On divisors of sums of integers - 1I

By A. Sdrkozy at Budapest and C. L. Stewart*) at Waterloo

1. Introduction

Throughout this article, ¢, ¢y, ¢;,... Wwill denote effectively computable positive
absolute constants. Denote the cardinality of a set X by |X| and for any integer n let
P(n) denote the greatest prime factor of n with the convention that P(0)=P(+1)=1.
Let N be a positive integer and let 4 and B be non-empty subsets of {1,..., N}. In [2]
Balog and Sarkdzy proved, by means of the large sieve, that if N> N,, and
|A| |B| > 100 N(log N)? then there exist ac 4 and b € B such that

1
(141 |BI)?
6))] P(a+b)> 16logN
Thus, in particular, if |4|> N and |B|> N then there exist ae 4 and b € B with
N .
) P(a+b)> TogN -

In part I of this paper [9], we obtained estimates for the greatest prime factor of
sums of integers taken from k sets. In this paper we shall return to the case k=2. Our
aim is to improve upon (1) when |4| and |B] are close to N. For example, we shall
show that the right hand side of (2) may be replaced by N, which of course is best
possible. Further we shall show that there exist many pairs (a, b) with @ in 4 and b in
B for which P(a+b) is large.

Put
3N

—= .
(141 1BD)?

Theorem. Let N be a positive integer, let A and B be subsets of {1,..., N} and let
¢ be a positive real number. There exist effectively computable positive absolute constants
¢y, €3, C3 and c, and a positive number N, which is effectively computable in terms of ¢
such that if N> N, and

R=

L s,
©) (4] |B))*> N® ",

*) The research of the second author was supported in part by Grant A3528 from the Natural
Sciences and Engineering Research Council of Canada.
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then there exist at least %{l— pairs (a, b) with a in A and b in B for which
1 ;
2¢,(141 1B)" c,(141 |Bl)
@ log R loglogR ™~ Pa+b)> logR loglogR’
. c;|A4]|B] . . . . .
and there exist at least “logN pairs (a,, b,) with a, in A and b, in B for which
1 1
2c,(14]1B)* _ ci(14] |B])?
®) logR loglogR= P@,—b)> logR loglogR*

We remark that the estimates for the number of pairs (a, ) satisfying (4) and (5)
can not be substantially improved. For example if 4=B={1,..., N} then the number
. o . N? |A| | B
* — ¥
of pairs satisfying (4) is at most c} fog NV ct Tog N ’
number which is effectively computable in terms of c¢,. Further, let T be a positive real
number with

where ¢} is a positive real

3
¢, (141 |Bl)

5.,
6
logR loglogR> T>N"

On applying the above theorem to subsets of 4 and B of the appropriate size we find
that there exist ¢ in 4 and b in B with 37> P(a+b)> T, provided that N is larger
than a number which is effectively computable in terms of e.

In particular, if (3) holds then for N sufficiently large there exist a in 4 and b in
B such that

v
c,(14] | Bl)

© Pla+b)> logR loglogR’

and there exist a, in 4 and b, in B with a, b, such that

: _ c4 (|41 1Bl)
@ Pa,—by)> logR loglogR "

Thus if |4|> N and |B|> N then there exist @ in A and b in B such that
P(a+b)> N,

and a, in A4, b, in B with a, b, such that
P(a, —b;)> N.

Notice that (6) yields an improvement on (1) provided that

lOgN
2 —_ — 2
'AI |B| >N exp ( Co (] l N)) .

Furthermore, we remark that if 4 and B consist of all multiples of a positive integer ¢
with =< N% then for all a in 4 and b in B,

P(a+ b)< max (P(t), 2 [—Jt!])g 2 [-{V—]< 2141 1BDE,

t —
hence (6) and (7) are nearly best possible even when |A4| |B|=o0(N?).
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Perhaps for any ¢> 0 there exist Ny(¢) and K= K(e) such that if N> N,(¢) and
|4| |B|> KN then there exist ae 4 and b e B such that

@® P(a+5)> 2—¢) (4] |B)),

and a, € A, b, € B with a, +b, such that

© P(a; —by)> (1 — &) (4] |BI)".

