On the fepresentation of an integer
in two different bases

By-IC, L. Stewart*) at Waterloo

1. Introduction

In 1970 Senge and Strauss [4] proved that the number of integers, the sum of
whose digits in each of the bases a and b lies below a fixed bound, is finite if and only

if IZEE 1s irrational. Their proof, which depends upon a generalization due to Mahler

of the Thue-Siegel-Roth theorem, is not effective since, given a fixed bound, it does
not yield a method for determining the largest integer n for which the sum of the digits
of n in each of base a and base b lies below the bound. In this paper we shall exhibit
a lower bound for the sum of the digits of n in base a plus the sum of the digits of »
in base b which is effectively computable and WhiCh tends to infinity as » tends to
infinity,

Let a, b and n be integers larger than 1 and let o and S be integers satisfying
0L a<a and 05 B<b. Denote the numbers of digits in the canonical expansion of n
in base g which are different from « by L, .(n). Define L; ,(n) similarly and put

Lo s)=L, (n)+L;,(n).

We remark that for all #
h -y

o,

ag.51)<C logn, 'F
and that on average
L, ap5n)>C,logn,

where C, and C, are positivé numbers which are effectively computable in terms of
a and b only. We shall establish the following theorem.
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loga

is irrational then
log b

Theorem 1. If

log log n

1,
logloglogn+C

La’ o B.b (n)>

for n>25, where C is a positive number which is effectively computable in terms éf
a and b only.

Theorem 1 shows that a sufficiently large integer cannot have a simple repre-
sentation in both base ¢ and base & unless ¢ and b are multiplicatively dependent.

The result of Senge and Strauss follows from Theorem 1 -on taking o¢=f=0 and
observing that the sum of the digits of n in base a plus the sum of the digits of # in
base b is at least the number of non-zero digits of » in base g plus the number of
log a
log b
r and s, then the sum of the digits of n in base a plus the sum of the digits of » in base b
is 2 for those integers n of the form a™=5"" for m=1,2,..., and certainly

Lﬂ,n,ﬂ,b(n)ﬂz

nonmzem digits' of »n in base b, Note that if is rational, so that ¢"=5° for integers

for these n.
Let u,; be the n-th term of a general linear recurrence sequenée satisfying
| u,=du, , +-+du, ., | |
where d,,..., d, and Uysooos U, are integers. Then
(1) o Uy =Py (m) Ay + -+ Bn) &y,

where ;11, , A, are the roots of the characteristic polynomial associated with u,.
Further P, (n), ., P.(n) are polynomials with coefficients from Q(4,,.. s A and
degrees the mulﬂphmﬁes of A,,..., 4, respectively in the characteristic polynomlal of u,
here ©Q denotes the rational numbers We shall also prove the followmg result.

'I'heﬂrem 2. Let a be an mreger larger than 1 and let o be a non-negazzve integer
Iess rhan a. If U, SGHSU%S (1), A 1> max{l, i4,],.. 5 1A4dh Py (x) is not identically

log Ay
log a

zero and is irrational then

log n .

(u)}log logn+ C,

1,

for n>4, where C, is a positive number whach is eﬁ’ecrwely compurable in terms of
A, Ays. .5 Ay, ¥ and the coefficients of P, (x),..., Pp(x). -

One consequence of Theorem 2 is that the complexity of the radix represen-
tation for the nm-th Fibonacci number v, increases with n for any base. In particular,
the sum of the digits in the canonical expansion of v, 1n base a, for a>1, tends to
mﬁmty as n tends to infinity. For.we have |

_ ="1}?((1 +2V§)"“(1"2V§.)n)’
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for n=1,2,... Put 1, = 1+I/§' and A, = 1...|/§ and observe that log 4, 18 1rrat1onal

2 2 log a

for all positive mtegers a since A* is irrational for all non-zero integers- k. Thus the
- hypotheses of Theorem 2 are satisfied and the aforementioned result holds.

| [ should like to thank H.W. Lenstra Jr. for inviting me to his thesis defence
since 1t was on this occasion that I proved Theorem 1.

