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Abstract. Let x, y and z be positive integers such that x=y+z and ged (x,y,z) =
=1. We give upper and lower bounds for x in terms of the greatest squarefree divisor
of xyz.

For any positive integers x, y and z define G = G (x, y, z) by
G=G(xy,2=]] p.

plxyz
pprime

J. OESTERLE posed the problem to decide whether there exists a con-
stant C, such that for all positive integers x, y and z with (x,y,z) =1
and x = y + z we have

x <G, )

This problem is related to some standard conjectures in the theory of
elliptic curves. MASSER [4] conjectured, in analogy to a result of
R.C.MasoN on the function field case, that for any positive real
number ¢ we even have, instead of (1),

x < Cy(e)G'*e )]

where C,(¢) is a positive number which depends on ¢ only. For
illustration we give two numerical examples:
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4375=5%7=2-3"4+1 yields x~ G"%;
48234496 = 2?'-23 = 325%7% + 112 yields x ~ G '
(example due to B. M. M. DE WEGER [9]).

Some well known conjectures would follow from inequalities (1)
and (2). HALL Jr. [3] conjectured that there is a constant C; such that
|x* — y*| > Cyy"? for all positive integers x, y with x? # .

Inequality (2) would imply the following slightly weaker assertion:
For every positive number ¢ there exists a positive number C,(¢)
depending on ¢ only such that

X2 =y’ > Cale) y"*~

for all positive integers x, y with x? # y°. Both (1) and (2) would imply,
by FALTINGS’ celebrated result [2], that there are only finitely many
positive integers », x, y and z with n > 3 such that

x"=y"+ 2",
that is, there are only finitely many exceptions in Fermat’s Last

Theorem. PiLLAI [5] conjectured that for given positive integers a, b
and k the equation

ax"—by"=k

has only finitely many solutions in positive integers m, n, x and y with
m>1,n>1,x>1,y> 1and (m,n) # (2,2). The only case for which
this has been proved is a = b =k =1 [8]. Pillai’s assertion would
follow immediately from (2), (but also from (1) in combination with
some known results). Similarly (2) would imply that for given positive
integers a,b and k there are only finitely many positive integers

1 1 1
myn,r,x,y,zwith —+ -+ -<1land x> 1, y > 1, z > 1 such that
m n r

ax"—by"=kz" .

Thus it seems hopeless to prove (2). We shall show in Theorem 1 thata
weaker inequality follows from a result of van der Poorten. There may
be some hope, however, to disprove (2). In Theorem 2 we show that
(2), if true, is not far from the best possible. We are grateful to
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F.BEUKERS for his suggestions. In particular we owe to him the
smooth proof of Theorem 2.

By ¢, ¢, .., cs we denote certain effectively computable positive
constants.

Theorem 1. All positive integers x,y, z such that g.c.d. (x,y,z) = 1
and x = y + z satisfy
logx < CsG"

where Cs is an effectively computable constant.
We shall deduce this result from the following lemma which is
proved by the p-adic version of Baker’s method.

Lemma 1. Let ay, .. .,a, (n = 2) be non-zero rational integers with
absolute values at most A (= 4). Let p be a prime number. Then the
inequalities

o > ord,(af'...a — 1) > (16(n + 1))'2(“')1 (log A)" (log B)?
have no solutions in rational integers with absolute values at most
B(= e?).

Proof. Apply Theorem 2 of VAN DER POORTEN [6] with K = Q,
D=1,a=a,2=]]logla] <(logA4)"and G, <p. O

j=1

Proof of Theorem 1. Let
x=np?t, yznpﬁt,z=l_[p;":
i=1 i=1 i=1

where p, <p, <...<p, are prime numbers and k;,/;,m; are in-
tegers for i=1,...,r. Put K= maxk;, L =max/, M = maxm,,
1 1 1

H =max (K, L,M) and P = p,. By Lemma 1 we have
P
H =max (K,L,M) < (16(r + 1))?¢*" gg—lg(log P)Y (logH)*. (3)

Rosser [7] proved that p; > jlogj for j = 1,2,... . This implies

r r /1 r
G=[]p=r]]logj>c <r eogr) :
j=1

j=2
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Hence
a6+ 1)+ <cG. 4
This implies r < log (c; G)/loglog G. Hence, by P < G,
(logP)" < 3G . &)
By (3), (4) and (5), we obtain
H
< C4Gl4
(log H)?
Hence
H<cs;G"(logG)? .
Thus

logx < Hlog(p,...p,) < HlogG < ¢,G" . [

Theorem 2. Let 6 > 0. Then there exist infinitely many positive
integers x,y and z such that x =y + z, g.cd. (x,y) =1 and

/logG
x>Gexpl{(4—)——].
loglog G
We shall apply the following estimates in the proof.