The following simple construction shows that the hypothesis |4| |B|> KN is necessary
in the above conjecture. Let y be a real number with 0< y<% and let n,,...,n, be

those positive integers n; with 2=m=<N and P(n)=N’. Put 4A={1} and
B={n,—1,n,—1,...,n—2}. By Lemma 3. 20 and Lemma 4.7 of [7] there exists a
positive number c(y) such that |B|> c(y) N for N sufficiently large. We then have

|4] |B| > ¢(y) N,

while P(a+b)< N’ for all ae 4 and b€ B.

§ 2. Preliminary lemmas

For any real number x let [x] denote the greatest integer less than or equal to x,
let {x} =x—[x] denote the fractional part of x and let

llx|l = min ({x}, 1 — {x})
denote the distance from x to the nearest integer. Further denote e2™* by e(x).

Lemma 1. Let X and Y be positive integers with X< Y. Then for any real number

o we have
=<__min<Y—-X _1__>

x et 2l

X<nsY

Proof. See [8], p. 189.

Lemma 2. Let V be a positive integer. Then for any real number a we have

3 e(na)— V\_S_4V2|a|.

Proof. See [1], Lemma 2.

For any positive integer n denote the number of integers less than or equal to »
and coprime with n by ¢(n). ¢ is Euler’s phi function.
83 Journal fiir Mathematik. Band 365
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Lemma 3. There exists an effectively computable positive real number c5 such that

n
¢(n)> c5 loglogn )
Jor n=3. »

Proof. See [8], p. 24.

For any positive integer n, denote the number of positive integers which divide n
by t(n).

Lemma 4. Let q be a positive integer and let u and v be real numbers with v> 0.

Then
10) > I—UM'§ 1(g).
u<ksSu+v q
(k,q)=1
Proof.
u(i’kf):‘;v q u<kZu+v dik,q) q

“zua 5 10zt

dlq u<kSu+v dlq
dlk

v
- .,.Z.,”“’)< ) 1—3)

u<ksu+tv
dlk

=2 1=1(9.
diq

Lemma 5. There exists an effectively computable positive real number c¢ such that
for any integers a and b with b=2,

b 1
—¢(b) 1§zn:§b ;< celogh.
(ntab)=1

Proof. Since the result plainly holds for 5=2 we may assume that b= 3. First
we notice that the result holds with a=0. We have

b 1 1 -1
i
(n;'Sil 54

hence

b > 1 1\7!
a’_(—b-)—(ngl —;<pl;lb<1_;)

n,b)=1

and, by Theorem 429 of [4],

b o1
11 —= 3 —<c,logh.
b n=
of¢ )M)=1 n
Next put =
t=max | ¥ 1- ¥ 1},
uvel* |y<kSu+v 0<ksSv
(k,b)=1 (k,b)=1
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where Z* denotes the set of positive integers. We have

b 1 b 1 t 1
< — 4+ P
ngl n— g h n§1 n ’
(nta,b)=1 (n,b)=1

. . . . 1 .
since the j-th term in the sum on the left above is at most 7 for 1=j=t and is at most

b
the (j—1¢)-th term in —:l— for t<j= ¢ (b). Therefore, by (11),

n=1

(n,b)=1

b b 1 b

— Y  —<c,logh+—~(1+log?)
by .= b

6B = 10)

which, by Lemma 3, is

< ¢, loghb + cg loglogh(1 +logt).

It follows from Lemma 4 that = 2t(b). Further, by Theorem 317 of [4],

(b) < biowioss,

logb

and thus (1 +10gt)§ Cio0 w

. Therefore

b i ! < ¢y logh
b o ; 11 ’
) (n+a,b1)=1

as required.

Lemma 6. Let h, a and q be integers with a> 0, g> 1 and (a, g)=1. Let p(n) be a
real valued function defined for those integers n with h=n<h+q and (n,q)=1. Put

A= max p(m)— min p(n),
hsn<h+gq h<n<h+gq
ng=1 (n,g)=1

and
b)) = an-+p(0).

There is an effectively computable positive absolute constant c,, such that if A< 1 and if
E is a real number satisfying 2< E< q then

1
min| E, ————|<c¢ logE.
,.f..%h?, ( uw(n)n> 126(9) log
n,q=

Proof. Put r =[ min p (n)] and p,(n)=p(n)—r. Note
h=n<h+gq
(n,q)=1

0=<p,(W=<A+1=2.
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We have l//(")‘—'% ((@an+r)+py(n)) and so
an+r an+r+2
Sy ———,
7 Y (n) p

hence

1 max 1 _ 1 1

Y Il = an+1 ’ an+r+1” ’ an+r+2“ ’

q q q

subject to the convention that a= max ((1) R b) and 1§ max (~ a) for all real
numbers a and b. Thus