2. Preliminary lemmas

Let by, b;,..., b, denote rational integers with absolute values at most B and
let ay,..., @, denote non-zero algebraic numbers with degrees at most 4 and heights
at most 4,,..., 4, respectively.’ We assume that B and A4,,..., 4 are all at least 4.
By the height of an algebraic number we shall mean the maximum of the absolute
values of the relatively prime integer coefficients in the minimal defining pelynomlal
of the number. We set

A=b,logoy + - +b,loga,,
where the logarithms have their principal values, and
Q =103A2' ) 'IOgA";

In 1976 Baker [1], Theorem 2, proved the following resuit. |

Lemma 1. If A=+0 then

|A| >exp(— C; log 4,2 log @ log B),

where Cy is a positive number which is effectively computable in terms of n and d only.

In the same year Loxton and van der Poorten [2], Theorem 1, (see also [2],
Lemma 1 and [3]), investigated the degenerate situation when A= 0 They showed
that if A=0 then there exists a non-trivial linear dependence relation - among the
logarithms with integer coefficients which are smiall.

Lemma 2, Assume that A, SA, S-S A,, that b,,...,b_are not all zero and that
Oysees & are positive real numbers. If A=0 then there exists a relation

bi logay + - + b, logar, == 0,

with by,..., b, integers, not all of which are zero, satisfying

max {b;|S C,Q2,
15isn

where C, is a positive number which is eﬁecrwely computable in terms of n and d only.
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- 3. The proof of Theorem 1.

We consider the following two expansions of n, for n>a-+b:

| a’""—-i o
g@=a1a’"‘+rx( - ) a,a™ 4 o 4 a,a™,
n=b1b1‘+ﬁ<b;:;)+b2b’3+m+b,b“

where | . .
| O<aq <a, ~aSa,<a—o with a0 for i=2,...,7,
'0~=:b1.<b,—-ﬁébf~‘:b-_-—-ﬁ with 6,0 for i=2,...,1¢,
and where | - -
H_mi}mzrrm}mrgﬂ and ll_::a-lz:r-.--::lth.
We put
(2) | B=¢, loglogn,

where ¢, is a positive number larger than 4 which is effectively computable mn terms
of ¢ and b only. We shall assume that n>c,>25, where ¢, ¢;,... are positive
numbers which are computable in terms of a and b only and which may be determined
independently of ¢y - |

. We now'regard' the intervals
@, =(0, 0], ®,=(0, 62],..., @, = (0", 6],

where k satisfies the inequalities,

log n

9k+1‘
4 loga

3 b=

If each interval @S,'for_s_zfl,...,k', possesses at least one term either of the form
m, —m, or of the form [, —/, the theorem holds since then

4 - L,gprm2r+t—22k,
while from (3) we have |
' (k +1) log 8> log log n — log (4 log a),
hence | o

log log n
log log log n+log cl

(5) k> log (4 log a) 1. |

The theorem follows from (4) and (5) since L, p5(n) 18 always at least zero.
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Therefore we may assume that there exists an integer s, with 1 Ss5k, for which
@, contains no numbers of the form m, —m, or [, —/;. Define p and ¢ by the mequalities

(6) mlh—fﬂpégs“*li ' ml“mp,i_lgﬁs,
mn h—1,S67 -1, 20,

with the convention that m,., and [, are zero. We now write
| (b—1) (a% Da=((b~1)(a=1)a, +(b—1)a)a™
Fb—1)(a=Da,a™ ++(b-1) (a—1)ad—(b-1)a
= A, a" + A, |
where A.l and A, are integers. We have |
| O<A <@-D{@—am ™ +b-1)aa™ ™" .

hence |
(8) | D<A, <2(b~1) (a—1)ya™ ™+l

An easy calculation shows that
054, <2(b-1) (@~ yam= "1

Similarly
(b~1)(@-)n=8,b+B,
where
(9) - 0<B, <2b-D(a~1b" 4",
and
0L |B,|<2(b—1) (a—1) Hlari*?,

We have

ey A A N B\
B,b+B, B,b \'  Aa™ B, b

5 " 1 |
If x and y are real numbers with absolute values at most 5 then

- 1+x.1+y
10 X <1+4me Civlh.
(10) m‘”‘{wfux}“ + mdx{ixl {y|}

Certainly

tAz* <2(b“1) (awi)amP“-l‘l za-—m1+mp+:+1
d.a -1 fa-Dam =7 ’
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while, from (6), m, — PHZBSRGEQ loglogn and thus for n sufficiently large

