., r. Put 0, =max{(ell,, s &k} for i=1,.,r
with || |, dﬂﬁned as in (23) and let b be an integer with 1 <b <t for whwh

|'xb| !mjli

for j=1,..,1 Let D be the degree of K over Q and let P be a positive
integer. The equation

- sx?=u,
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has only finitely many solutions in integers s, x, q, and n, with the greatest
prime factor of s less than P, |x| > 1, n20, and

- D log |a,!
103(1_L.= (lees 1,/6))

Theorem 6_hzis the following consequenée;'

COROLLARY 2. Let (u,)%., be a non-degenerate linear recurrence
sequence with u, defined as in (14) and let P be a positive integer. Assume
that f,(n) is a non-zero constant, t=3, and that \o,| = ja,| = |as|. Then the
equation | |

sx9=u,

has only finitely many solutions in integers s, x, q, and n with the greatest
prime factor of s at most P, |x| > 1, ¢>2, and n = 0.

We remark that with the above hypotheses {u,| > o0 as n-»co by
Lemma 5. Thus a non-degenerate ternary recurrence sequence, the roots of
whose characteristic polynomial have the same absolute value, contains
only finitely many ¢gth powers of 1ntegers for g > 2. In particular let d be a
positive square free integer and let ¢ and b be non-zero integers with
a# +b6 if d=1 and a+# +b and a# i3b if d=3. Then there are only
finitely many integers » such that

(@a+b/—d)?) +(a—b S/ —d)?Y + (@ + db?)"

is the gth power of an integer with ¢>2. The hypothesis g>2 in
Corollary 2 cannot be replaced by g > 1 since, for example, for all n 20,

(24 1) +(2—i)'P=(3+4i) +(3—4)"+2-5".

2. PRELIMINARY LEMMAS

Let «,, o5,.., &, be non-zero algebraic numbers. Let K= Q(x, .., o,)
and denote the degree of X over @ by D. Let 4, .., A, be upper bounds
for the heights of «,, .., «,, respectively; the height of an algebraic number
is the maximum of the absolute values of the relatively prime integer coef-
ficients in its minimal polynomial. We assume that 4, is at least 4. Further
let b,, ..., b, be rational integers with absolute values at most B, and let
b, be a non-zero rational integer with absolute value at most B'. We
assume that B’ is at least 3. Put -

A;bllogm + ..o+ b, logo,,
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where the logarithms are assumed to have their principal values. In 1973
Baker proved the following resuit; take 0 =1/8' in Theorem 1 of [2].

LEMMA 1. .[}"A;éﬂ then |A| > exp(— C(log B’ log 4, +B/B")) where C
is a- positive number which is effect:ve!y computable in terms of n, D and
Ay, ., A,_ only.

In 1976 van der Poorten established the following p-adic analogue of
Baker’s theorem; take d==1 in Theorem 3 of [13 ].

LEmMMA 2. Let # be a prime ideal of K fyfng above the rational prime p
" and assume that b, is not divisible by p. If «%' ---ab»—1 is non-zero, then

ord , (% - a2 —1) < C(log B' log A, + B/B")'

where C is a positive number whzch is effectively computable in terms of n, D,
Ay, Ay, and p only.

We shall also require the following result, due to Baker, which gives
bounds for the solutions of the hyperelliptic equation. Let 8 be an algebraic
number. We denote by ||0] the maximum of the absolute value of the
conjugates of 8 over Q.

LEMMA 3. Let K be an algebraic number field of degree d over Q. Let
Qs Uy qy o Ao, and b be algebraic numbers from K with a,b#0, and
let m and n be positive integers with mz2. Further let f(x)=
a,x"+ --- +a;x+ay, be a polynomial with at least 3 simple roots. All
solutions in algebraic integers x, y, from K of

by™ = f(x)

satisfy max{||x{, |y} <C, where C is a number which is effectively com-
putable in terms of b, ay, a,, .., a,, and K. |

Proof. When K 1s the field of rational numbers the resuit follows from
Theorems 1 and 2 of [1]. The generalization to an algebraic number field
K follows directly as is indicated by Theorems 4.1 and 4.2 of [3].

Let K be a field of finite degree over Q and let ¥ be the set of non-trivial
valuatlons v, normalized as in (22), on K. For any 8 in K we define H (f)

by

H(B)= |] max(l, Ilﬂll 3

va V

The following generalization of Roth’s theorem is due to Lang.
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LemMma 4. Let K be a field of finite degree over Q. Let V be the set of
non-trivial valuations v, normalized as in (22), on K and let S be a finite sub-
set of V. For each v in S let a, be non-zero and algebraic over K and assume
that v is extended to the a!gebrmc closure of K in some way. Let ¢ be a
positive real number. There is a positive real number C whzch depends upon &
and o, far ve S such that

[1 min(1, ||, -ﬁil ) 11 min(li 181 ,)

pe S veg S

C
xug[smm(l iB=4,)> TP

for all elements B in K which are non-zero and different from «,, for v in S.