2 -1
. . an+r+1
min min | E,
hsrShre ( T )n) ..SEH., PN ( q )
a=1 m,a)=1
. an+jl||~?
=3max Y  min(E, ntj
j€Z nsn<h+q q
n,q)=1
which, since (a, ¢)=1, is
= 3 max > mm( ” “ >
jeZ —jsv<-—j+q
v, q9)=1
t -1
S3max{E+ Y min(E,|— ,
jez 151291 q
t—j,a=1

and since

t
q

the above is

-1
=< max (%, ;I-——-;) for 1=t=<g—1, we have, on putting g — ¢ = x, that

+
jeZ 1stsq- t -
t—j,q)= (x+j,q)=
(12) =6max(E+ ¥ min(EZ)),
jez 1st<q-1 t
. t—j.a)=1

which, by Lemma 5 is

(13) S6E+6cqd(q) logg.

If g=FE gq% then it follows from Lemma 3 and (13) that

(149) >  min (E, Th//:—'l)lf)é ¢3¢ (q) logE.

hsn<h+gq
ng=1
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1
On the other hand if 2< E< ¢? then the right hand side of inequality (12) is

(E] . q
<6max<E+ > E+Z > 7)

z
'€ 1se<f =1 Hst<m+i
t—j,q9=1 t-j9=1

which, by Lemma 4, is

§6(E+E<i¢%+r(q))+ % E (¢(q)+r(q)>>

1 1
Since t(q)=< 24 for all positive integers ¢, and E< g3 it follows from Lemma 3 that

d>(q) @ ()< cin ¢(q)
Therefore
hé%zqmi“< W )u) (E”“"’(")”“"’(‘” z, )
which by Lemma 3 is
(15) < c150(q) +166(9) l0g ES ¢,, ¢ (g) log E.

Our result follows from (14) and (15).

We shall also require the Brun-Titchmarsh theorem, a result of Heath-Brown and
Iwaniec and a refinement, due to Vaughan, of Vinogradov’s fundamental lemma on
exponential sums.

Let x be a positive real number and let / and k be positive integers. As usual we
denote the number of primes less than or equal to x by n(x) and the number of primes

less than or equal to x and congruent to / modulo k by =n(x, k, I).

Lemma 7 (Brun-Titchmarsh Theorem). Let x and y be positive real numbers and
let k and | be relatively prime positive integers with y> k. Then

nx+y, k,D—n(x, k, 1)< 2y .
s 1og (%)

Proof. See Theorem 2 of [6].

Lemma 8. Given ¢> 0 there exist positive real numbers Cy = C,(¢) and x, = x,(¢),

which are effectively computable in terms of €, such that if ygx%” and x> x, then
_ Y
n(x+y)—n(x)> C, fogy
Proof. See [5].

We remark that for our purposes we require Lemma 8 only for the range

Tows
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Lemma 9. If a is a real number and a, q and N are positive integers with

(a,9)=1, g= N and

a
o——|=q~? then
=

1 4 11
Y e(pa)|<c,g(logN)* (Ng 2+ N>+ N%g?),

PN

where c,q is an effectively computable positive absolute constant; the summation above is
over primes p with p= N.

Proof. This follows from Theorem 3.1 of [10] by partial summation.

§ 3. Further preliminaries

In order to prove our main theorem we shall employ the Hardy-Littlewood
method much as in [2]. In fact, apart from the values of the parameters, we shall start
out from the same integral. However the integral must be estimated in a much more
elaborate way. In particular, the treatment of the ,major arcs“ requires new ideas.

Let ¢ be a positive real number less than % and let N;, N,,... denote positive
numbers which are effectively computable in terms of ¢. Put
y=wRlogR loglogR
where w is a positive real number larger than 400 which is effectively computable.
Since R=3, y=(3log3loglog3) w_Z_g)—, hence
(16) > 100.
Further, if (3) holds and N> N, then

1 ¢

1 N®“log N¥ loglog N® il
(17 y<3w 0g N loglog N* < 73 e Ny
and so
1
(18) y< NS.

We shall first establish (4). To do so it suffices to show that there exist at least
. 14118
! logN