Lemma 2. Let p; < p, < ... < p, be the first r odd prime numbers.
Let 6 > 0. Then, for sufficiently large r, we have

1)-p, <rlogr + rloglogr — (1 — d)r;

ii) ) logp, <rlogr+ rloglogr — (1 —d)r;
i=1

iii) Y loglogp; < r(loglogr + 9) .
i=1
Proof. The prime number theorem with error term implies

(X = fls:; (Oo:;33>==

_ X + X +0( X )
" logX ' (logX)? (logX)*/

P P P
r=n(p) - o)
" logp, Oogp)2 (logp,)?

Hence




On the Oesterlé-Masser Conjecture 255

which gives

1 1 ~1
pr=r10gpr(l + +0( 3 )) =
logp, log”p,

=rlogp,—r+0< ’ )
logp,

and part i) follows in a straightforward manner.
To prove ii), notice

+

r pr

Y logp= | logxdn(x) =

i=1 2+

Prodx

2 logx

s Ra(x)
= [z (x)logx]); — | — dx < rlogp, —
2

for r large. Using

’jrdx _ (p)+0( D» )
ylogx log? p,

and i) we obtain ii).
Part iii) is proved by the trivial estimate

Y loglogp; < rloglogp, and i) . O
i=1

Lemma 3. Let 6 > 0. Let p,,...,p, be the first r odd primes. Let
N (X) be the number of positive integers not exceeding X and composed
of pi,...,p, Then, for sufficiently large r,

el'2610gX>r

rlogr

N(X)><

Proof. Note that N (X) is exactly the number of solutions of the
inequality

|> nlogpi| <logX

i=1

in non-negative integers n,,...,n,. This number is clearly bound-
ed below by the volume of the generalized tetrahedron
1Y x;logp;| < log X, x, > 0, divided by the volume of the unit block

(x,logpy,...,x,logp,), 0 < x;<1,withi=1,...,r. Hence
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N2

r!']]logp;
i=1

The above argument is due to ENNOLA, see [1]. The lemma now follows
from the estimate in Lemma 2 iii) and the inequality ! < (r/e' %) for r
sufficiently large. [J

Proof of Theorem 2. Let c¢;,¢,09,¢,y denote positive
numbers which are effectively computable in terms of 6. Let r be
a positive integer and let p,,...,p, be the first r odd primes. Let
X = exp((rlogr)?). Let S be the set of positive integers not exceed-
ing X and composed of p,,...,p,. By the box principle, there exist
x,y€ S, x > y such that |x — y|, < 2/|S| where | |, denotes the 2-adic
valuation. Put z = x — y. Without loss of generality we may assume
g.c.d. (x,y) = 1. For the triple x, y, z we have

r 4 r 1
Gx,y, o)< (|| p)z-—<a4x(||p)—
E | S| Ul |S]
Using that, by Lemma 2 ii),

r 1
H (r ogr) for r>¢,,
and, by Lemma 3,

e!"2log X'\
|S| > “loar for r> ¢
rlogr

and log X = (rlogr)?, we obtain
G<xe =297 for r>c¢,.
From rlogr = (log X)'/* it follows that
r> (2 —8)(log X)'/loglog X > (2 — &) (log x) "*/log log x

for r > ¢),. Hence

G <xexp<—4(1 39) @)

loglog x
and thus



On the Oesterlé-Masser Conjecture 257

x> Gexp(4(1 — 46)—@> .

loglog G

From |z|, = |x — y|, < 2/|S| we see that |z|, > 0 as r —» oo, hence
z— o0 as r — 0. So we find that infinitely many triples x, y, z satisfy
the conditions of Theorem 2. ]
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