Proof. This follows from Theorem 1.1, page 160, together with remarks
(iv) and (v), page 161 of [6]. --

LEMMA 5. Let a,,.,&, be non-zero algebraic numbers and let
fi(n), ..., f.{n) be polynomials which are not identically zero with coefficients
which are algebraic numbers. Put v, = fi{n)a}+ - + f(n)al, for n=
0, 1,2, .. If a,/o; is not a root ﬂfumt}far 1 <i<j<t then v, --Ofar only
i mtely many integers n. '

Proof. See [8 or 7], page 59.

LeEmMMA 6. Let o be a real algebraic number larger than one from a field
K of degree D over Q. Ler s be a non-zero integer, let a and b be non-zero
numbers from K, and let & be a positive real number. If |

sx¥=qu" + b, ' (25)

with |b| < o™~ and with x, q, and n integers larger than one, then q is less
than C, a number which is effectively campumble in terms of the greatest
prime factor of s, D, a, a, and o only.

Proof. Let ¢y, c,,.. be positive numbers which are effectively com-
putable in terms of the greatest prime factor of 5, D, @, o, and & only. We
shall assume that » is larger than ¢,, where ¢, is chosen sufficiently large to
ensure the validity of the subsequent arguments. Note that if n<¢; and
(25) holds then g < ¢, as required since x is an integer larger than one.

From (25) we have

(26)

SO



336 - SHOREY AND STEWART

For n sufficiently large (la| «®*)~* < 1/2. On taking logarithms and recall- .
ing that [log(1 + )| < y and |log(1 — y)I €2y for 0< y < 1/2, we find that

llog [s| —log |al —nlog @+ g log x| < c;0~?", (27)

We have |s| = pp .- pwith £ 20 and p, .., p, prime numbers. Note that
the maximum of ry, .., r, is at most ¢ n. Put

A=r, 108'15’1."*' - +rilog p —log |4
—nlog a + qlog x.

By (26) and the fact thatfbaé(} we see that 4#0. We may now apply
Lemma 1 with B'=g¢ and B the maximum of ry, .., r, and # to obtain

| 4] > exp(—cs(log g log x + (n/q)). | {28)
Comparing (27) and (28) we find that
ceh <log qlog x + n/qg.
Certainly we may assume that g > 2¢4 and therefore
¢n<log ¢ log x.
On the other hand, by (25),
| log |s| + g log x < cgn

hence
g log x < ¢y log g log x.

Since x 1s at least 2 we conclude that g < ¢, as required.

3. PROOF OF THEOREM 1

Let ¢,, ¢,, ... denote positive numbers which are effectively computable in
terms of a, b, ¢, d, ¢, and . Let us first assume that (5) holds for integers x,
y, and ¢ with Ix{>1 and ¢t> 1.

If ¢ and ¢ are both zero then, since D is non-zero, b is non-zero. Thus,
from (5},

- (by+dix' = —ey—~f (29}

If by +d=0 then, from (29), ey + f=0 and so de— fb =10, contradicting
the assumption 4 #0. Thus by + d+#0 and so by {29}, |x‘| <¢, hence the
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maximum of |x] and ¢ is at most ¢,. Further {bx’'+¢)y= — f —dx’ and,
since 4 # 0, bx' + e #0 hence | y| < ¢,. Therefore the theorem holds if ¢ and
¢ are both zero. We shall assume henceforth that at least one of a and ¢ is
non-zero. o |

If @ is non-zero put

X=2ax'+by+dand Y= y+ (bd— 2ae)/D. (30)
Then (5) is equivalent to |
X?-DY*=M, - (31)

where M =4a A/D. Further, if D is less than zero or if D is the square of a
non-zero integer then, by (31), {X] and Y} are at most ¢, hence |x|, |y,
and ¢ are at most ¢,. Thus if a 1s non-zero we may assume that D is
positive and not the square of an integer, hence that ¢ is non-zero. On the
other hand, if ¢ is non-zero then arguing as above we may deduce that a is
non-zero. Therefore we may assume that both ¢ and ¢ are non-zero and
that D 1s pomtwe and not the square of an integer.