4N 2N
19 —2Pla+b)>—.
(19) y = ( ) 5

pairs (a, b) with @ in 4 and b in B for which

To this end we introduce the following notation. Put

_ N . _|N
0="sGogm™° °~3n° U“[}’]

and, for each positive integer n,

. . 4N
‘ 1 ifn=mpw1th1§m_._<.yandpaprnnesuchthatg}jy—<p§7,
d"={0 otherwise.
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Next put
4N
S@= X dena),

4N
§=50)= X 4,
n=1

U-1

U= X e(nw),

n=0

and, since d,=0 if n<1 or n> 4N, write

4N+U-1 n
S@U@= ¥ v,e(na) where v,= Y d.
n=1 j=n-U+1

Further, put

Fa)= Y e(an), G(a)=bZB e(ba)

aeA
and
2N
H@=F@) G@= Y e(la+b)a)=3 h,e(nan)
acA,beB n=1
where
h,= Y 1
atb=n
acA,beB

Finally, define J by
1
J=[F() G(@) S(—a) da.
0

Observe that

1 1 2N 4N
J=[H@) S(—x)da={ 3> ¥ h,d,e((n—m)a)da
0 0n=1m=1
2N
=2 h.d,
n=1

Also note that d,> 0 implies that i}—)]YgP(n)> —2—})&, while A,> 0 implies that n can be
expressed as a+ b for some a € 4 and b € B. Thus, to establish (19) and hence also (4),
it suffices to show that

14| | B|

(20) J>Cl—l—c;g—N.

In order to prove (20) we shall first establish estimates for S, S(x) and v,.

It follows from (18) that, for N> Ng, y<%¥ and therefore
(21) S@=3% X e(mpa).

mSy 2N, 4N
y =y
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Lemma 10. For N> N, we have

N

Proof. By (21), for N> N,

pd 4N
n=1 1smsy 2N psaN y
y <Ps

which, by Lemma 7 with k=1, is

L 8N _ 8N N
= T .
log (iyﬁ) log (N/N°) log ¥

Lemma 11. If N> Ny then

Nlogy loglogy
ylogN

[S@)| < ¢p9 s
for 6<a<1-56.

Proof. Let T, denote the set of those a in the interval (5, 1 —d) for which for all
integers n with 1= n=y there exist positive integers r, and s, with (r,, s,)=1,

r, 1
(22) no——|< 7>
and
(23) 2 (logN)*°< 5,2 Q.

Put T'=(3,1—96)—T,, so that T consists of the real numbers a in (3, 1—-9)
which are not in T;. If a € 7", then for some integer n* with 1= n*=<y there exist no
coprime positive integers r,., s, satisfying (22) and (23) with n* in place of n. By
Dirichlet’s theorem there exist integers ¥ and v with

4 Y _1-
(24) n*a ” <v ,
0=u, 0<v=Q and (u,v)=1. Note that
g Y 1
n*a > <—Tv R

and therefore that v< y*(log N)'°. It follows directly from (24) that

1

o - <—
n*vQ

n*v
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.\ u . . .
hence, on writing e in the form % with a and b coprime, a=0 and b> 0 we see that

a 1
with
(26) b= n*v= 3 (log N)'°.

To each o in T’ we shall associate a pair of coprime integers a and b with a=0 and
b> 0 satisfying (25) and (26) and we shall put

a
ﬂ =0 — 77‘ .
Let us define subsets 7,, T; and T, of T’ in the following way:

Tz—{ae T'|1=b=Zy, Iﬂl“SbN}

= ’ < <
T,={ae T |y<b}.

Since (§,1-0)=T,uT,u Tyu T, it suffices to show that

N logy loglogy
27 max|S(°‘)l<619 y1og N )

aeg

for i=1,2,3,4 and for N> N;.

We shall first establish (27) for i =1. Accordingly assume that o € 7;. By (21), for
N> N,

Z > e(npa)

Sy 2N_, 4N
N<ps

=z

which by Lemma 9, (22) and (23), is

1 4 1
4NN (AN ([, lo) : <ﬂ)5 (ﬂ)’ %)
‘égycz <log y) <y (y (logN) + 5 + > 0

4
6N 4NN’

< 4 -
=c21y(logN) (yZ(logN)S +< y ) )

28) [S@)|=

T e(pro)|+| T e(p(na))
pstl psil

-

and, by (17),

N
< -
(29) = €22 ylogN’

for N> N,.
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Now assume that a € 7,. Notice that we may assume that 5> 1 since if b=1 then
1Bl = —--6 and consequently « is not in (0, 1 — ). Further since b+ 1 we may assume

that a=|=0. We have, from (28),

IS =

_N <
5 <PS

2 e(npa)
4N |n=y
y

which, by Lemma 1, is

Il/\

. 1
min|y,=—/—— .
S (y 2upau)