A _ B
All :,L <5 In a similar manner we deduce that ; ;Ilq . Therefore, putting

R =

B bl and employing (10) we conclude that
1 . | . _

| | L A B

Now, since log(l+x)<x for :c:::-() we have
0<Z llog R| £ 8ab max {g™ ™ me+! b"’““ﬂ“}

Therefore if log R-- 0 then (6) and (7) xmply that
ann | logllog R|<ca—c49“’

On the. other hand we have

| log R|= log(Bll) | mploga——lélogb |

and so we rﬁay apply Lemmima 1 to give a lower bound for {log R|. We take n=3,d=1

A, |
and o, o,, o, to be — 7 , a and b respectwely Note tha.t m, and /, are at most lzz;

1

. A, . .
and that the height of ——B—l— is at most the maximum of 4, and B,. Therefore, by Lemma 1,
1 |

if log R+0 then _
| log Ri= e:{p( Cs 10g (4{max A, B 1.}) log log n),
whence, from (8) and (9), |

| lﬂgllﬂg R|2 —cg(max {1, my~m,, [, —1,}) log log n,
which, from (6) and (7), yields
S logllog R| = — c,0*~* log log n.
On éomparing this estimate for loglog R with the oﬁe given by (11) we find that
c,0°%¢,0° " loglog n+ ¢, .

hence

6<c,loglogn+cg.

However, this contradicts (2) if ¢, is chosen to:be larger than ¢, . Such a choice
is possible since ¢, and ¢, have been determined mdependently of ¢;. Thus we
conclude that log R=0 and therefore

AN\ IR
(12) | log(Bi) +m, log a~1{ log b=0.
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By Lemma 2 there exists a relation of the form

A
(13) x, log (Bl) x, log a+ x4 log b=0,
1

with integer coefficients x,, x,, x5, not all of which are zero, satisfying

max {|x, [, |x,], |x3]} S ¢g log (max {4;, B;}).

Recalling (6), (7), (8) and (9) we find that lleécmﬂs“léciﬁ@"'l; whence, from

log n

iTog @ for n sufficiently large. Noting that m,zm, —6"" and

(2) and (3), [x,i<

log
2 log a

log n

h
TTog a whence

that m, >

we may employ (3) once again to verfy that m >

m,> [x,].

log a

og b is rational since x,,x, and x,

Now if x,=0 it follows from (13) that

A,
B,

are not all zero. If x,+0 then we find, on eliminating log( ) from equations
(12) and (13), that

(m,x, ~ x,) log a + (.-—- !qxl ~x3) logb=0.

1
g4 is ratlonal T his completes
log b

Since m,, is larger than |x,| we again conclude that

" the proof of Theorem 1.

4. The proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1. We first remark
that 4, is real since it is strictly larger than all of its conjugates. By considering sepa-
rately the sequences u,, and u,, ., we may assume that A, is positive. Furthermore
we may assume that u_is non-negative. Thus, since A, >max{l, |4,],..., |4} and
P, (x) is not identically zero we may assume that u, is larger than ¢ and that P, (n)
is positive and we may write

am -1
a—1

uﬂ=P1(n)/1'1'+P2(H)l;+-H+Pk(n)/lﬁmala""-I-a:( ) . aza”‘l—l- +a,at,

where 0<a, <a and —a<a;<a—o with g, “0 for i=2,...,r and where in addition
my>m, > >m20. ‘We put | |

(14) 0=c, logn,

where ¢, is a positive number larger than 4 which is effectively computable in terms
of T={a, A,..., A, r and the coefficients of P,(x),..., P (x)}. We shall assume that
no1s at least 1[22 where ¢, >4 and where c,, cy,... are positive numbers which are
effectively computable in terms of T and which may be determined independently
of the choice of ¢,.

Journal filr Mathematik. Band 319 10
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‘We may assume without loss of generality that |A,|2 14| for j=2,..., k and.
therefore |

(15) P, M+ P AL S ey A"

Since 4,> 14, and P (n) is positive we have

(MAN_
(16) log (C; TP > c4n log a
and
' log u,
(17) 4 log a > Cg h,

for n sufficiently large. We put ¢,=min{c,, ¢s}. Finally let B, -*(a-l)P (n) and
denote the height of B, by V,. A short calculation shows that V is less than ¢, n

and thus |

(18) | log ¥, < cg log n.