Since a 4 is non-zero, M is non-zero_and thus, by (31), X - \/— DY is

non-zero. Let ¢ denote the fundamental unit in @(\/E). Define n to_be that
integer for which 1 < I(X—\/L_ll_ Y)e "l<e and put =, = (XnﬁY)s‘".
Then |

X—/DY=ne. - (32)

Let ¢ denote the non-trivial element of the Galois group of @(\/E} over Q
and apply it to both sides of (32) to obtain

X—l—\/B Y=0(n,)ole)

Put ﬁtz = g{n,) and observe that the heights of n, and 7, are at most ¢
since 1 <In,l <& and n,n, ={go(e))™" M. Further

2X=mn,8"+n,0(e)", (33)
and
| —2 \/BY=T'£16"-"?I2{J'(E)”. (34)
By (30), | |
2DX ~2b DY =4a Dx' + R,
where R =4a(be - 2¢d). Thus, from (33) and (34),
da Dx'=(D+b /D) n&"+ (D ~b /D) m,0(e)" — R. (35)
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Notice that ¢>1 and O<|o(g)) <l. Further (D-+5b \/1_))*#:1 and
(D—b \/I_) )7, are non-zero, since ac D # 0, and have heights at most ¢¢. If
n>c, then [(D~b \/5) m,0(e)"— R| <& and we may apply Lemma 6
with 6=1/2 to deduce that r<c¢y while if n<-c¢, then
D+ b \/B) 18" — R| <|o(e)|"* and, again by Lemma 6, ¢ < ¢,o. Finally,
if {n| < ¢4, then, since |x| > 1, we conclude from (35) that 1 <c¢y,.

Denote \/},’_)((Dﬁ-b D)nﬁ"-—-(D-—bﬁ) n,0(e)") by z and observe
that z is an algebraic integer in Q(./D) which is invariant under ¢. Thus z
is & rational integer. Further,

2= D((D +b /D) n,e" + (D —b /D) my0(e)")’
 —4 D(D*— b2 D) mynyfea(e))" (36)

Recall that 7, ,(e0{€))" = M. Therefore, by (35) and (36), z° = f(x), where
 f(x)=16a* D’x* +8a D*Rx' + D(R* — 4D(D — b*) M).

Put 2(u)=16a% D*u?+ 8a D*Ru + D(R*—4D(D — b*) M). Since ac D 4 is
non-zero the two roots of g are distinct. Since one of the roots of g is non-
zero f has at least ¢ simple zeros and so, for £ > 2, we may apply Lemma 3
to conclude that |x} <c,; and hence, by (35), that |r| <c,,. Further, by
(30) and (34), |yl < ¢;. Similarly if £ =2 and both roots of g are non-zero f
has four simple zeros and we may apply Lemma 3 as above. The additional
hypothesis e #4cf ensures that D(R?*—4D(D —~b*)M) is non-zero and
hence that both roots of g are non-zero, and this completes the proof.

4. PrROOF OF THEOREM 2

Let ¢, ¢,, ... denote positive numbers which are effectively computable in
terms of @, b, ¢, d, e, f, the greatest prime factor of s, and the binary form F.
As in the proof of Theorem 1 we may assume that ¢ and ¢ are non-zero
and that D is positive and not the square of an integer. Further, put

X=2ax+by+d and  Y=y+{(bd—2ae)/D,

so that (10) is equivalent to |
X2 —-DY*=M,

where M =4q 4/D. Finally, define ¢, ¢, n,, and =, as in the proof of
Theorem 1.
From (35),

B b \7; , b .?.I...'*l _ 2cd—be -
x_(1+\/1))4a3 +(1 ﬁ)‘mﬂ(a) t—p— (37)
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while, from (30) and (34),

(38)

Let h be the degree of &4 over the rationﬁls'and let f{¢, v) be the binary form
of degree h for which f(¢, 1) is the minimal polynomial of a over the
rationals. Since « is a root of F(¢, 1) we have

F(t, v) = f(1, v) fi(1, v),

where f,{f, v} is a binary form with integer coefficients. Since « is a simple
root of F(t, 1) we see that the binary forms f(¢, v) and f(¢, v) have no com-
mon linear factor in their factorizations over the complex numbers. Plainly
the greatest common divisor of x and y divides f, and f 15 non-zero.
Therefore the greatest common divisor of f(x, y) and f,(x, y) 1s at most c,.
Thus there are non-zero integers m, s;, and z, with |m| and the greatest
prime factor of s, at most ¢, such that

mf(x, y)=s:71. - - (3)
Put

and

It follows from (37) and (38} that
mf(x, y)=A4e" + B+ A,a{e)™,
where |
max{|B], |6(B)]} < cye" - {40)