2N
y y

It follows from (18) and (26) that if p is a prime with p>ﬂ and N> N, then
(p, b)=1. Thus for N> N, )

1
30 S@)|= min{y, ——|.
(30) s@ls 3 (y 2”pa“)
w1
Notice that -
p p 4N\ /[ y
"m"—ll (5+0)]= Ilwll -z | -(5) (siw)
ap||_1  11ap
b 2b=2 b

since b> 1 and (ap, b)=1. Thus, from (30), for N> N,,

IS@l= X min [y, :
p<dN ap
=% “ 5 ”
(p,b)=1

1
= ( =T m
Osh<b <4N
(hb)=1 P27y b
ap=h(modb)
4N 1
=|{ max n|—, b, !
<0<1<b y 0§§<b h
b)=1 '5

¢b=1 (h, b)=

which, by Lemma 7, (18) and (26), is

= = Y AN ”Z'
b) log | — 1=t 7
yo(b) 0g<by) LEhed
and, by Lemma S5, this is
N N
<eoi V' < N
(31) = Cz3 ylogN logh=c;; ylogN logy,

as required.
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We shall assume next that « e T, hence

Yy 1
(32) 8bN<|ﬂ|<bQ'
Put
1
It follows from (32) that
g< L< i]_v_
2 y

Then, from (30), for N> N,,

. 1
IS@l=s X mm(y,«m)

4N
Py
(p,b)=1
[ ]+1 1
= ¥ > min ( y, ———
j=1  G-DL<psijL ( ’ 2||P°f||>
P b)=1
4
[L—’;]+1 2y {
= 3 > min |y, —— ] .
=1 RS G- pi<esit 2|l pal

bt sta<o

Since k—_—1—§ {pa}< Zk_y implies that

2y
1
TR
. 1 1 _1
where as before we write a=< 0 +b and —6§ 0 + a for all real numbers a and b, we have
(511, 1 1
(34 IS@|= ¥ ¥ |min |y, +min | y, 2 1.
=1 k=1 2 k—1 2 _’i (i—(l)li;pléjL
—_ p.b)=
2y 2y Exlcip<k

If p and p, are primes with (j—1) L<p=jL, —— k = {pa}<—k; and (j—1) L<p,<jL,
k—1

k
T < =
3y = {poa} < 3y then

-21—> l(p —po) all = “(p —Po) (—Z—+ B)

g“(p—po)%” ~1p—pol 1|

al_1
b|| "2

—LIBI=|
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Thus
a 1 1 1
- Me —p <=
whence
(35) P =po(modb).
Therefore

(36) —21—y> lpa—poall = ”(p — Do) —Z— +(p—Dpo) ﬁ” = l(p —po) BIl-

Since

2

N =

' 1
I(p—po)ﬂI<LIﬂl=53§
it follows from (36) that
L 1p=pol 18]
2y p pO ’
hence
| — |<__.1__.
PPl =31p1y

Thus, either there are no primes p with (j—1)L<p=jL, (p,b)=1 and

k—_—lé {pa)<2£y, or for some p, we have

2y
> 1= pX 1
MO w1 AL
k=1 k. P=po(modb)
(37) , 7y Slpat<z;

1 1
< [E— —_ —_—
=“<Po+2|ﬂ|y,bapo) ”(Po 2Iﬁly9bap0>

By (32), Tﬁll_y> l% . Thus, for N> N, the right hand side of inequality (37) is, by (18)
and Lemma 7,
2
< 1Bl y 1
b)log | ——

and, by (33), is

WL bl
y6(®) 1og(_£y?_ y6(b) logN

A
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It now follows from (34), that

+1 ‘
(%] 24 1 cubL

1
S()| = min |y, ; , )
5@ j§1 e 2|1 T S| E|[]] y¢(®)logN
2y 2y
4N c,sbL y 1
<[|== 257 -
=<[Ly]+1)y¢(b)logN Z min y,2 I3
2y

Nb Nlogyb
< o7 7
= €26 2¢(b)logN<y Z k)— 27 3, Tog N ¢ (b)

which, by Lemma 3, is

Nlogy loglogb

= Cas ylogN

Since b=y we have

¢, Nlogyloglogy
ylogN

(3%) IS =
for o € T; provided that N> N,.

