Pure Mathematics Linear Algebra Qualifying Examination University of Waterloo September 27, 2022

Instructions

- 1. Print your name and UWaterloo ID number at the top of this page, and on no other page.
- 2. Check for questions on both sides of each page.
- 3. Answer the questions in the spaces provided. If you require additional space to answer a question, please use one of the overflow pages, and refer the grader to the overflow page from the original page by giving its page number.
- 4. Do not write on the Crowdmark QR code at the top of each page.
- 5. Use a dark pencil or pen for your work.
- 6. All questions are equally weighted.

1. Let $T: V \to V$ be a unitary linear transformation on a finite dimensional inner product space V. Prove that there is a unitary linear transformation $U: V \to V$ such that $U \circ U = T$.

2. Let T_1 and T_2 be linear transformations from a finite-dimensional vector space V to itself, and assume that both T_1 and T_2 are diagonalizable. That is, assume that there are bases B_1 and B_2 such that the matrices $[T_i]_{B_i}$ are diagonal. Prove that $T_1T_2 = T_2T_1$ if and only if there is a basis B such that the matrices $[T_i]_B$ are both diagonal.

3. Let V be the span of the functions $\{e^x, xe^x, x^2e^x, e^{2x}\}$. (You may assume that the dimension of V is four.) Define $T: V \to V$ by T(f) = f', where f' denotes the derivative of f with respect to x. Find a Jordan canonical basis for T.

- 4. Let V be a real vector space, and let $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis of V. Say that V admits a pairing $\langle \cdot, \cdot \rangle$ which satisfies for all $\mathbf{v}, \mathbf{w}, \mathbf{x} \in V$ and $c \in \mathbb{R}$:
 - $\langle \mathbf{v} + \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{v}, \mathbf{x} \rangle + \langle \mathbf{w}, \mathbf{x} \rangle$
 - $\langle c\mathbf{v}, \mathbf{w} \rangle = c \langle \mathbf{v}, \mathbf{w} \rangle$
 - $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$

Note that this pairing may not satisfy the positive definite property.

Assume that there is some $\mathbf{v} \in V$ such that $\langle \mathbf{v}, \mathbf{v} \rangle > 0$. Prove that there is a basis $B' = {\mathbf{w}_1, \ldots, \mathbf{w}_n}$ such that for each *i*:

$$\langle \mathbf{w}_i, \mathbf{w}_i \rangle > 0$$

However, show by example that V need not be an inner product space with this pairing.