Note that 4, and A4, are non-zero since f(t, 1) is the minimal polynomial
of o and, by assumption, ae® + ba + ¢ # 0. Further if |n| > ¢, then, by (40),
A"+ B#0 and B+ A,0(e)™ #0. Thus if n> ¢,

mf(x: y):AIEhH“}'Bl:

with 4, B, 0 and |B, | < (g")' ~ V¥ Therefore, if n > ¢s and |z, > 1, then
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on applying Lemma 6 with « = ¢* and § = 1/24 we conclude that q{ ¢s. On
the other hand, if —n> ¢, then -

mf(x, y)=4y(o(e) ") + B,,

with 4,8, #0 and |B,] < o(e) =¥ 12" and on applying Lemma 6 we
conclude that g <c¢g. Note, by (37) and (38) that if —c¢, <n<cs then
max{]x|, | ¥|} < ¢q hence, from (11), max{|z|, |sl, ¢} < ¢y and the theorem
holds. Therefore we may assume that |z, | =1 or-that |z;| >1 and g <c. If
iz,| =1 put ¢, =2 and otherwise put g, =gq. Further, put s, = 5,5, where
s, and s are integers, s, is not divisible by the ¢, th power of a prime, and
s; and s, have the same sign. Then |s,| <¢;; and, by (39),

mf(x, y)=s,24, __ (41)

where z, =s552,. Let a =0, f:.iz, .., &, be the conjugates of « over @ and let
v be the coefficient of ¢* in f(¢, 1). Let r= hn (mod ¢,) with 0<r <¢,. Mul-
tiply both sides of (41) by &* to obtain

mo((6"(x =ty p)) < - (£%(% — 0 ) = &"5,29),

where z, = g!"/0)z, If n=0 (mod 2) put k=0, while if n=1 (mod 2) put
k=1. By (37) and (38), for i=1, ..., A,

e"{x —o, y)= Tl.I(fg["n]]4 + 72,088 4y,

where
-((1+ 0 ) )ﬂ: g’
?”__ \/— 4 2\/— 16
~ {2cd~be = (2ae— bd)
Yo, = D o B :
and

((1 ) . ) n.(eo{e))" .
:/—_L; da 2 \/_ 2
Thus the .hyperelhptlc equation
h
mo [] (v, T+ 9y, T% +73,4) = €752
f=1

has a solution T=gl"?] and Z = z,. Since ¢, =2, if the polymonial f(T) =
mo T8, (3. T*+7y,, 7% +7v,y,) has at least three simple zeros then by
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Lemma 3 max{lls[”m{l, Iz5|}} < c;2. But then In| < ¢,3 hence, by (37) and

(38), max(}x|, |y|) <c,4 and so by (11), max(|s}, |z|, ¢) < ¢,5s as required.
Therefore, to complete our proof it suffices to show that f(T) has at least
three simple zeros. Put g(U)=y, U*+9y,,U+7v;,, for i=1,., 4 and
observe that f(7') has 44, hence at least three, simple zeros provided that
g{U) has two distinct non-zero roots for i=1, .. 4 and that g(U) and
g{U) have no common root for iSi<j<h

We shall first show that g (U) has two distinct non-zero roots for
i=1,.,h To this end it suffices to show that vy ,y;,#0 and
y%lf—-élylif}?;ﬁé{), for i=1, .., h Recall that =, 7,(e0(e))" =M= (4a 4)/D
hence -

Via7a; = —(aaf + bu, + c)e** 4/D?,

for i=1,.., A Since 4 is non-zero and since «; is a conjugate of & and
ac® + bo + ¢ #0 we have y, 75, #0 for i=1, ..., &. Next observe that

- ((d* — daf Yo + (2 de — 4bf ) a; + (e* — dcf)),

: E
2 .4 .
IR CY R SR 4N E D

for i=1, .., h. Since ¢, is a conjugate of 2 and 4f (ax’ + b + ¢) # (dﬁt—!—e)z,
?2;“4?’1:?3:?&0 forz—l » .
For i and j with | <‘:r-=:j<h put

-Gs.; =('}’1.f'}’3; 71. ;ra;) | (hu’z; ?’1_;?’2,;)
X (730725 =~ 73.572.:h

and observe that if g(U) and g,(U) have a common root then G, ; =0.
However, some calculation reveals that G, ; = — (&, —a,)* 4 fe**/D?, ‘Since
f(t, 1) 1s the minmimal polynomial of «, f{z, 1) has no repeated roots and
thus «; # «;, hence G, ; is non-zero as required.

5. PROOF OF THEOREM 3

- Let ¢;, ¢3,.. be positive numbers which are effectwely computable in

terms of 9, P, and the sequence (u,)>.,. We have

un =}.1ﬂ";+f2(ﬂ)§i;+ s +ff(n)a?