Finally we assume that a e 7,. Put
. (N 1
Li=min{—,——].
! (y 21B] y)

® Is@= £ min(npin)

pstt
(p,b)=1

Then, by (30), for N> N,

[Lly]+l 1
= X 2 min (y, m) .

i=1 G-1)Li<p=jLy
(p,b)=1

Now if — 2” Pl <y with (j—1) L, <p<jL, and n is defined by p =n(modb) with
jL,—b<n=jL, then

llpall = ” ( +.3>

2| nnom| 1o 18

+nﬁ+(p n) B
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and since |p—n| |BIS L, |B|= 1 < llpall we have

2| pad é'

min (y, ——1——)§ min | y, 1
2llpal “—};(an+nbﬂ)“

%(an+nbﬁ)” ,

hence

Therefore, by (39),

[Lly]+1 1
40) |S@|= ;1 . _b};‘,SI min | y, 1 = 1.
= M N Ilz(an‘i‘”bﬂ)” v ;)En‘(mgd:b; !

Q hence that L, > Qo For

We see from (25) and the fact that 5> y that ——— 5

N> N5 we have, by (17) and (26),

L,_Q N 3
s E=>__ 0 0 > &
b 2622,5(ogN)@ =N >

1
218y
(41)

whence, from Lemma 7,

@) 2L, _ L

1 .
(j—l)L;Z<p§jL, <¢(b)lo <L1) ep(b) logN

p=n(modb)

Combining (40) and (42). we obtain

Ll [Lly] 1 1
S| E—F—— © min |y,
ISl e (b) logN j§1 le—b><:n§jL1 Y

(n,b)=1

l—b— (an+nb/3)”

We may estimate the inner sum above by means of Lemma 6 with h=jL, —b+1, g=b
and p(n)=nbp. Then, by (17) and (26),

A= max nbf— min nbp
JLy—b<nZjLy JjLi—b<nZjL,
20
<b*|p|< b _y°ogN)* <1,
Q N

for N> Ns. Thus

IS@IS 5o ([zﬂ #1) (8 logy,

and, since L, < —]}Y— R i
c;oNlogy

“3) O T
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B
NIZ
T(og NY* then we may replace 3¢ in (41) by 7 and consequently ¢ in (43) by 1.

1z
On the other hand if y__2 (IN Ny then certainly 1<loglog y for N> N,;;. Thus

Lemma 11 holds for a € 7, and, by (29), (31) and (38), the proof is complete.

fy<——g

Lemma 12. If N> N,, and n is an integer satisfying 3)ON< n=2N then

N

v,> Caom .

Proof. If n satisfies é(;;—N< n=2N then for N> N,,,

b= ¥ d= ¥ 1=% > 1.
JERTURL T n-USmpsn WSy g, (a2U, 20) o min(2, 4Y)
Hrersht

Notice that if mg% —= then, by (16),

9 ny
Further if — N — < m then

. ny_ 22
hat
Since —— 0N =130 y<y we conclude tha

n n—U
v, > 1= ™om )\ T .
on i1n - n n 1lny
SN<msIFW l<rsn Son<m=i0W

We may now apply Lemma 8 with x="=

11n
= 1
m= 0N we have, by (18),

-

2 4 1
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Thus, for N> N,,,

1
inym

gl»—

Up> C3y

and, by (18), is

ven N (ON\(2my N\ N (15N
31 7 gN\11ny)\30 N 32y210gN ny )’

which, since n> §9yﬂ, is

> ._]v___
€33 )7 10g N’
as required.
§ 4. Proof of the theorem

We shall first prove (4). We have for N> N,g,

IJ—% i F(a) G(a) U(—a) S(—a) da
0

—_ 1-6 ~
(1_g(—Uﬁ)da+ £ F(“)G(“)S(—a)<1_2(_ﬁi)
6 - —
= [ IF@I 1G] IS(~) W iy

1-0 B
+ 3( IF@)| |G@)] |S(—a)] <1+ l U(U %)