We consider now the intervals

O, =%, 6],..., O, = (01, 0],

where k satisfies the inequalities

(19). G egn< G,
and g satisfies the inetluélities
| (20) 9972 <y logn< it

If each interval @, for i=g,..., k possesses at least one element of the form m —m,
the theorem holds since then

(21) L. ()2r—12zk-g,
while from (14), '(19) and (20) we have

log n

22 K-
(22) g"‘“logcl+loglogn

Cgt

Combining (21) and (22) and remarking that L, ,(u,) is always at least zero gives
our result. | |

Thus we may assume that some @, with g=ssk, contains no term of the
form m; —m,; We define p by the inequalities

(23) my~m,60°°" and m;—-m,, >0,

again with the convention that m,,, =0. As before we write (a—1)u,=4,a" +4,,
where 4, and A4, are integers satisfying

(24) | 0< A, <2(a—-1)yam ™+
and
(25) 0Zjd,l<2(@~1) g *i,
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We also have (a—1)u,=B, 1" + B,, where B, =(a—1)P,(n) and
By=(a—1) (P,(m) A+ -+ + P (n) A7),

From (25) and the observation that 4,a™ 2 (a~1)a™ we find that

4, -
<2 m1+mp+1+1=
A, a
. i .
and this is at most 5 for n sufficiently large by (14) and (23). Furthermore, by (15),
|B, ]| - clﬂnrilzl"’
B, Ay A
D : 1 _ , _ A a"mr
which is also at most — for n sufficiently large since 4, >|4,|. Putting R=

2

B, 4
we may employ (10) as i the proof of Theorem 1 to conclude that |

) 4,0 1B
, 1 2 2
.lgmdx{R,R } <144 max {Ala’"ﬂ’ Bll’,‘_

which from (15) 1s

_ 1A, 1"
<144 max {2q mtmpntl 52 }
{ Pl(n)’v;

Again, since log(i+x)<x for x>0, we have

o ca 1A, |"
0 < log R| £ 8a max {a gy 3 EH}.
| | Py (n) A7

Recalling (16) we see that if log R+ 0 then
log|log R| S ¢,y + max{—~(m; —m_,,)loga, —¢,nloga}
which by (23) is

se¢,+logamax{—60°, —c,n}.

" Since £ 0L eynsc,n either log R=0 or

(26) logilog R| ¢, ~¢,, 8"

On the other hand, since A, and a are positive real numbers,

p |
|log R}=|log (Bl) Fmyloga—nlog Ay,
. 1 Ve

where the principal values of the logarithms are taken. Thus by Lemma 1 if logR+£0
then |

log R|>exp(—c,5(max{1, log4,, log ¥}) logn), |
where V| is the height of B,. Now by (18) and (20) logV, <c¢glogn<@* @1,

10*
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Furthermore from (23) and (24) we find that log 4, <¢;,6°"". Therefore if log R+0

then | - -
log|log R|> —¢,,0°7" log n.

A comparison of this estimate with (26) reveals that

0 < ¢+ cy4 log n,

and this contradicts (14) if ¢, is taken to be larger than ¢4 +¢;;. Thus we may conclude
that | - |

. | A -
27y log(Bll) :mploga-—-nlogli::().

Since A, and « are both positive real numbers -El- is also a positive real number.
| . |

Thus we may apply Lemma 2 to obtain the relation

. 1 : A '
(28) | xy log (B:) - x, log a+ x4 log 4, =0,

where x,, x, and x, are integers, not all of which are zero, satistying

max {1x,0, 1%5], x5} < € g 0571,

| 1
Recall from (23) that m, 2 m,—0°"! and observe that m,; 2 ;i;‘; and, by (17)
and (19), that 0°S0*S con S22 Therefore m,2 08 ¥n 5 0 whence
| 4 log | P“4loga

| | A L .
for n sufficiently large. Eliminating log (-B—l) from equations (27) and (28) as m
| . .
- | | A |
the proof of Theorem 1.we conclude that l;gg; is rational. This completes the proof

of Theorem 2. |
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