We may assume that «, 1s positive by, if necessary, changing the sign of 4,.
Further since ¢, 1s an algebraic integer with absolute value strictly larger

than all its conjugates, o, is real and either «;, >1 or o, is 1. But if ¢, =1
then 1= 1, contradicting our assumption that the sequence (u,),, is non-

.. BT T S - T . . - . L - . . i _ A
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degenerate, and so we may assume a; > 1, Further we mayr'éSSume, G
without loss of generality, that |a,| = |« for j=3, .., . Put

d, =niax{degree(_;}) | f=2, .., ¢}
Then

[ fa(m)at+ - + fi(n)all S e n ja, |, (42)

‘We shall now assume that for some non-zero integers s, x, g, and » with
the greatest prime factor of s at most P, |x| > 1, n>0, and 52793 A4, ¢}, that
(16) does not hold and we shall show that ¢ < ¢, as required, Therefore

s —u, ] Saft %, (43)
and since

lox? —u, | 2 |sx¥ — A, af| = | faln)ag + - + filn)af],

by (42) and (43),

[5x4~ A, 07| S afth =94 ¢yn oy " (44)

Put 0=0 if la,| <1 and 0= (log |a,|)/loga; otherwise and put 9, =
min{§/2, (1 —8)/2}. Then, by (44), |

|59 — A, %) < ol =30, (45}

for n> ¢,;. Notice that if n < ¢, then, since |x| is at least 2, g <¢4. On the
other hand, if n> ¢, then (45) holds and since sx? 1,af, we may apply
Lemma 6 to conclude that ¢ < ¢5. Our result now follows.

6. PROOF OF THEOREM 4

Let ¢ be a positive real number and let y be a real number with
;| > 7> |ee,| and y> 1. Let ¢y, ¢,, ... be real numbers which depend only
on P, (u,)%. 7, and & We shall assume that s, x, ¢, and » are non-zero
integers with the greatest prime factor of s at most P, |x]{> 1, sx¥# 4o,
and |

lsx? —u, | €Y, (46)
and we shall show that if n is greater than ¢, then

g < ((1+2¢) dlog e, )log(la, | /7).
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Define d, as in (42). Then

|sx¥ —u, | 2 |sx?— A af| — |u, — A o]

vV oW

| sx?— A af| — e n |a, it
hence, by (46),

0 < |sx?— A o) <297, | (47)

for n>c,. Thus, by Theorem 3, g < ¢, for n>c¢,. Therefore we may write
sx?=5 x{, where 5, and x, are integers with |s,{<c¢, and x; 2 1. .
Consequently

L<xy Kooy ™ | (48)

Put n, ={n/g] and 4, =i, af ~"s ! Then

|sx% = Ay ] = |5 2] (e /2 ) — Ay - (49}
Further
|Geg fa ) — Ay 2 0 f(x, falt) — 4119, o (50)

where A4} is the gth root of A, closest to x,/af. Applying Lemma 4 with
K =@ ') and S the set of Archimedean valuations on X normalized as in
(22), together with those normalized non-Archimedean valuations v for
which Jaf!|, < 1, we obtain

(¢ o) — ALy 3 ¢, ( [T min(1, o/, nu)“i)

e S |
X H (g foft) =208,

But x, is an integer and therefore

Hylx /o) = T] max(1, |, /2, = [T max(l, fx,/ap,)

re V¥ : rte S

= [T min(1, [lei/x, 1,) "

ra S

Thus, |
: | (xg /o) — AV4 2 0 f(H gy fo}) 0+, - {31)

By the product formula (24),” Hi(8)=H K(B'"‘) for every. non-zero
element ¢ in K. For any algebraic number § we shall denote the height of

Al o e e iy "'"""'""'.'...'-..E-' -

Py Sy L I e LD b R Pl il Rt S 0 i
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H(B); recall that the height of an algebraic number is the maximum of .
the absolute values of the relatively prime integer coefficients in its minimal
polynomial. We have (see Schmidt [14, pp. 255-257]), for any non-zero
algebraic number §,

Hau(B)< CH(B),

where C 1s a positive number which 1s effectwely computable in terms of
the degree of § only. Thus

Hpix, [alt) = H (a7t/x) < cg H(a]!/ x).