)d

da+ f |F(a)| |G ()] (a max |S(ﬂ)|> 2do

which, by Lemma 2, is
4U 2IOCI

J
= _ja I[F@IG@)| S

by Lemmas 10 and 11, is

6 40N e Nlogy logl
é_j IF@IG @) {7 U da+ j |F@)| |G@)] 2¢ 19__2g_J1’0_;’iN°g_yd
5N Nlogy loglogy
<

and by Cauchy’s inequality and Parseval’s formula is

1
Nlogyloglogy [} ) 1 ) 2
<
=634 " JogN glF(a)l do ,glG(d)l da] ,

and thus is

/ Nlogyloglogy 4
<
(“4) Sca = Togn (4B,

)
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Furthermore,
1 1 4N+U-1
I={F@) G(@) U(—a) S(—a)da=| ( > h e(na))( by v,,e(—na)) da
0 0 n=1
2N
=2 ho,
n=1
Since h, and v, are non-negative for n=1,..., 2N,
I; Z h’lvn,
30N<n$2N
Y <ns
and by Lemma 12,
c3o N c3o N
I> 30 h = 30 1.
y*logN 30N§<2N y*logN aeA,zbeB
3%<a+b§21v
1
Observe that 30N§3(|A| |B])* == 3 max (|4], |B|]) and thus
y 10 10
)3 2+ 4| |Bl.
acA,beB 10
30N _,+p<aN
y
Therefore
c3s N|4| |B|
>_=2 1
(45) 2= TlogN

It follows from (44) and (45) that

|| N logy loglogy i
>

c N logy loglogy 1
>_"35 - z)
= N(lAI 18] SR (41 1)

Since y=wRlogR loglog R< w R* we have

c3s5|A| |B| (1 _ logw R3 loglogwR3>

>
Wiz log N 36 3 logR loglog R
¢35 |A| |B| logw loglogw
>335 17 — T oo ).
= logN 1-ca ®

On choosing w sufficiently large we find that

¢3514| 1Bl

>
iz 2logN

Since J is non-negative, (20) holds and this completes the proof of (4).

91 Journal fir Mathematik. Band 365
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The proof of (5) is essentially the same as that of (4). First observe that we may
assume, without loss of generality, that |4| = |B|. Next define z to be the smallest
positive integer for which

[An{l,...,z}|= >|A'

o 314|
A1-14f\{1,...,Z—-[—Ta—]-—l},
Az-—Ar\{z+[31|g':|+1,...,N},

B,=Bn{1,...,z2},
B,=Bn{z+1,...,N}.

Put

Note that the minimum of |4,| and |A4,] is at least l;g for N> N,y. Further the
maximum of |B,| and |B,| is at least % .

We shall consider separately the case |B,| = |B,| and the case |B,|< |B,|. Assume
first that |B,| = |B,|. Then, since —3—(—)y£_ 10 |4],

Al |B
(46) S 121401824
acA,beB 20
l?,ﬁq—bgn

We now replace G(a) by G(—a) in the above argument. Then

F@)G(—)= ¥ e(@a—b)a)= % h,e(na),

acA,beB n=—-N

where

acA,beB
a—-b=n

Further we put J’=} F(@) G(—a) S(—a) da and 1’=f F(@) G(—a) U(—a) S(—a) da.
0 0

N
As before it suffices to show that J’>£%Ag—|11~,§|—. We have I'= 3 h,v, hence, by
n=1
Lemma 12,
c;s N
rz—38 h;,.
y*logN Mgusn
Thus, by (46),
‘ ) N |4] |B|
‘ >c
47) rz €9 JTTogN °

and the required lower bound for J' follows as above.



Sdrkézy and Stewart, On divisors of sums of integers - 11 191

Finally we consider the case |B,| < |B,|. In this case

Al |B
(48) T 1z4, 18,248
acA,beB 20
-3-%-1!<b—aSN
We then put N
F(—)G@w)= Y e(b—a)a)= X Hhe(no),
acA,beB n=—-N
where
hy= Y 1.
a:,_{,b_eB

1 1
Further we put J"={ F(—a) G(®) S(—a) da and I" = F(—a) G(a) U(—a) S(—a) do.
0 0
Employing Lemma 12 and (48) we find that (47) holds with I' replaced by I”. We may
‘ |4] |B|
logN ~

now argue as above to show that J"> ¢, Since P(b—a)= P(a—b) our result

now follows.

Remark. By modifying the proof of Lemma 11 it is possible to show that there
exists an effectively computable positive absolute constant ¢ such that if N is a positive

1
integer and y is a real number with 3= y< N® then

. _ Nlogyloglogy
1
T min(y, llpall < e O

for all real numbers o with N"'<a=<1— N~!; the summation above is over primes p
with p=< N. We shall establish this result in a subsequent paper.
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