Let d, denatﬂ the degree of af! over Q. Since |a,] 2 |&;] for j=2,.
have, by (48),

Hah/x) < ¢ o, |27,

and since d, <4,
H(ep/x) < €5 lag |, (52)

.Thus, from (49)-(52),
|53 — A, 007] 2 € oy |7 4 H AN,
and so, by (47},
nlogy=2 —c +n{l—{14+2)d/g)logia,l.
Since ¢ is at most ¢; and |o, | 1s greater than one,

nlogy=n(l—(1+2e)d/g)log lai,

hence |
(14 2¢) dlog o] S

log(a ify) = 7

for n>cy,. Our resuit now follows since ¢ 15 an integer and ¢ can be
arbitrarily smalil.

7. PROOF OF COROLLARY 1

We shall suppose that there are infinitely many integer triples (n, x, q)
with n20, (x| >1, and

 dlog fu| ) -
7> max (log(lmi max(t, 1) “ 53)
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such that
u, =x4+T(x), (54)

and we shall show that this' leads to a contradiction. The condition,
q> (dlog fa,|)/log(le, |/max(1, |az|, [a[7“*"))
is equivalent to {53). Further, since ¢ is an integer, there exists a real num-
ber y with | -
y >max{l, |o,], oy [T, | (55)
such that (53) is equivalent to
g > (dlog || )log(la, |/7). - (56)

It follows from Theorem 4, (55), and (56) that either there are . infinitely
many triples (n, x, ¢) as above with

X —u, | >, (37)

or there are infinitely many such triples (n, x, 4) with x¢ = J xe |
Let ¢, ¢,, ... denote positive numbers which depend only on (u,)7_, and
T. For n sufficiently large .

| =[x+ T 2 |x19— ¢y |xl" 2 ix1% (58)
and, since |o,] > [¢,],
ISl e e+ el <e o (59)
-Thus, frem. (58) and (59), x| <c; |2,]™9, hence
()| S e lag |79 0 Jor 70447, o (60)

for n sufficiently large. It fOllD‘;VS from'(54), (35), and (60) that {(57) holds
for only finitely many integers n, hence for only finitely many triples

(n, x,q) with n20, |x[>1, and ¢ satisfying (53). Therefore we have

xY= /07 and so by (54},

T(x)= fo(m)oi+ - + fin)ar, L (61)

for infinitely many such triples (n, x, ¢). Notice that «, is a real number
since fo, | > {ay | > joy{ for j=3, .., ¢, and since the conjugates of «, over the
rationals are in {«),.,a,}. Further, since |u,|> || for j=3,..,z¢,

foim)al+ -+« + fi(n)a? is non-zero for n sufficiently large. Thus if |a,| <1

then
1>{fon)ag+ <o + fn)a}| >0,

-
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for n sufficiently large. However, T has integer coefficients and 'so either .
T(x)==0 or |T(x)| = 1. Therefore, by (61), lay| = 1. Furthermore |a,]>1
since a, is real and, by hypothesis, o, % + 1.

Let d, denote the degree of f,. For n sufficiently large

can® oy |" < | fylm)ag + o+ fimasl <esnlagl",  (62)
and, by (61),
' ce Ix1" < {T(x) < 7 |xI" (63)

It follows from (62) and (63) that if x*=21,a? then |x| = |4,{" o, |™"
hence |

can® oy |” < oy | ™ < con® o | (64)

Let ¢ be a positive real number. Since there are infinitely many triples
(n, x, g} as above with x9= 4, a7 there exists such a triple (ny, X, ¢o) With
n, sufficiently large that, by (64),

| log la,] log |as
| —¢ <—< (148 .
=8 ot <7 =+ tog

Since ¢ is arbitrary and r is fixed there exists a positive integer ¢, with

rlog |o;| = ¢, log |a,]|.

Thus le, | and la,} are multipliéatively dependent and, since «, and «, are

real, «, and o, are multiplicatively dependent. This contradicts our
hypothesis and so establishes the result.

8. PROOF OF THEOREM 5

Let ¢;, ¢,, ... denote positive numbers which are effectively computable in
terms of the greatest prime factor of s, the prime p, and the sequence
(1,)w0- By (14) and (20), |

neQ
sx9= A0t + fo(m)al+ oo+ fln)ap.
Thus, since ord ,(o;/o ) 2 1 forj=2, oy By
ord (sx4A7 Y — 1) = ord ,(A7 f3(m)(22/%,)"

+ e AT ) e, S )™)
2n—c logn. | - (8%
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Certainly |
] <€, | | (66)

for all positive integers n, and thus on writing s=(~1)?p7t ... pit with
kz0and p,, .., p, distinct prime numbers we see that the maximum of r;,
F1s . P 18 At most cyn. Thus, since sx? 5 4, a4} and p does not divide g we
may apply Lemma 2 with B’ = g to- obtain

ord (A7 " — 1) = ord (= 1) pit -+ pAL Yo "x? — 1)
| < c,(log g log x + njq). (67)
Comparing (65) and (67) we find that
nucllogn~c4n/Q{é4 Iogqlﬂg X. (68)

Notice that we may assume ¢>c,/3 since otherwise our result holds.
“Similarly we may assume that ¢, log n < n/3 since otherwise n < ¢ whence
from (20) and (66) g < ¢4 as required. Thus from {68},

n/3 < cq log g log x. - (69)
- --But since $x9=u, we have, from (66) and (69),
g log x < ¢4 log q log x,

and thus g < ¢y as required.

9. PROOF OF THEOREM 6

Let ¢ be a positive real number an let ¢,, ¢,, .. denote positive numbers
which depend only on ¢, v, .., v,, P, and (u )% ,. Let s, x, g, and »n be
integers with the greatest prime factor of s Iess than P, |x|>1, n20, and
g = 1 for which sx9=u,.

If v, is an Archimedean valuation then by Theorem 3 we may suppose
that ¢ <¢, or that sx?= 4 af. If v, is non-Archimedean then by Theorem 5
we may suppose that g < ¢, or that sx?=4,«7?; the condition (p, g)=1 in

the statement of Theorem 5 does not pose a problem since if p* divides ¢

then we may replace, if necessary, x by x?* and g by q/p*. If sx%= A a? then

falmat+ - + fin)ar =0,

and by Lemma 5 this happens for only ﬁnitely” many integers n since

(u,)7-0 18 @ non-degenerate recurrence sequence. Similarly, by Lemma 5,
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u, =0 for only finitely many integers n. Let us therefore assume that n'is .
sufficiently large that sx9+# 4,a} and w, #0. Then ¢ <c; and so we may
write sx?=s;x{ where s; and x, are integers with |s,| <c¢, and x, > 1.
Therefore

slx‘{-——ilmj’=f2(n)a§+ oo+ fi(n}al

Further, since Ju,l <n®la,|” for n>1, |
L<x, <n fay | (10)
Put #n;, =[n/q] and A, = A, «?~ ™95, Then, for i=1, .., r,

H Slx‘f - A‘la?" y "31@?1?" Uy ” (xl/mill)q H Aﬂ" L

hence
(¢ /oty — Aol = s ol falm)as + - + fn)afl,
<o lagly” max |£(n)og,
- < cgn(8,/lles/ oy [l (71)
Also

u(xlﬁﬂl)q o AU "w -; Cg "(Il/ﬂi'}”) "" A:’ " u; s (72)

where A4, is the ¢gth root of 4, for which |[(x,/af') — 4;|},, 1 minimal,

Let S be the set of all normalized Archimedean valuations on X, the
valuations v,, ..., v,,"and all normalized non-Archimedean valuations v such
that o, |, <1. Put A, =4, for i=1, .., r and for ve § with v different from
Uy, ., U, put 4, =1 unless x; =afi, in which case put 4, =2. Then from
(71) and (72), |

H min(l, |(x; /o) — A, [,) S con™ ( fl (0:/{loy "w))n‘ (73)

e S {a=]

Notice that A, can assume at most ¢, possible values since g <c¢; and -
5, | < ¢4 and thus there are at most ¢,; different possible values for 4, with
v in S. Further A4, is non-zero and algebraic over X for v in S, Furthermore
x; /e is non-zero since u,, 18 non-zero and x,/a} is different from 4, for v
in S since sx?# A;a}. Therefore we may apply Lemma 4 to conclude that

[T min(1, {| (%, /0t) — 4, 11,)

ve S

2 Cyz ( [] min(l, Hﬂt‘i“/xl!iu)“‘) (H g(x, fot)) =22,

re 8
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As in the proof of Theorem 4 we find that

. oveS

H (¢, fen) = [T min(1, fe/x, ,) "

Thus

[T min(1, l(x1/a1t) ~ 4, 11,) > ea(Hx(x /) 3 =%

Ve S :

Put K, = Q(#fl), D=[K:Q], and d=[K,: Q] We ha_ve'.
H(x, fat) = H (0 /x1) = (H g (eft/x) )7,
Again as in the proof of Theorem 4,
o | Hgﬂ(a‘{l/xl)i’éci;H(aTl/xl),
where H(«%/x ;) denote the height of af/x,. Thus, by (70),

H{oP/x,) < € g1 3oty |1,

" Therefore, by (75) and (76),

Hip(x fal' ) < ¢y5 <P |2t f"ﬂm-

 We find, from (73), (74), and (77), that

(ﬁ (”@1 “w ! % C nev |%1“ + emD/y
91_ 16 |

{ o }

Since ¢ is arbitrary and g is an integer we have

(D log ja,|)

d&— ;
o (I (557

for n sufficiently large. Our result now follows.
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(74)

(75)

(76)

(77)

Let g(x) be a polynomial with integer coefficients and let the roots of
g(x) be o), o,, and «; with multiplicities 1, 1, and m, respectively. Assume
that |e;] = |&,] = |®3| and that «,/a; is not a root of unity for 1 i< j<3.

Then exactly one of &, @,, and «; is a real number and the other two num- -

bers are complex conjugates, hence of the same multiplicity. Therefore 1t is

- . - . [ I
- e e e et s
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no loss of generality to assume that «, and o, are complex conjugates and -
that a5 is a real number. Since |a, | = |ot;| there is a real number @ such that
a, = e“u, and since o, = &,, ¢, =P, hence o, 0,0, = a3, Since a, ;a5 is
an integer, 3 is an integer and since o, fa, and «, /a5 are not roots of unity,
a4 itself is an integer. In summary, o, is an integer and «, and a, are com-
plex conjugate algebraic integers of degree 2 with ¢,a, =i Thus
(x = Wx—ay) =x2+bx+c? with b and ¢ integers. Put k=(b, ¢). Then
a,/k and o,/k are algebraic integers since they are the roots of
x4+ (b/k)x + (c/k)*. For any 8 in the ring of algebraic integers of Q(«,)
let [8] denote the ideal generated by € in that ring. Then
(Lo, /], [az/k})=1[1]. |

Let u, be the nth term of a non-degenerate recurrence sequence as in
(14), with t=13, f,(n) a non-zero constant, 4, say, and |a,| = |x;| = |a;].
Thus, by the above remarks, |

Uy = L0+ Lo + fi(m)ay
= k(A7 + Ay3 + f(n)Y3),

where y, =g /kfori=1,2,3 and ([y,], [y,])=[1] in the ring of algebraic

integers of Q(y,). Let us put

W, = A YT+ Aays + f3(n)ys,

for n=0, 1, 2, .... Notice that {w,}®_, is 2 non-degenerate linear recurrence
sequence with |y [ = |y,| =1ys| and as before

Vi¥2 = ']’%- | (78)

Put K = Q(y;). Let S be the set of non-Archimedean valuations on K,
normalized as in (22), for which [y}, <1. Each prime ideal 4 dividing
[v,] also divides [y,] by (78) and does not divide [y;] since

([v11 [y23) = [11. Therefore, by (78},

Ny2ll, = 515, for vel,
and so, o |
L=y by > lyslle > Ivalis,  for veds.

Thus HuES("?l"u/"?iﬁ"u)mnuﬁs"?2“;”2: and by the product fﬂrﬁlula
(22), T1oes 17205 Y2 =TT,e 7 |y2 11 /% where T denotes the set of normalized

Archimedean valuations on K T consists of a single element v, and
19, 5o = |¥2}% Therefore

[T Cysllo/liysll) =yt (79)

vES .
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Denote the maximum of P, k, and 2 by P,. We now apply Theorem 6 with
V1, U, the valuations in S. By (79) there are only finitely many integers s,
X, ¢, and n with sx¥=w,, 550, and the greatest prime factor of s at most
Py, n 20, and ¢ > 2. Similarly putting 2°w, =z, forn=0, 1, 2, ..., we see by
Theorem 6 that there are only finitely many integers s and n with s #0 and
the greatest pnme factor of s at most Py, nz20, and s-2°=z, or
equivalently s =

- Suppose that there are 1nﬁn1tely many integer quadruples (s, x, g, n) with
s # 0 and the greatest prime factor of s at most Py, x> 1, n20, ¢> 2, and

sx?=wu,. Then either there exist infinitely many integer quadruples (s, x,-

g, n) with 57 0 and the greatest prime factor of s at most Py, n>0, ¢> 2,
and sx?=u, or there exist infinitely many integer pairs (s, n) with s#0 and
the greatest prime factor of s at most Py, n 20, and 5=1,. Recall that w,, is
an integer and that u, =k"w, for n=0,"1, 2, ... Thus in the former case
there are infinitely many integer quadruples (s, x, ¢, #) with s#0 and the
greatest prime factor of s at most Py, n20, ¢>2, and sxY=w,. By the
preceding paragraph there are only finitely many such quadruples. In the
latter case there are infinitely many integer pairs (s, #) with s#0 and the
greatest prime factor of s at most Py, n>=0, and s=w,. Again, by the
preceding paragraph, this is not possible. Therefore the above supposition
1s false and this establishes our result
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